

Quantum Chemistry

Corrections 11

1. Predict the relative stability of the species N_2^+ , N_2 , and N_2^- .

To predict the relative stability of different diatomic molecules, we compare the bond orders. We must first determine the electronic configuration of each species, then count the binding and anti-binding electrons

Species	Electronic configuration	Bond order
N_2^+	$KK(\sigma 2s)^2(\sigma^* 2s)^2(\pi 2p)^4(\sigma 2p_z)^1$	$\frac{4+1}{2} = 2.5$
N_2	$KK(\sigma 2s)^2(\sigma^* 2s)^2(\pi 2p)^4(\sigma 2p_z)^2$	$\frac{4+2}{2} = 3$
N_2^-	$KK(\sigma 2s)^2(\sigma^* 2s)^2(\pi 2p)^4(\sigma 2p_z)^2(\pi^* 2p)^1$	$\frac{4+2-1}{2} = 2.5$

The relative stability is therefore: $N_2 > N_2^+ \approx N_2^-$

2. Determine the ground-state electron configurations of NO^+ and NO . Compare the bond order of these two species.

Species	Electronic configuration	Bond order
NO^+	$KK(\sigma 2s)^2(\sigma^* 2s)^2(\pi 2p)^4(\sigma 2p_z)^2$	$\frac{4+2}{2} = 3$
NO	$KK(\sigma 2s)^2(\sigma^* 2s)^2(\pi 2p)^4(\sigma 2p_z)^2(\pi^* 2p)^1$	$\frac{4+2-1}{2} = 2.5$

3. Determine the bond order in a cyanide ion.

Species	Electronic configuration	Bond order
CN^-	$KK(\sigma 2s)^2(\sigma^* 2s)^2(\pi 2p)^4(\sigma 2p_z)^2$	$\frac{4+2}{2} = 3$

4. Determine the ground-state molecular term symbols of O_2 and O_2^+ .

To determine the spectroscopic terms O_2 and O_2^+ in the ground state, it is first necessary to establish their electronic configuration.

Species	Electronic configuration
O_2	$KK(\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p)^4 (\pi^* 2p)^2$
O_2^+	$KK(\sigma 2s)^2 (\sigma^* 2s)^2 (\sigma 2p_z)^2 (\pi 2p)^4 (\pi^* 2p)^1$

As we did for atoms, we only deal with incomplete molecular orbitals ($\pi^* 2p$) in this case, because others have contributions to M_L and to M_S equal to zero. Let us then list the different possible states and calculate the value of M_L and M_S , to finally deduce the molecular terms.

For O_2 :

m_L	M_L	M_S	m_L	M_L	M_S
-1 +1	-2	0	↓ ↑	0	0
↑ ↓	0	+1	↓ ↓	0	-1
↑ ↓	0	0	— ↑↓	+2	0

The values of $M_L = \pm 2$ with $M_S = 0$ indicate a term having $\Lambda = 2$ and $S = 0 \Rightarrow {}^1\Delta$.

After having crossed out the two corresponding states, all the remaining states have $M_L = 0$ and the maximum value of M_S is ± 1 , which gives $\Lambda = 0$ and $S = 1 \Rightarrow {}^3\Sigma$.

We then eliminate from the table three states (three possible projections of \vec{S} : $M_S = 0, \pm 1$), and ultimately there is only one state with $M_L = 0$ and $M_S = 0$, that is to say $\Lambda = 0$ and $S = 0 \Rightarrow {}^1\Sigma$.

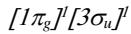
The term of the ground state (of lower energy) is determined by the rules of Hund: it is that of greater multiplicity of spin, namely ${}^3\Sigma$.

For O_2^+ :

m_L	M_L	M_S	m_L	M_L	M_S
-1 +1	-1	$+\frac{1}{2}$	— ↑	+1	$+\frac{1}{2}$
↓ —	-1	$-\frac{1}{2}$	— ↓	+1	$-\frac{1}{2}$

This time there is only one term with $\Lambda = 1$ and $S = \frac{1}{2} \Rightarrow {}^2\Pi$, which is therefore the term of the fundamental state of O_2^+ .

5. The highest occupied molecular orbitals for an excited electronic configuration of the oxygen molecule are



What are the molecular term symbols for oxygen with this electronic configuration?

The list of possible states for this electronic configuration and the values of M_L and the corresponding M_S are given in the table below.

$m_L(1\pi_g)$ -1 +1	$m_L(3\sigma_u)$ 0	M_L	M_S	$m_L(1\pi_g)$ -1 +1	$m_L(3\sigma_u)$ 0	M_L	M_S
↑ —	↑ —	-1	+1	— ↑	↑ —	+1	+1
↑ —	↓ —	-1	0	— ↑	↓ —	+1	0
↓ —	↑ —	-1	0	— ↓	↑ —	+1	0
↓ —	↓ —	-1	-1	— ↓	↓ —	+1	-1

We deduce a term with $M_L = \pm 1$ and $M_S = 0, \pm 1$ (which corresponds to 6 states), that is to say $\Lambda = 1$ and $S = 1 \Rightarrow {}^3\Pi$.

The two remaining states have $M_L = \pm 1$ and $M_S = 0$, which gave $\Lambda = 1$ and $S = 0 \Rightarrow {}^1\Pi$.

6. In class I derived the expressions for the three sp^2 orbitals of carbon:

$$\xi_1 = \frac{1}{\sqrt{3}} 2s + \sqrt{\frac{2}{3}} 2p_z$$

$$\xi_2 = \frac{1}{\sqrt{3}} 2s - \frac{1}{\sqrt{6}} 2p_z + \frac{1}{\sqrt{2}} 2p_x$$

$$\xi_3 = \frac{1}{\sqrt{3}} 2s - \frac{1}{\sqrt{6}} 2p_z - \frac{1}{\sqrt{2}} 2p_x$$

Using the angular parts of the p orbitals (i.e., the spherical harmonics), show that ξ_1 and ξ_2 are directed 120° from each other.

The 2s orbital has spherical symmetry and therefore does not contribute to the direction of hybrid orbitals. There is therefore no need to consider it.

The orbitals $2p_x$, $2p_y$ and $2p_z$ are oriented along the axes Ox, Oy and Oz and they are the same ‘size’. We can therefore consider their direction as equivalent to that of the basic vectors of space \mathbb{R}^3 :

$$2p_x \rightarrow (1,0,0) \quad 2p_y \rightarrow (0,1,0) \quad 2p_z \rightarrow (0,0,1)$$

Therefore, the directions of the linear combinations ξ_1 , ξ_2 and ξ_3 are those of the vectors \vec{v}_1 , \vec{v}_2 and \vec{v}_3 obtained by taking the same linear combinations of $(1,0,0)$, $(0,1,0)$ and $(0,0,1)$.

So,

$$\xi_1 = \frac{1}{\sqrt{3}}2s + \sqrt{\frac{2}{3}}2p_z \Rightarrow \xi_1 \rightarrow \vec{v}_1 = \left(0, 0, \sqrt{\frac{2}{3}}\right) \quad (\text{we don't take into account } 2s)$$

Likewise,

$$\xi_2 \rightarrow \vec{v}_2 = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{6}}\right)$$

and

$$\xi_3 \rightarrow \vec{v}_3 = \left(-\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{6}}\right)$$

Finally, to calculate the angle between ξ_1 and ξ_2 , just calculate the angle of \vec{v}_1 and \vec{v}_2 using their dot product:

$$\begin{aligned} \vec{v}_1 \cdot \vec{v}_2 &= x_1 x_2 + y_1 y_2 + z_1 z_2 = \|\vec{v}_1\| \cdot \|\vec{v}_2\| \cdot \cos \alpha_{12} \\ &\Rightarrow 0 + 0 + \sqrt{\frac{2}{3}} \cdot \left(-\frac{1}{\sqrt{6}}\right) = \sqrt{\frac{2}{3}} \cdot \sqrt{\frac{1}{2} + \frac{1}{6}} \cdot \cos \alpha_{12} \Rightarrow \cos \alpha_{12} = -\frac{1}{2} \Rightarrow \alpha_{12} = 120^\circ \end{aligned}$$

We can calculate in the same way for α_{13} and α_{23} which are also 120° .