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Quantum Chemistry 

 

Corrections 11 
 

 
1.  Predict the relative stability of the species N2

+, N2, and N2
-.  

 

To predict the relative stability of different diatomic molecules, we compare the bond orders. We must first 
determine the electronic configuration of each species, then count the binding and anti-binding electrons 
. 

Species Electronic configuration Bond order 

+
2N         

22 4 1*2 2 2 2 zKK s s p p     
4 1

2.5
2


  

2N         
22 4 2*2 2 2 2 zKK s s p p     

4 2
3

2


  

-
2N           2 12 4 2* *2 2 2 2 2zKK s s p p p      

4 2 1
2.5

2

 
  

 

The relative stability is therefore: 2 2 2N N N    

 

 

 

2. Determine the ground-state electron configurations of NO+ and NO.  Compare the bond order of these two 

species. 

 

 

Species Electronic configuration Bond order 

+NO         
22 4 2*2 2 2 2 zKK s s p p     

4 2
3

2


  

NO           2 12 4 2* *2 2 2 2 2zKK s s p p p      
4 2 1

2.5
2

 
  

 

 

 

3. Determine the bond order in a cyanide ion. 

 

 

Species Electronic configuration Bond order 

-CN         
22 4 2*2 2 2 2 zKK s s p p     

4 2
3

2


  

 

 

 

 

 

 

4.  Determine the ground-state molecular term symbols of O2 and O2
+. 
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To determine the spectroscopic terms O 2 and O 2

 in the ground state, it is first necessary to establish their 

electronic configuration. 

 

Species Electronic configuration 

2O           2 22 2 4* *2 2 2 2 2zKK s s p p p      

+
2O           2 12 2 4* *2 2 2 2 2zKK s s p p p      

 

As we did for atoms, we only deal with incomplete molecular orbitals  * 2 p  in this case, because others have 

contributions to LM  and to SM  equal to zero. Let us then list the different possible states and calculate the value 

of LM  and SM , to finally deduce the molecular terms. 

 

For 2O : 

1 1
Lm

 
 LM  SM   

1 1
Lm

 
 LM  SM  

  2  0      0  0  

   0  1      0  1  

   0  0     2  0  

 

 

The values of 2LM    with 0SM   indicate a term having 2   and 10S    . 

 

After having crossed out the two corresponding states, all the remaining states have 0LM   and the maximum 

value of SM  is 1 , which gives 0   and 31S    . 

 

We then eliminate from the table three states (three possible projections of S


: 0, 1SM   ), and ultimately there 

is only one state with 0LM   and 0SM  , that is to say 0   and 10S    . 

 

The term of the ground state (of lower energy) is determined by the rules of Hund: it is that of greater multiplicity 

of spin, namely 
3 . 

 

 

For +
2O : 

1 1
Lm

 
 LM  SM   

1 1
Lm

 
 LM  SM  

  1  1
2     1  1

2  

  1  1
2     1  1

2  

This time there is only one term with 1   and 21
2S    , which is therefore the term of the fundamental 

state of +
2O . 
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5. The highest occupied molecular orbitals for an excited electronic configuration of the oxygen molecule are  

 

     gu
 

  What are the molecular term symbols for oxygen with this electronic configuration? 

 

 

The list of possible states for this electronic configuration and the values of LM  and the corresponding SM are 

given in the table below. 

 

 1

1 1

L gm 

 
 

 3

0
L um 

 LM  SM   
 1

1 1

L gm 

 
 

 3

0
L um 

 LM  SM  

    1  1       1  1  

    1  0       1  0  

    1  0       1  0  

    1  1       1  1  

 

 

We deduce a term with 1LM    and 0, 1SM    (which corresponds to 6 states), that is to say 1   and 

31S    . 

 

The two remaining states have 1LM    and 0SM  , which gave 1   and 10S    . 

 

 

 

6.   In class I derived the expressions for the three sp2 orbitals of carbon: 

 

   

1

2

3

1 2
2 2

33

1 1 1
2 2 2

3 6 2

1 1 1
2 2 2

3 6 2

z

z x

z x

s p

s p p

s p p







 

  

  

 

 

 Using the angular parts of the p orbitals (i.e., the spherical harmonics), show that 1 and 2 are directed 

120° from each other. 

 

The 2s orbital has spherical symmetry and therefore does not contribute to the direction of hybrid orbitals. There 
is therefore no need to consider it. 
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The orbitals 2 xp , 2 yp  and 2 zp  are oriented along the axes Ox, Oy and Oz and they are the same ‘size’. We can 

therefore consider their direction as equivalent to that of the basic vectors of space IR
3
: 

 

       2 1,0,0 2 0,1,0 2 0,0,1x y zp p p    

 

Therefore, the directions of the linear combinations 1 , 2  and 3  are those of the vectors 1v


, 2v


 and 3v


 obtained 

by taking the same linear combinations of  1,0,0 ,  0,1,0  and  0,0,1 . 

 

So,  

 

 1 2 2
1 1 13 33

2 2 0,0,zs p v     


   (we don’t take into account 2s) 

 

Likewise, 

    1 1
2 2 2 6

,0,v   


   

 

and   

 

 1 1
3 3 2 6

,0,v    


 
 

Finally, to calculate the angle between 1  and 2 , just calculate the angle of 1v


 and 2v


 using their dot product: 

 

 

 

1 2 1 2 1 2 1 2 1 2 12

2 1 2 1 1 1
12 12 123 3 2 6 26

cos

0 0 cos cos 120

v v x x y y z z v v 

  

      

              

   

 

 

We can calculate in the same way for 13  and 23  which are also 120°. 


