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Quantum Chemistry 
Corrections 2A 

 
 

1.  Write out the operator  2Â  for  
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  (Hint:  Make sure to operate on a function rather than simply squaring the operator). 
 
 

We have to apply two times the operator  Â on a function  ( )f x to determine the square of the operator. 
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2.  The model of a particle in a one‐dimensional box has been applied to the π electrons in linear conjugated 

hydrocarbons.  Consider butadiene, H2C=CH–CH=CH2, which has four π electrons. Although butadiene is 
not a  linear molecule, we shall assume  for simplicity  that  the π electrons  in butadiene move along a 
straight line whose length can be estimated as equal to two C=C bond lengths, or 2 x 1.35 Å, plus one C–
C bond, or 1.54 Å, plus the distance of a carbon atom radius at each end, or another 1.54 Å, for a total of 
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5.78Å.  The Pauli Exclusion Principle (which we shall discuss later, but should be familiar from first year 
chemistry) says that each state can contain only two electrons (with opposite spins). This implies that the 
four π electrons fill the first two levels of the particle in the box. Use this information to determine what 
wavelength this molecule would absorb if one uses light to induce a transition to the lowest excited state 
(i.e., what is the lowest energy transition to a higher state).  Express this value both as wavelength and 

as wavenumber (1/ in units of cm‐1). 
 
 

Because of the Pauli principle (to be discussed in detail later in the course) the 4 π electrons of butadiene 
occupy  the  two  lowest  energy  levels  of  the  particle‐in‐a‐box  problem.  The  lowest  energy  transition 
corresponds therefore to the excitation of an electron from the 2nd to the 3rd energy level.  According to the 
Bohr correspondence principle the transition energy equals the difference  in energy between these two 
levels. As seen in class, the energy of level n of a particle with mass m (here the electron) in a box of length 
a (here the length of the molecule) is given by: 
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The energy of the transition is thus: 
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One then calculates    et    according to:  
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 This corresponds to UV light. 

 
3.    Using the trigonometric identity   
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  show that the eigenfunctions of the particle‐in‐a‐box Hamiltonian are orthonormal, i.e., they satisfy the 

relation 
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  If the above integral equals zero, we say that the set of functions is orthogonal, and if it equals to 1 we 
say that the set is normalized. 

   
 

  Given that the eigenfunctions of the particle‐in a‐box problem are 
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we calculate: 
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For n=m this yields: 
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  While for n≠m this gives: 
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Q.E.D 


