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a)Développement limité autour d’un point . . . . . . . . . . . . . . . . . . . . . . . . . 12
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I. Introduction et rappels
1) À quoi sert la mécanique statistique ?

Le but de la mécanique statistique est de décrire des systèmes ayant un grand nombre de
degrés de liberté.

La plupart des systèmes étudiés en sciences naturelles ont un ”grand” nombre de degrés de liberté (cor-
respondant souvent à un grand nombre de particules). L’expérience montre que ces systèmes macroscopiques
peuvent avoir des comportements qui ne découlent pas de façon évidente de celui de leurs constituants mi-
croscopiques. On parle de phénomènes émergeants. Selon la célèbre formule du physicien Phil Anderson,
more is different.

➢ Exemples :
• Rien n’indique a priori dans la structure d’une molécule d’eau qu’un grand nombre de ces molécules pourra

former une phase liquide ou une grande variété de phases solides selon les conditions de température et de
pression.

• L’aimantation d’un atome de fer isolé pointe toujours dans une direction aléatoire. Un échantillon macrosco-
pique de fer peut développer une aimantation qui pointe durablement dans une direction particulière.

• Un oiseau seul n’apparait pas voler dans une direction particulière. Un grand nombre d’oiseaux forme une
nuée qui possède une dynamique collective complexe.

• Une particule de gaz n’a pas plus de raison de traverser une boite de gauche à droite que de droite à gauche.
Un échantillon macroscopique de gaz initialement confiné au côté gauche de la boite va nécessairement diffuser
vers la droite pour occuper toute la boite.

Que signifie ”grand” ? Dans un système suffisamment grand pour observer ces phénomènes émergeants,
il est en pratique impossible de suivre chaque particule individuellement.

➢ En effet, considérons un volume de 1 L rempli d’air en conditions ambiantes. A priori, nous savons
parfaitement déterminer la trajectoire de chacune des molécules dans ce volume en résolvant les équations de Newton.
Mais pour combien de molécules devrions-nous le faire ? En conditions ambiantes, 1 L d’air pèse un 1 g, et la masse
molaire moyenne de l’air est de 29 g/mol. Notre volume contient donc 0.03 mol d’air, soit 1.8 × 1022 molécules. Si
nous voulons faire résoudre les équations du mouvement pour ces molécules à un ordinateur, il faut commencer par
y stocker la configuration initiale, soit 6 nombres par molécule (3 coordonnées de position, 3 de vitesse). Un nombre
est typiquement représenté par 8 octets, donc nous aurions besoin au total de 1012 To. C’est 10 fois plus que
l’ensemble des données sur internet.

La résolution des équations microscopiques du mouvement pour un échantillon macroscopique de matière
est donc impossible. Mais elle est aussi inutile. En effet, l’expérience montre que l’évolution macro-
scopique d’un système peut être décrite par un nombre restreint de coordonnées thermody-
namiques ou fonctions d’état. Par exemple, pour déterminer le travail que peut fournir la détente de
notre litre de gaz (imaginez gonfler un airbag), nous avons besoin de connaitre sa pression et sa température
initiales, alors que les coordonnées exactes de chacune de ses molécules n’ont aucune importance.

Thermodynamique vs. mécanique statistique. Vous avez étudié l’année dernière la thermodyna-
mique, qui est une approche phénoménologique permettant de décrire l’évolution de ces fonctions d’état.
Phénoménologique signifie qu’il s’agit d’un ensemble de lois qui ont été formulées pour rendre compte d’ob-
servations macroscopiques. La thermodynamique ne sait rien de la structure microscopique de la matière.
Par opposition, la mécanique statistique est une théorie fondamentale, où l’on démontre ces lois à partir
des équations microscopiques. La mécanique statistique établit le lien entre macroscopique et mi-
croscopique. C’est une théorie très puissante car elle est très générale : elle peut prendre comme point
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Mécanique Statistique pour la Chimie

de départ une dynamique microscopique quelconque (classique, quantique ou autre). Elle n’a en fait même
pas besoin de connaitre les détails de la dynamique microscopique, mais seulement les états accessibles
à cette dynamique (que nous définirons précisément dans la suite). Cela lui donne des applications très
interdisciplinaires, en physique, chimie et au-delà.

Concrètement, et entre autres choses, dans ce cours :
• On apprendra à déterminer les propriétés thermodynamiques d’un gaz parfait à partir de la structure

des particules qui le constituent. On verra comment le modèle de gaz parfait permet de comprendre
des réactions chimiques aussi bien en phase gaz (catalyse hétérogène) qu’en phase liquide (solution
diluée).

• On définira la température pour un système quantique et on déterminera la statistique d’occupation
de ses niveaux d’énergie. Ces résultats sont la base pour comprendre des spectroscopies très utiles en
chimie (notamment infrarouge et RMN), ainsi que pour comprendre le comportement des électrons
dans les solides.

• On verra comment les interactions microscopiques entre particules donnent lieu aux changements
d’état de la matière, et plus généralement aux transitions de phase.

• On apprendra (grâce à l’interprétation microscopique de l’entropie) à avoir une intuition qualitative
de l’état d’équilibre (notamment chimique) de systèmes complexes.

La mécanique statistique s’étend bien au-delà de ce qui sera vu dans ce cours, car il s’agit d’un domaine
de recherche vivant. Pour le comprendre, il est utile d’adopter une perspective historique. En effet, pendant
plusieurs siècles, la recherche en physique visait à établir les lois régissant la matière à des échelles de plus en plus
petites. La mécanique classique, développée au XVIIe siècle, a longtemps été suffisante pour décrire la dynamique des
objets à l’échelle ”humaine”. En parallèle, au début du XIXe siècle, la thermodynamique s’est développée pour décrire
les systèmes où la notion phénoménologique de chaleur est importante. La mécanique statistique a été développée
dans le sillage de la thermodynamique, principalement par Ludwig Boltzmann, à la fin du XIXe siècle – époque où
l’on ne savait pas encore que la matière était constituée d’atomes. Boltzmann a en fait supposé que la matière avait
des constituants élémentaire discrets, hypothèse qu’avaient du mal à accepter la plupart de ses contemporains. Au
début du XXe siècle, l’existence des atomes ne fait plus de doutes : cela a poussé au développement de la mécanique
quantique pour décrire la dynamique de ces derniers. Ce développement est essentiellement achevé dans les années
1950, et une partie de la communauté scientifique pense alors être armée pour comprendre n’importe quel système
par simple application de la mécanique quantique. C’est contre cette idée que s’insurge Phil Anderson dans More is
different, publié en 1972 : le passage du microscopique au macroscopique fait émerger de nouvelles lois physiques. Il
est impressionnant de constater que les comportements collectifs de particules quantiques sont toujours étudiés grâce
à la méthode statistique de Boltzmann, qui ne pouvait même pas être certain de l’existence des atomes. Aujourd’hui,
les lois régissant les constituants élémentaires de la matière (dans des conditions ”raisonnables”) sont essentiellement
établies, et la ”frontière” de la recherche consiste plutôt à comprendre leurs comportements collectifs : la mécanique
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statistique sous-tend en fait la plupart des questions de recherche actuelles en physico-chimie fondamentale. Ses
méthodes se sont également étendues à d’autres domaines : biologie des systèmes, économie, intelligence artificielle.
Deux prix Nobel de physique récents (Giorgio Parisi en 2021 et John Hopfield en 2024) ont été attribués pour des
travaux fondamentaux en mécanique statistique, précurseurs de la révolution de l’IA.

2) Rappels de thermodynamique
La thermodynamique est une description phénoménologique de systèmes à grand nombre

de degrés de liberté à l’équilibre thermique. Vous avez étudié la thermodynamique dans le cours
Physique II l’année dernière. Ici, je rappelle seulement les deux principes de la thermodynamique en insistant
sur leur caractère phénoménologique : ils sont établis sur la base d’observations. En fait, la thermodynamique
est née au début du XIXe siècle, époque où l’on ne savait pas encore que la matière est constituée d’atomes.
On ne savait pas assimiler la chaleur à l’agitation microscopique des molécules, et l’on croyait qu’elle était
transportée par un fluide spécial, appelé ”calorique”. Il est d’autant plus impressionnant qu’une théorie aussi
profonde et efficace que la thermodynamique ait pu être établie essentiellement à partir de considérations
macroscopiques sur l’efficacité des moteurs thermiques.

a) Définitions

De la même façon qu’un point matériel (un seul degré de liberté) est décrit par ses coordonnées
mécaniques (position et vitesse), un système thermodynamique (grand nombre de degrés de liberté) est
décrit par ses coordonnées thermodynamiques ou fonctions d’état. Les fonctions d’état ne sont définies que
pour un système à l’équilibre thermodynamique, i.e., dont les propriétés ne changent pas significativement à
l’échelle du temps d’observation. Une équation d’état est une relation entre coordonnées thermodynamiques.

➢ Exemples de fonctions d’état : Pression, volume, température, énergie, entropie, enthalpie...

Le sens de certaines fonctions d’état est clair à partir de la mécanique. Par exemple, le volume occupé
par un système est objectivement mesurable, et la pression est la force par unité de surface exercée par le
système sur les parois de ce volume. Pour d’autres fonctions (température, énergie), le sens n’est pas évident
a priori, et la thermodynamique devra leur apporter une définition.

Remarque. Toutes les fonctions d’état que l’on peut définir ne sont pas indépendantes. Il en suffit en
général d’un petit nombre pour décrire complètement un système.

Remarque. On fait parfois la différence entre ”fonctions d’état” et ”variables d’état”. Cette différence
est une question de point de vue (par exemple, l’énergie peut être une fonction ou une variable d’état) – on
parlera donc uniquement de fonctions d’état ou coordonnées thermodynamiques dans ce cours.

b) Principe zéro : définition de la température

Il existe une coordonnée thermodynamique T , appelée température, telle que lorsque
deux systèmes S1 et S2 sont à l’équilibre entre eux, T [S1] = T [S2].

Aujourd’hui, l’idée que la matière est constituée d’atomes est ancrée dans notre intuition, et on asso-
cie donc naturellement la température à l’agitation microscopique des atomes. Ce n’était pas le cas des
physiciens du XIXe siècle, qui ne connaissaient pas la structure microscopique de la matière. A l’échelle
macroscopique, l’idée intuitive de la température est plutôt qu’il s’agit de la quantité qui s’égalise entre
deux systèmes mis en contact (sans échange de matière). Par exemple si l’on prépare une tasse de thé, on
l’oublie dans la cuisine et on revient au bout d’une heure, on dira que le thé est désormais à la température
de la pièce. En fait, la transitivité de l’équilibre thermodynamique (si deux systèmes A et B sont en équilibre
avec un système C, alors ils sont en équilibre entre eux) implique l’existence d’une coordonnée thermody-
namique T qui s’égalise lorsque deux système sont à l’équilibre. On définit cette coordonnée comme étant
la température.
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Mécanique Statistique pour la Chimie

c) Premier principe : nature des échanges d’énergie

Il existe une coordonnée thermodynamique U , appelée énergie interne, telle que sa
variation lors de l’évolution d’un système isolé entre deux états d’équilibre est égale au
travail mécanique effectué sur le système. Si le système n’est pas isolé, la différence entre
sa variation d’énergie interne et le travail mécanique effectué est, par définition, la chaleur
Q reçue par le système :

∆U = Wext +Q (1)

La mécanique peut être résumée à la conversion de travail en énergie. L’énergie mécanique d’un système
est clairement définie comme la somme de son énergie cinétique et de son énergie potentielle ; on fait varier
cette énergie en faisant un travail dessus à l’aide d’une force extérieure. Par exemple, l’énergie mécanique
d’un ressort de raideur k et de longueur à vide x0 dépend de sa longueur x comme E = (1/2)k(x − x0)2.
Pour compresser le ressort de moitié, je dois fournir un travail W = ∆E = (1/2)k(x0/2)2.

Remarque. En thermodynamique on utilise la convention du banquier : les quantités reçues par le
système sont comptées positivement.

Le premier principe de la thermodynamique rend compte de l’observation que pour un système macrosco-
pique ce n’est pas toujours le cas : le travail à effectuer pour amener le système d’un état thermodynamique
à un autre dépend de la façon dont il est couplé à son environnement. Supposons en effet que l’on veuille
comprimer un gaz, d’un volume V à un volume V/2, le cylindre contenant le gaz étant placé dans une pièce à
température T . On observe que le travail nécessaire pour y parvenir est plus faible si le cylindre a une paroi
fine que s’il a une paroi épaisse. Il est alors manifeste qu’un système thermodynamique peut échanger de
l’énergie avec son environnement par un autre moyen que le travail mécanique. Intuitivement, cet échange
devrait être possible à travers une paroi fine (paroi isotherme), mais pas à travers une paroi suffisamment
épaisse (paroi adiabatique).

Remarque. Le sac isotherme du supermarché est en fait tout le contraire d’un sac isotherme – c’est un
sac adiabatique !

Le premier principe définit la variation d’énergie interne comme le travail reçu par le système lors de
la compression adiabatique. Concrètement, en faisant des expériences de compression adiabatique, on peut
déterminer l’énergie interne du gaz en fonction des autres coordonnées thermodynamiques à une constante
additive près. Dès lors, on peut effectuer une expérience de compression non-adiabatique, et définir la chaleur
reçue par le système comme la part de variation d’énergie qui n’est pas due au travail mécanique reçu.

Remarque. Attention ! Le travail qui intervient dans le premier principe est le travail effectué sur le
système par les forces extérieures. Cela sera important dans la suite du cours.

En résumé, le premier principe dit qu’un système thermodynamique peut échanger de
l’énergie sous deux formes : le travail mécanique et la chaleur. On sait calculer le travail mécanique
à partir des lois de la mécanique. Par contre on n’a aucun moyen de calculer la chaleur avant d’introduire
le second principe.

Remarque. Le mécanique classique emploie une description idéalisée du ressort. En réalité, le ressort est
un système thermodynamique constitué d’un grand nombre d’atomes. La raison pour laquelle il se comporte
comme un système mécanique est que, dans les conditions typiques d’utilisation, la température influence
très peu ses propriétés mécaniques (à la différence du gaz parfait dont la pression est proportionnelle à la
température, par exemple). Mais on verra dans le cours des modèles de ressorts pour lesquels ce n’est pas
le cas.

d) Second principe : principe d’évolution

Il existe une coordonnée thermodynamique extensive S, appelée entropie, qui augmente
toujours lors de l’évolution spontanée d’un système isolé. La variation d’entropie lors d’une
transformation infinitésimale réversible est liée à la chaleur reçue par le système selon
dS = δQ/T .
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Remarque. Une transformation est réversible est une transformation où l’équilibre mécanique et ther-
mique entre le système et son environnement est maintenu à tout instant.

Le second principe rend compte de l’observation que la dynamique d’un système macroscopique est
irréversible : un gaz va occuper tout le volume qui lui est disponible, et jamais il n’ira se concentrer dans
une moitié du volume. Les échanges de chaleur ont un sens privilégié : une soupe chaude ne va jamais
refroidir une assiette froide. Le premier principe spécifie la nature des échanges d’énergie, mais il n’apporte
aucune information sur le sens dans lequel ils vont se faire. Postuler l’existence d’une fonction entropie, c’est
la façon la plus simple de rendre compte du fait qu’il existe une flèche du temps.

En fait, l’énoncé le plus élémentaire du second principe est le suivant (formulation de Clausius) : Il n’existe
pas de processus dont le seul résultat est le transfert de chaleur d’un corps froid vers un corps chaud. Par un
raisonnement thermodynamique que vous avez vu l’année dernière, il est possible d’en déduire l’existence
d’une fonction entropie et son lien avec l’échange de chaleur. Je ne rentre pas ici dans les détails de ce
raisonnement car nous obtiendrons tout cela de façon beaucoup plus directe dans le cadre de la mécanique
statistique.

Pour une transformation infinitésimale, le premier principe s’écrit dU = δWext + δQ ; si le système n’est
soumis qu’à des forces de pression, δW = −PextdV . Si la transformation est réversible, Pext = P (pression
à l’intérieur du système) et δQ = TdS, ce qui donne

dU = TdS − PdV. (2)

Ceci est maintenant une relation entre coordonnées thermodynamiques, qui est donc vraie pour une trans-
formation quelconque (en effet, les variations de coordonnées thermodynamiques ne dépendent que de l’état
initial et final et pas du chemin suivi pour y arriver).

Cette relation est très utile en thermodynamique. Par exemple, elle permet de déterminer l’entropie d’un
système à partir de l’énergie interne U(P, T ) et d’appliquer ainsi la condition d’évolution spontanée. Mais
c’est aussi là que l’on touche à une limitation inhérente au caractère phénoménologique de la thermodyna-
mique : nous n’avons aucun moyen de calculer U(P, T ) à partir de la composition microscopique de notre
système. Nous devons la mesurer expérimentalement, ou l’obtenir à partir d’une théorie plus fondamentale :
il s’agit justement de la mécanique statistique.

Pour prendre un exemple très concret, vous avez étudié au semestre dernier la condition de spontanéité
d’une réaction chimique en termes de l’enthalpie libre de réaction ∆rG < 0. Pour calculer ∆rG, vous aviez
besoin des enthalpies et entropies standard de formation des réactifs et des produits. Grâce à la mécanique
statistique, nous pourrons calculer ces quantités à partir de la structure des espèces chimiques impliquées.

3) Approche statistique et ergodicité
Comment la mécanique statistique va-t-elle remplir toutes ses promesses ? Je donne ici schématiquement

l’idée générale de l’approche statistique, que nous développerons dans la suite du cours. La première étape
est de se rendre compte que les coordonnées thermodynamiques correspondent à des valeurs moyennes de
quantités qui fluctuent au cours du temps. Dans un gaz de particules classiques, par exemple, on peut
définir à tout instant l’énergie totale Etot comme la somme de l’énergie cinétique et de l’énergie potentielle
de chacune des N particules. Si le gaz n’est pas isolé, cette énergie totale fluctue au cours du temps, et sa
moyenne temporelle correspond à l’énergie interne du système :

U = ⟨E⟩temp = 1
τ

∫ τ

0
dt Etot(r1(t), . . . rN (t),p1(t), . . . ,pN (t)), (3)

où τ est un temps long devant l’échelle de temps des fluctuations d’énergie. L’écriture ci-dessus met en
valeur le fait que pour calculer cette moyenne temporelle, il faut résoudre les équations du mouvement pour
N ∼ 1023 particules afin de déterminer leurs trajectoires ri(t) et leurs impulsions (produit de la masse et
de la vitesse) pi(t). Nous avons vu que c’est impossible.

Devant cette impossibilité, la mécanique statistique adopte l’approche suivante. Imaginons qu’au lieu
d’étudier une seule enceinte contentant le gaz, nous puissions étudier un grand nombre d’enceintes identiques
contenant le même gaz. Si j’arrête le temps à un instant t et je choisis une de ces enceintes au hasard, je
peux définir la probabilité P(r1, . . . , rN ,p1, . . . ,pN ) de trouver les particules aux positions r1, . . . , rN avec
les impulsions p1, . . . ,pN . Je peux alors définir une moyenne statistique de l’énergie

⟨E⟩stat =
∑

{ri,pi}

Etot({ri,pi})P({ri,pi}). (4)
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Le postulat central de la mécanique statistique consiste à dire que les deux moyennes sont égales :

⟨E⟩temp = ⟨E⟩stat. (5)

Ce postulat résout de fait notre problème : il est infiniment plus simple de déterminer la probabilité pour
qu’un système occupe une configuration au cours de sa dynamique que de déterminer l’entièreté de sa
dynamique. Dans ce cours, nous apprendrons à calculer ces probabilités.

Un système qui respecte l’égalité (5) est dit ergodique. L’ergodicité ne peut être démontrée rigoureu-
sement que pour des systèmes très simples (par exemple le billard de Sinäı – un système de deux particules
circulaires dans une bôıte carrée), mais elle est en pratique vérifiée pour la très grande majorité des systèmes.
Certains systèmes sont non-ergodiques car ils ont une dynamique très lente : par exemple, les systèmes vi-
treux. On peut toujours y faire de la mécanique statistique (par exemple grâce à la méthode des répliques
de Parisi), mais avec grande précaution.

4) Structure de ce cours
Après avoir rappelé les outils mathématiques nécessaires, nous allons construire l’appareil théorique

de la mécanique statistique. Cela consiste essentiellement à déterminer comment calculer les probabilités
introduites ci-dessus. Nous verrons que ces probabilités dépendent de la façon dont le système d’étude
est couplé à son environnement : c’est ce qui définit les différents ensembles statistiques. Nous passerons
ensuite la majeure partie du cours à appliquer cet appareil théorique, et voir quelles informations il peut nous
apporter sur différents systèmes de complexité croissante : du gaz parfait aux membranes semi-perméables en
passant par la catalyse hétérogène. Au chapitre VIII, nous étudierons notamment les systèmes de particules
en interaction, qui sont le coeur de la mécanique statistique car ils sont le lieu des véritables phénomènes
émergeants – des comportements intrinsèquement collectifs tels que les transitions de phase. Si le temps le
permet, nous toucherons à quelques applications interdisciplinaires de la mécanique statistique, notamment
les premiers modèles de réseaux de neurones.

5) Bibliographie
Divers aspects de ce cours sont inspirés des ouvrages ci-dessous :
• Kardar, Statistical Physics of Particles. C’est le cours donné au MIT – le livre est compact et

accessible ; son exposition des fondamentaux est la plus proche de celle faite dans ce cours.
• Diu, Guthman, Lederer, Roulet, Physique Statistique. Ce livre a longtemps servi de base au

cours donné à l’ENS. Il est très rigoureux sur les fondamentaux et permet d’aller dans les détails
grâce à deux nombreux compléments.

• Callen, Thermodynamics and an Introduction to Thermostatistics. Intéressant pour sa construction
”moderne” de la thermodynamique.

Je mentionne également McQuarrie, Statistical Thermodynamics, qui présente des applications à la chimie
– notamment le calcul des constantes d’équilibre. Attention cependant : la construction des fondamentaux
y est très différente de celle faite dans ce cours.

Ce cours est également inspiré des cours que j’ai moi-même suivis sur divers aspects de la mécanique
statistique. J’adresse donc ici de chaleureux remerciements à mes professeurs : Jean-François Allemand,
Bernard Derrida, Werner Krauth, Lydéric Bocquet, Denis Bernard, Jesper Jacobsen, Henk Hilhorst, Rémi
Monasson, Giulio Biroli et Guilhem Semerjian.

II. Outils mathématiques
Ce chapitre compile les techniques et résultats mathématiques qui seront utiles dans la suite du cours.

Certains sont des rappels, mais d’autres seront probablement nouveaux. Les exemples concrets utilisés dans
ce chapitre ne doivent pas être connus pour l’examen, mais les techniques mathématiques introduites doivent
être maitrisées.

1) Dérivées et intégrales
a) Dérivée partielle et totale

Je pars du principe que vous avez l’habitude dériver et d’intégrer des fonctions d’une seule variable. Je
rappelle ici sur un exemple les spécificités des fonctions à plusieurs variables.
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Pour (x, y) ∈ R et β ∈ R, on pose
f(x, y) = eβ(x2+y2). (6)

Le but d’une dérivée partielle est de voir comment varie une fonction en réponse à une petite variation
d’une de ses variables, les autres étant fixes. En pratique, pour calculer la dérivée partielle de f par rapport
à x, on imagine que la seule variable est x et que les autres sont des constantes :

∂f

∂x
= 2βxeβ(x2+y2). (7)

Notation. On précise parfois les variables qui sont maintenues fixes dans une dérivée partielle. On met
aussi parfois la variable par rapport à laquelle on dérive en indice :

∂f

∂x
= ∂f

∂x

∣∣∣∣
y

= ∂xf = ∂xf |y . (8)

On peut dériver encore, cette fois par rapport à y :

∂2f

∂y∂x
= 4β2xyeβ(x2+y2). (9)

On aurait pu aussi commencer par dériver f par rapport à y :
∂f

∂y
= 2βyeβ(x2+y2), (10)

puis dériver par rapport à x :
∂2f

∂x∂y
= 4β2yxeβ(x2+y2). (11)

On retrouve ici le théorème de Schwarz : pour une fonction f(x, y) suffisamment ”gentille” (comme la
très grande majorité de celles rencontrées en sciences naturelles)

∂2f

∂x∂y
= ∂2f

∂y∂x
. (12)

Il nous appartient de spécifier quelle quantité est une constante et quelle quantité est une variable. Nous
pouvons par exemple considérer que β est une variable, et calculer

∂f

∂β
= (x2 + y2)eβ(x2+y2). (13)

La différentielle de la fonction f est sa variation infinitésimale en réponse à une variation infinitésimale
de chacune de ses variables :

df = ∂f

∂x
dx+ ∂f

∂y
dy. (14)

Le but d’une dérivée totale est de voir comment varie une fonction en réponse à une petite variation
de l’une de ses variables, les autres variables n’étant pas maintenues fixes. En pratique, la dérivée totale de
f par rapport à x, par exemple, s’obtient en divisant l’expression de la différentielle par dx :

df
dx = ∂f

∂x
+ ∂f

∂y

dy
dx. (15)

Nous ne pouvons pas calculer cette dérivée totale dans le cas général car nous ne savons pas comment varie
y quand on varie x : cela dépend du chemin suivi sur la surface définie par la fonction f . Si l’on spécifie un
chemin (x(t), y(t)), alors

dy
dx = dy

dt
dt
dx = dy/dt

dx/dt ≡ ẏ(t)
ẋ(t) , (16)

et
df
dx = ∂f

∂x
+ ∂f

∂y

ẏ(t)
ẋ(t) . (17)

Nous pouvons également calculer la dérivée totale par rapport à t :
df
dt = ∂f

∂t︸︷︷︸
=0

+∂f

∂x
ẋ(t) + ∂f

∂y
ẏ(t). (18)

10/74
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b) Intégrale d’une fonction à plusieurs variables

On peut intégrer une fonction de plusieurs variables par rapport à l’une de ses variables. Physiquement,
cela correspond à calculer l’aire sous la courbe f(x) à y fixé. y se comporte alors comme une constante et
peut être sorti de l’intégrale : ∫ b

a

dx eβ(x2+y2) = eβy
2
∫ b

a

dx eβx
2
. (19)

Notation. Il ne faut surtout pas oublier l’élément différentiel dx, qui spécifie la variable d’intégration !

On peut également intégrer f par rapport à ses deux variables à la fois. Physiquement cela correspond
à calculer le volume sous la surface définie par f(x, y). Si f peut être factorisée comme f(x, y) = g(x)h(y),
l’intégrale double se ramène au calcul du produit de deux intégrales simples :∫ b

a

∫ b′

a′
dxdy eβ(x2+y2) =

∫ b

a

dx eβx
2
∫ b′

a′
dy eβy

2
. (20)

C’est un cas auquel on cherchera souvent à se ramener en mécanique statistique.

c) Intégrale d’une différentielle

La différentielle df d’une fonction f(x, y) donne sa variation infinitésimale entre deux points (x0, y0)
et (x0 + dx, y0 + dy) très proches. Pour obtenir la variation de f entre deux points arbitraires (x0, y0) et
(x1, y1), on somme les variations infinitésimales – on intègre la différentielle :∫ f(x1,y1)

f(x0,y0)
df = f(x1, y1) − f(x0, y0). (21)

En pratique, on a souvent l’expression de la différentielle sous la forme

df = ∂f

∂x
dx+ ∂f

∂y
dy. (22)

Cette expression décompose la variation infinitésimale de f en celle due à la variation de x et celle due à la
variation de y. On peut sommer chacune de ces variations infinitésimales :

f(x1, y1) − f(x0, y0) =
∫ x1

x0

∂f

∂x
dx+

∫ y1

y0

∂f

∂y
dy. (23)

En pratique, on se retrouve donc à calculer une intégrale par rapport à x et une intégrale par rapport à y.
Attention cependant : les deux intégrandes dépendent à la fois de x et de y, et il faudra exprimer l’un en
fonction de l’autre pour pouvoir calculer les intégrales : cela correspond à définir un chemin d’intégration
dans le plan (x, y) (cf. Série 1 d’exercices).

d) Intégrales gaussiennes

On rencontrera souvent en mécanique statistique différentes versions de l’intégrale de Gauss : pour a > 0,∫ +∞

−∞
dx e−ax2

=
√
π

a
. (24)

On peut généraliser ce résultat en présence d’un terme linéaire :∫ +∞

−∞
dx e−ax2+bx =

∫ +∞

−∞
dx e−a(x2−2(b/2a)x+(b/2a)2−(b/2a)2) (25)

=
∫ +∞

−∞
dx e b2

4a e−a(x−b/2a)2
=
√
π

a
e

b2
4a . (26)

Dans la dernière égalité, on implicitement utilisé le changement de variable u = x− b/2a, qui nous ramène
au cas de l’Eq. (24). Ce résultat se généralise également au cas d’une intégrale multidimensionnelle. Si A
est une matrice de taille N ×N , inversible et de déterminant positif, et B un vecteur de dimension N , alors∫

RN

dX e−XTAX+BTX =
√

πN

detA exp
(

1
4B

TA−1B

)
. (27)
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Notation. On note ici X le vecteur colonne (x1, . . . , xN ) des variables d’intégration. XT désigne la
transposée de X, donc le vecteur ligne (x1, . . . , xN ).

2) Développements limités
Nous utiliserons beaucoup les développements limités dans ce cours, surtout pour simplifier les expres-

sions et ne garder que les termes dominants dans la limite des grand nombres.

a) Développement limité autour d’un point

Si une fonction f est suffisamment dérivable autour d’un point a, alors on peut écrire (formule de
Taylor-Young) :

f(x) = f(a) +
n∑
k=1

(x− a)k

k!
dkf
dxk

∣∣∣∣
a

+ o((x− a)n). (28)

Cette formule donne une approximation de f(x) autour du point a par un polynôme de degré n. Le o(x−a)n
est une fonction qui n’est pas connue explicitement, mais dont on sait que

lim
x→a

o(x− a)n

(x− a)n = 0. (29)

C’est une correction qui est négligeable devant (x− a)n au voisinage de a. En pratique, on omettra souvent
le o, et on utilisera le signe ≈ pour indiquer que l’on fait une approximation.

b) Développement asymptotique

On parle de développement asymptotique lorsque l’on approxime une fonction autour d’un point a ∈
R ∪ ±∞ tel que limx→a f(x) = ±∞. Le développement asymptotique n’est pas forcément un polynôme en
x. Il a la forme générale

f(x) = g(x) + η(x), (30)

où η(x) est négligeable devant g(x) au voisinage de a, i.e., limx→a η(x)/g(x) = 0. Il n’y a pas de formule
générale pour le développement asymptotique. Souvent, il s’obtient en faisant le développement limité d’une
fonction auxiliaire, comme on verra dans des exemples par la suite. Pour les développements asymptotiques,
il est utile de connaitre l’ordre de ”puissance” des fonctions usuelles quand x → ∞ :

log x = o(xm) et xm = o(ex). (31)

3) Probabilités
Malgré ce que peut laisser présager l’intitulé du cours, nous n’aurons besoin que de notions très basiques

de probabilités.

a) Variable aléatoire discrète

Une variable aléatoire discrète x peut prendre des valeurs dans un ensemble discret d’issues {x1, . . . , xn} =
S. La probabilité de l’issue xi est définie par

P(xi) = lim
N→∞

Ni(N)
N

, (32)

où Ni(N) est le nombre de fois où l’on a obtenu xi sur N échantillons de la variable x. On a donc ∀i, Pi ≥ 0
et

n∑
i=1

P(xi) = 1 (condition de normalisation). (33)

Un événement E est un sous-ensemble de S. La probabilité d’un événement est donnée par la somme des
probabilités des issues donnant lieu à cet événement :

P(E) =
∑
xi∈E

P(xi). (34)
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Si toutes les issues sont équiprobables, ∀i,Pi = 1/n = 1/Card(S), et on a

P(E) = Card(E)
Card(S) . (35)

Intuitivement,
P(E) = nombre d’issues favorables

nombre d’issues possibles . (36)

La moyenne de x est définie par

⟨x⟩ = lim
N→∞

x(1) + x(2) + · · · + x(N)
N

, (37)

où les x(k) sont les valeurs de x obtenues par échantillonnage successif. En utilisant, la définition des
probabilités, cela revient à

⟨x⟩ =
n∑
i=1

xiP(xi). (38)

La variance de x est
Var(x) = ⟨x2⟩ − ⟨x⟩2. (39)

Var(x) est l’écart quadratique typique d’un échantillon de x à sa valeur moyenne. On définit également
l’écart-type σ(x) =

√
Var(x).

b) Variable aléatoire continue

Une variable aléatoire continue X peut prendre des valeurs dans un intervalle S de R, fini ou non. La
densité de probabilité ou distribution de probabilité de X est définie par

PX(x) = lim
δx→0

lim
N→∞

1
N

δN(x)
δx

, (40)

où δN(x) est le nombre de fois où l’on a obtenu une valeur entre x et x+δx sur N échantillons de la variable
X. On a donc ∀x, PX(x) ≥ 0 et∫

S
dxPX(x) = 1 (condition de normalisation). (41)

Intuitivement P(x)dx est la probabilité qu’un échantillon de X soit égal à x à dx près. Un événement E est
un sous-ensemble de S. La probabilité d’un événement est donnée par la somme des probabilités des issues
donnant lieu à cet événement :

P(E) =
∫

E
dxPX(x). (42)

La moyenne de X est définie par

⟨X⟩ = lim
N→∞

X(1) +X(2) + · · · +X(N)
N

, (43)

où les X(k) sont les valeurs de X obtenues par échantillonnage successif. En utilisant, la définition des
probabilités, cela revient à

⟨X⟩ =
∫

S
dxxPX(x). (44)
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On définit la variance et l’écart-type de la même façon que pour une variable continue.

Remarque. Il existe des distributions de probabilités continues, bien normalisées, qui ont pourtant une
variance infinie, voire une moyenne infinie !

➢ Exemple : distribution gaussienne ou normale.

C’est une distribution que l’on rencontrera très souvent. Pour une variable aléatoire X qui prend des
valeurs dans R, elle est de la forme

PX(x) = 1√
2πσ2

exp
(

− (x−m)2

2σ2

)
. (45)

Par la formule de l’intégrale gaussienne, on vérifie que la distribution est bien normalisée :
∫
R dxP(x) = 1.

La moyenne de X est donnée par

⟨X⟩ = 1√
2πσ2

∫ +∞

−∞
dxx exp

(
− (x−m)2

2σ2

)
(46)

= 1√
2πσ2

∫ +∞

−∞
dx (x+m) exp

(
− x2

2σ2

)
(47)

= 1√
2πσ2

∫ +∞

−∞
dxx exp

(
− x2

2σ2

)
︸ ︷︷ ︸

=0

+ m√
2πσ2

∫ +∞

−∞
dx exp

(
− x2

2σ2

)
= m. (48)

On vérifie également que la variance de X est σ2.

4) Lois des grands nombres
a) Limite thermodynamique

En mécanique statistique, nous serons souvent amenés à considérer des systèmes dont le nombre N
de particules tend vers l’infini : c’est ce que l’on appelle la limite thermodynamique. On peut classer les
quantités physiques selon leur comportement dans cette limite.

• Les quantités intensives ne dépendent pas de N . Exemples : température, pression.
• Les quantités extensives sont proportionnelles à N . Exemples : volume, énergie, entropie.
• Les quantités exponentielles sont proportionnelles à eNϕ avec ϕ > 0. C’est typiquement le cas du

nombre de configurations possibles de N particules.

Notation. Une quantité proportionnelle à f(N) quand N → ∞ est notée O(f(N)).

Je mentionne ci-dessous quelques méthodes d’approximation très utiles dans la limite thermodynamique.

b) Méthode du col

On considère une somme de quantités exponentielles en N et positives :

S =
p∑

i=M
Ωi, 0 ≤ Ωi = O(eNϕi). (49)

Dans la limite thermodynamique, cette somme peut-être approchée par son terme le plus grand.
En effet, si maxi Ωi = Ωmax ∼ eNϕimax , alors

S
Ωmax

= 1 +
i ̸=imax∑
i=1,...,M

Ωi
Ωmax︸ ︷︷ ︸

R

. (50)

On note maintenant maxi ̸=imax Ωi = Ω1 ∼ eNϕi1 . Alors on a

0 ≤ R ≤ O(Me−N(ϕimax −ϕi1 )) −→
N→∞

0, (51)
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même si M = O(Np). Ce résultat peut se généraliser pour une intégrale du type

I =
∫ b

a

dx exp (Nϕ(x)) . (52)

Supposons que ϕ atteint son maximum sur [a, b] en xmax. Alors nous pouvons faire un développement limité
de ϕ autour de xmax, en notant bien que la dérivée première de ϕ en xmax est nulle car il s’agit d’un
maximum :

I =
∫ b

a

dx exp
[
N

(
ϕ(xmax) − 1

2 |ϕ′′(xmax)|(x− xmax)2 + . . .

)]
. (53)

En négligeant les termes au-delà de l’ordre 2,

I ≈ eNϕ(xmax)
∫ b

a

dx exp
[
−N

2 |ϕ′′(xmax)|(x− xmax)2
]

(54)

≈ eNϕ(xmax)
∫ +∞

−∞
dx exp

[
−N

2 |ϕ′′(xmax)|(x− xmax)2
]

=

√
2π

N |ϕ′′(xmax)|e
Nϕ(xmax). (55)

On peut vérifier que les corrections dues à l’extension du domaine d’intégration à ] − ∞,+∞[ sont sous-
dominantes dans la limite thermodynamique. Comme pour le cas de la somme, il peut également y avoir
des corrections exponentiellement négligeables dues à des maxima secondaires de ϕ.

c) Formule de Stirling

La formule de Stirling donne un approximation de N ! pour N grand. On peut la démontrer par un calcul
d’intégrale utilisant la méthode du col. On trouve d’abord une représentation intégrale de N ! en partant du
fait que ∫ +∞

0
dx e−αx = 1

α
. (56)

En dérivant par rapport à α, on obtient ∫ +∞

0
dxxe−αx = 1

α2 , (57)

et, en répétant l’opération N fois, ∫ +∞

0
dxxNe−αx = N !

αN+1 . (58)

En posant α = 1,

N ! =
∫ +∞

0
dxxNe−x =

∫ +∞

0
dx exp

[
N
(

log x− x

N

)]
. (59)

On retrouve une intégrale de la forme ci-dessus avec ϕ(x) = log x − x/N . Cette fonction est maximale en
xmax = N , ϕ(xmax) = logN − 1 et ϕ′′(xmax) = −1/N2. Donc, par la méthode du col, on trouve

N ! ≈ NNe−N
√

2πN. (60)

En prenant le logarithme des deux côtés, on trouve la formule de Stirling :

logN ! = N logN −N +O(logN) (61)

d) Théorème central limite

Le théorème central limite est un résultat très général qui concerne la somme d’un grand nombre de
variables aléatoires. Soient x1, . . . , xN des variables aléatoires indépendantes, discrètes ou continues, de
distribution quelconque. Soit X =

∑N
i=1 xi. Alors la distribution de X est une gaussienne, de moyenne égale

à la somme des moyennes de xi et de variance égale à la somme des variances des xi :

PX(x) ∼
N→∞

1√
2πσ2

N

exp
(

− (x−mN )2

2σ2
N

)
, avec mN =

N∑
i=1

⟨xi⟩ et σ2
N =

N∑
i=1

Var(xi). (62)
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Ce résultat explique pourquoi très souvent les observables naturelles (taille des être humains, prix dans un
supermarché, durée des trajets en voiture, etc) ont une distribution gaussienne : elles sont déterminées par
la somme d’un grand nombre de facteurs. En mécanique statistique, il s’appliquera aux fluctuations autour
de l’équilibre thermodynamique.

5) Entropie statistique
Le dernier paragraphe de ce chapitre concerne un concept de théorie des probabilités qui sera crucial

pour la suite du cours : l’entropie statistique. Je l’introduis ici sur un exemple.
Alice joue à pile ou face avec le démon de Maxwell. Le démon lance la pièce un grand nombre N de fois

à la suite et note le résultat (0 pour pile et 1 pour face) sans le montrer à Alice. Alice gagne si elle parvient
à deviner la séquence exacte de 0 et 1. Alice s’est préparée à affronter le démon : elle a précédemment étudié
la pièce et elle sait que pile tombe avec une probabilité p et face tombe avec une probabilité 1 − p. Si N est
très grand, elle peut donc être quasi-certaine que la séquence contiendra Np fois 0 et N(1 − p) fois 1. Le
nombre de telles séquences est

Nb[séquences] =
(

N
Np

)
= N !

(Np)!(N −Np)! , (63)

Bob, qui connait également les séquences possibles, est parvenu à jeter un coup d’oeil par-dessus l’épaule
du démon et à voir la séquence à deviner. Mais il ne peut communiquer avec Alice que par code binaire. Le
nombre de bits que Bob doit envoyer à Alice pour lui indiquer la bonne séquence est donné par

2Nb[bits] = Nb[séquences], (64)

donc

Nb[bits] = 1
log 2 log

(
N !

(Np)!(N −Np)!

)
(65)

= 1
log 2 [logN ! − log(Np)! − log(N −Np)!] (66)

= 1
log 2 [N logN −N −Np log(Np) +Np−N(1 − p) log(N(1 − p)) +N(1 − p)] (67)

= − N

log 2 [p log p+ (1 − p) log(1 − p)] , (68)

où l’on a utilisé la formule de Stirling dans la limite N grand. Malgré le fait qu’elle connait la distribution
de probabilité P = (p, 1 − p) de la pièce, il manque toujours à Alice Nb[bits] bits d’information pour gagner
à coup sûr. La manque d’information relatif Nb[bits]/N est ce que l’appelle l’entropie statistique S de la
distribution de probabilité P. Pour une distribution binaire (p, 1 − p), nous venons donc de trouver que
l’entropie est

S = − 1
log 2 [p log p+ (1 − p) log(1 − p)] . (69)

Ce résultat se généralise à une distribution sur M valeurs (p1, . . . , pM ) : il suffit de reproduire l’expérience
de pensée ci-dessus avec un dé à M faces au lieu d’une pièce. On trouve

S = − 1
log 2

M∑
i=1

pi log pi. (70)

En résumé, l’entropie statistique quantifie l’information que l’on acquiert sur l’issue d’une
expérience aléatoire en apprenant la distribution de probabilité de ses issues. Plus précisément,
l’entropie représente le manque d’information par rapport à la situation où nous connâıtrions
parfaitement l’issue de l’expérience.

Si nous connaissons parfaitement l’issue de l’expérience, l’un des pi vaut 1 et tous les autres valent 0.
On vérifie bien dans ce cas que S = 0. A l’inverse, l’entropie est maximale lorsque l’on ne sait rien sur
l’issue de l’expérience : pi = 1/M et S = logM/ log 2. En revenant au jeu de pile ou face ci-dessus M = 2
donc S = 1 : Alice ne gagne rien à avoir étudié la pièce et Bob doit lui transmettre l’intégralité des N bits
d’information à deviner pour qu’elle puisse gagner.
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III. Systèmes isolés : ensemble microcanonique
1) Micro-états et énergies

Nous avons maintenant tous les outils pour construire la mécanique statistique. Notre point de départ est
un système ayant un grand nombre M de coordonnées microscopiques. On appelle micro-état du système
une configuration C = (u1, . . . , uM ) de ses coordonnées microscopiques.

Remarque. On parlera en fait de micro-états ou de configurations de façon interchangeable selon le
contexte.

On suppose qu’il existe une fonction E(C) qui associe une énergie à chacun des micro-états.
• Pour un système classique, les ui correspondent aux positions et aux vitesses des particules. Plus

précisément, pour un système classique de N particules ponctuelles évoluant en 3 dimensions, M =
6N vu que pour chaque particule il y a trois coordonnées de position ri = (xi, yi, zi) et trois coor-
données de vitesse vi = (vxi , v

y
i , v

z
i ). En mécanique statistique, on préfèrera utiliser les impulsions

pi = mivi (masse multipliée par la vitessse), la configuration est alors C = (r1, . . . , rN ,p1, . . . ,pN ).
L’énergie associée est la somme de l’énergie cinétique et de l’énergie potentielle :

E(C) =
N∑
i=1

p2
i

2mi
+ V ({ri}). (71)

• En mécanique quantique, un système (à une ou plusieurs particules) est décrit par une fonction
d’onde Ψ(t), dont la dynamique est régie par un opérateur hamiltonien Ĥ. Pour des raisons que
l’on donnera plus tard dans le cours, les micro-états d’un système quantique correspondent
aux états propres du hamiltonien. La configuration est donc donnée par l’ensemble des nombres
quantiques qui définissent cet état propre, et son énergie est la valeur propre du hamiltonien associée.
Par exemple, une configuration de l’électron de l’atome d’hydrogène est spécifiée par la donnée de
trois nombres C = (n, ℓ,m).

• On peut également faire de la mécanique statistique sur un système dont on ne spécifie pas la
dynamique microscopique, mais dont on donne seulement les micro-états et les énergies associées.
C’est ce qu’on fera pour les systèmes de spin notamment. C’est là une grande force de la mécanique
statistique : on peut prédire les conséquences d’une dynamique microscopique sans même la connaitre !

2) Equilibre thermodynamique et macro-états
On cherche à décrire un système à l’équilibre thermodynamique. Cela signifie que ses coordonnées ther-

modynamiques ne varient pas dans le temps. Par opposition aux coordonnées microscopiques, les coor-
données thermodynamiques caractérisent la façon dont le système dans son ensemble interagit avec son
environnement. Elles comprennent toujours l’énergie interne U , que l’on identifie à l’énergie moyennée sur
la dynamique microscopique ⟨E⟩ (voir I.3). Les autres coordonnées thermodynamiques sont liées aux façons
dont le système peut recevoir du travail mécanique ou chimique et viennent par paires : une ”coordonnée”
X et une ”force” J .

➢ Par exemple, un gaz recevoir du travail mécanique par les forces de pression : δW = −PdV . Ici la
”coordonnée” est V et la ”force” est −P .

➢ Le travail chimique correspond à l’ajout de particules dans le système : δW = µdN . Maintenant, la
”coordonnée” est N et la ”force” est µ.

➢ On fait du travail mécanique sur une ressort en tirant dessus. Le travail mécanique élémentaire s’écrit
δW = FopdL, où Fop est la force exercée par l’opérateur, comptée positivement dans le même sens que L.
Fop est la ”force” et la longueur L est la ”coordonnée”.

Remarque. On remarquera la différence de signe : δW = −PdV mais δW = FopdL. La raison est que
la force de pression exercée est comptée positivement dans le sens où elle pousse, alors qu’il est plus naturel
de compter positivement la force exercée par un ressort dans le sens où elle tire.

On peut par ailleurs introduire d’autres coordonnées thermodynamiques (la température T , l’entropie S,
l’énergie libre F , l’enthalpie libre G, etc) qui sont fonctions des précédentes. On appelle macro-état d’un
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système l’ensemble de ses coordonnées thermodynamiques. Comme on peut introduire un nombre
arbitraire de coordonnées thermodynamiques, elles ne sont pas toutes indépendantes. Si un système a n
façons de recevoir du travail mécanique ou chimique, il faut spécifier (n+1) coordonnées thermodynamiques
(par exemples les n coordonnées x et l’énergie U). Elles correspondent aux contraintes imposées au système
par son environnement.

Notre démarche sera la suivante. A partir d’un jeu de contraintes spécifiant un macro-état, nous allons
déterminer l’ensemble des micro-états compatibles avec ces contraintes, puis nous allons calculer toutes les
coordonnées thermodynamiques du macro-état en faisant des moyennes statistiques sur cet ensemble.

3) Ensembles statistiques
On appelle ensemble statistique l’ensemble des configurations d’un système. On distingue différents types

d’ensembles selon les contraintes imposées aux configurations.
• Un ensemble microcanonique contient des configurations C à énergie E(C) fixée. Ce sont les confi-

gurations d’un système isolé. Les coordonnées thermodynamiques fixées sont (E,X).
• Un ensemble canonique contient toutes les configurations (d’énergie arbitraire) qui peuvent être

atteintes en faisant varier les coordonnées microscopiques (u1, . . . uM ), M étant fixé. Ce sont les
configurations d’un système fermé, qui peut échanger de l’énergie mais pas de particules avec son
environnement. On montrera que les coordonnées thermodynamiques fixées sont alors (T,X).

• Un ensemble grand-canonique contient toutes le configurations qui peuvent être atteintes en faisant
varier les valeurs (u1, . . . , uM ) et les nombre M de coordonnées microscopiques. Ce sont les configu-
rations d’un système ouvert, qui peut échanger des particules et de l’énergie avec son environnement.
On montrera que les coordonnées thermodynamiques fixées sont alors (T, µ,X).

• Nous verrons d’autres types d’ensembles qui sont obtenus en imposant d’autres contraintes aux
coordonnées microscopiques.

4) Postulats fondamentaux et distribution microcanonique
Nous avons vu que les coordonnées thermodynamiques sont obtenues en moyennant des observables

O(u1, . . . , uM ) sur la dynamique microscopique (u1(t), . . . , uM (t)). Nous avons également anticipé le premier
postulat fondamental de la mécanique statistique, qui nous permet de nous affranchir de cette dynamique :

Postulat 1 (ergodicité) : la moyenne temporelle d’une observable sur la dynamique
microscopique est égale à sa moyenne statistique sur l’ensemble des configurations.

Pour calculer une moyenne statistique, nous avons besoin de connaitre les probabilités P(C) associées
aux configurations. C’est là qu’intervient le second postulat fondamental.

Postulat 2 (équiprobabilité) : dans un ensemble microcanonique, toutes les configura-
tions sont équiprobables.

Remarque. Ce postulat peut être démontré pour une dynamique microscopique classique (cf. Kardar,
chapitre 3). Pour une dynamique quantique, la situation est plus subtile. Si un système isolé est préparé
dans un état propre de son hamiltonien, il y reste indéfiniment, même s’il existe d’autres états propres à la
même énergie. Mais, en pratique, même s’il n’effectue pas d’échanges macroscopiques d’énergie, un système
quantique ne peut pas être parfaitement isolé et il effectue donc des sauts stochastiques entre états propres
dégénérés, qui sont de ce fait rendus équiprobables. Si l’on ne spécifie pas de dynamique microscopique, on
suppose en fait qu’il en existe une, et qu’elle vérifie les deux postulats fondamentaux.

On note
P(C) = 1

Ω(U,X) , (72)

où Ω(U,X) est le nombre de configurations C vérifiant E(C) = U , et compatibles avec les contraintes X
(par exemple nombre de particules et volume). On dit également que Ω(U,X) est la fonction de partition
microcanonique.
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Mécanique Statistique pour la Chimie

5) Entropie et formule de Boltzmann
Etant donnée une distribution de probabilités P(C) sur un ensemble statistique {C}, on peut définir son

entropie statistique au sens du chapitre précédent :

S = − 1
log 2

∑
C

P(C) logP(C). (73)

Dans cette définition, le facteur 1/ log 2 vient du fait que l’on a choisi de compter l’information en bits. En
mécanique statistique, on choisit comme unité d’information la constante de Boltzmann kB ≈ 1.38 ×
10−23 J ·K−1. Ce choix permet par la suite de retrouver le Kelvin comme unité de température. On retiendra
donc :

Pour une distribution P(C) quelconque :

S = −kB
∑

C
P(C) logP(C) (74)

Dans le cas d’un distribution microcanonique, on retiendra la fameuse

Formule de Boltzmann. Pour une distribution microcanonique sur Ω micro-états, l’entropie est
donnée par

S = kB log Ω. (75)

Cette formule incarne le lien entre microscopique et macroscopique établi par la mécanique statistique.
Quand Boltzmann écrit cette formule, autour de 1870, l’entropie n’est connue que de façon phénoménologique,
dans le cadre du second principe. La relier à une quantité microscopique (le nombre de micro-états du
système) – c’est un véritable éclair de génie, qui donne de fait naissance à la mécanique statistique.

6) De l’entropie statistique à l’entropie thermodynamique
Nous allons montrer que l’entropie statistique que nous avons introduite s’identifie à l’entropie thermo-

dynamique. Pour cela, nous devons vérifier que l’entropie statistique vérifie les postulats du second principe.

a) Extensivité de l’entropie

Considérons deux systèmes isolés 1 et 2 ayant respectivement Ω1 et Ω2 micro-états. Le système combiné
1 ∪ 2 possède Ω1 · Ω2 micro-états. En effet, les systèmes étant indépendants, pour chacun des micro-états de
1, 2 peut être dans n’importe lequel de ses Ω2 micro-états. Alors, par la formule de Boltzmann

S1∪2 = kB log(Ω1 · Ω2) (76)
= kB log Ω1 + kB log Ω2 = S1 + S2. (77)

b) Condition d’évolution spontanée

Un système évolue spontanément lorsqu’on relâche une contrainte extérieure. Le nombre de micro-états
accessible au système augmente et donc, par construction, l’entropie d’un système isolé augmente
toujours lors d’une évolution spontanée.

c) Identité thermodynamique

Il nous reste en principe à établir le lien entre l’entropie et la chaleur. Comme les transferts thermiques
n’ont pas de sens pour un système isolé, on établira ce lien plus tard dans le cours. Pour finir d’identi-
fier l’entropie thermodynamique avec l’entropie statistique, nous allons montrer que cette dernière vérifie
l’identité thermodynamique fondamentale.
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Considérons pour cela de nouveau deux systèmes 1 et 2, d’énergies initiales U0
1 et U0

2 . Supposons qu’ils
sont mis en contact par une paroi diathermale, de façon à ce qu’il puissent échanger de l’énergie mais pas de
la matière. Une fois le nouvel état d’équilibre atteint, on isole de nouveau la paroi entre les deux systèmes
et on note U eq

1 et U eq
2 leurs énergies respectives. Le système combiné étant isolé, son énergie totale reste

constante : U eq
1 + U eq

2 = U0
1 + U0

2 = U . Par ailleurs, L l’entropie étant extensive,

S1∪2 = S1(U1) + S2(U2) = S1(U1) + S2(U − U1) (78)

En vertu de la condition d’évolution spontanée, S1∪2(U eq
1 ) ≥ S1∪2(U0

1 ). On peut même dire que S1∪2(U1)
est maximale par rapport à U1 en U1 = U eq

1 : sinon, l’évolution ne se serait pas arrêtée. On a donc

∂S1∪2(U eq
1 )

∂U1
= 0 ⇒ ∂S1(U eq

1 )
∂U1

∣∣∣∣
X

= ∂S2(U − U eq
1 )

∂U2

∣∣∣∣
X
. (79)

Nous avons donc identifié une quantité qui s’équilibre entre deux systèmes lorsqu’ils sont mis en contact :
cela correspond à notre intuition de la température, mais il faut l’inverser pour avoir la bonne unité. Dans
le cadre de la mécanique statistique, on définit donc la température d’un système isolé à l’énergie U comme
la l’inverse de la dérivée de son entropie par rapport à son énergie, les autres contraintes étant maintenues
constantes :

1
T (U,X) = ∂S(U,X)

∂U

∣∣∣∣
X

(80)

On peut maintenant reproduire ce raisonnement pour identifier les forces thermodynamiques à des
dérivées partielles de l’entropie. Considérons par exemple un gaz isolé : les contraintes qui lui sont imposées
sont X = (V,N). Imaginons mettre en contact deux gaz de façon à ce qu’ils puissent échanger du volume,
mais pas d’énergie ni de particules. Par exemple, on place entre les deux gaz une paroi adiabatique, mais
qui peut coulisser. Les volumes respectifs des gaz sont V1 et V2, le volume total étant fixé V1 + V2 = V .
L’entropie totale est

S1∪2 = S1(U1, V1, N1) + S2(U2, V − V1, N2), (81)
et donc à l’équilibre ∂S1/∂V1|U1,N1 = ∂S2/∂V2|U2,N2 . On sait que la quantité qui doit s’équilibrer dans cette
configuration est la pression, et pour l’avoir dans la bonne unité, on identifie

P

T
= ∂S(U, V,N)

∂V

∣∣∣∣
U,N

(82)

De la même façon,

−µ

T
= ∂S(U, V,N)

∂N

∣∣∣∣
U,V

(83)

De manière générale, si Ji est la force conjuguée à la coordonnée Xi (pour rappel, δW = JidXi),

−Ji
T

= ∂S(U,X)
∂Xi

∣∣∣∣
U,Xj ̸=i

. (84)

Maintenant que nous connaissons toutes ses dérivées partielles, nous pouvons différentier l’entropie :

dS = ∂S

∂U

∣∣∣∣
X

dU +
∑
i

∂S

∂Xi

∣∣∣∣
U,Xj ̸=i

dXi (85)

= dU
T

−
∑
i

Ji
T

dXi. (86)

On obtient donc :

dU = TdS +
∑
i

JidXi. (87)

En particularisant à X = (V,N), on trouve bien

dU = TdS − PdV + µdN. (88)
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On conclut donc que l’entropie statistique, définie à partir des micro-états, s’identifie à l’entropie ther-
modynamique, définie phénoménologiquement. En faisant cette identification, nous avons en fait rempli
l’intégralité de notre programme : étant données des contraintes (U,X), nous savons calculer l’entropie en
énumérant les micro-états correspondants, et ensuite calculer toutes les autres coordonnées thermodyna-
miques en prenant des dérivées partielles de l’entropie.

7) Exemples
Ces exemples ne sont pas à retenir par coeur, mais des exercices similaires pourront être posés à l’examen.

Nous avons maintenant assez d’outils théoriques pour étudier des vrais systèmes. Malheureusement, la plu-
part des vrais systèmes ne sont pas isolés, et il nous faudra construire la théorie pour les systèmes en contact
avec un thermostat (ensemble canonique) pour traiter la plupart des exemples. Mais les quelques exemples
qui peuvent être traités dans l’ensemble microcanonique nous permettront de tirer des conséquences phy-
siques importantes.

a) Systèmes à deux niveaux

On considères N spins 1/2 placés dans un champ magnétique externe B. Chaque spin est un système
quantique avec deux états propres, que l’on notera ↓ et ↑, d’énergies respectives 0 et ϵ. Physiquement,
ϵ = ℏγB, où γ est le facteur gyromagnétique du spin en question. Ce genre de système est typiquement
l’objet d’étude de la spectroscopie RMN : les spins sont alors des spins nucléaires, appartenant par exemple
aux protons contenus dans un échantillon. Il existe un protocole relativement standardisé pour l’étude d’un
système en mécanique statistique.

(1) Identification des micro-états et de leurs énergies. Un micro-état correspond à un choix donné des
N↑ spins qui sont dans l’état ↑. N↑ est fixé car nous sommes dans l’ensemble microcanonique et tous les
mciro-états doivent avoir la même énergie U = ϵN↑.

(2) Calcul de la fonction de partition. La fonction de partition microcanonique est le nombre de micro-
états accessibles étant données les contraintes (U,N). Ici, cela correspond au nombre de façons de choisir
les N↑ spins ↑ parmi les N spins :

Ω(U,N) =
(

N
N↑

)
= N !
N↑!(N −N↑)! (89)

(3) Calcul du potentiel thermodynamique. C’est l’entropie dans le cas de l’ensemble microcanonique ; en
général, ce sera la fonction d’état qui donne la condition d’évolution spontanée. On applique la formule de
Boltzmann :

S(U,N) = kB [logN ! − logN↑! − log(N −N↑)!] (90)
≈ kB [N logN −N −N↑ logN↑ +N↑ − (N −N↑) log(N −N↑) +N −N↑] (91)

= −NkB

[
N↑

N
log N↑

N
+ N −N↑

N
log N −N↑

N

]
(92)

= −NkB

[
U

Nϵ
log U

Nϵ
+
(

1 − U

Nϵ

)
log
(

1 − U

Nϵ

)]
. (93)

On a appliqué l’approximation de Stirling pour simplifier les factorielles dans la limite de grand N .
(4) Calcul des coordonnées thermodynamiques d’intérêt. Pour cela, on dérive le potentiel thermodyna-

mique. Par exemple, on peut obtenir la température :

1
T

= ∂S

∂U

∣∣∣∣
N

= −kB

ϵ
log
(

U

Nϵ− U

)
. (94)

Ce qui nous intéresse, en fait, c’est d’inverser cette expression pour obtenir N↑ et N↓ = N −N↑ en fonction
de la température :

N↑

N
= e−βϵ

1 + e−βϵ et N↓

N
= 1

1 + e−βϵ , (95)

où l’on a posé β = 1/(kBT ). On trouve un (familier ?) facteur de Boltzmann : la probabilité de trouver
un spin dans un état d’énergie ϵ est proportionnelle à e−βϵ. Notons bien que l’on a obtenu ce résultat en
supposant l’énergie totale fixée, et non la température. Cependant, on aurait obtenu le même résultat en
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faisant la calcul à température fixée (avec un ensemble canonique de micro-états, cf. chapitre suivant). Ceci
est en fait une manifestation de l’équivalence des ensembles statistiques dans la limite thermodynamique,
que l’on établira plus tard de façon formelle.

Pour interpréter quantitativement nos résultats, nous pouvons calculer la polarisation

P = N↓ −N↑

N
= 1 − e−βϵ

1 + e−βϵ . (96)

Pour un proton, le facteur gyromagnétique vaut γ = 2.7×108 s−1·T−1. Pour un champ magnétique de 1 T, on
a donc ϵ/ℏ ≈ 270 MHz. Aux échelles atomiques, on aime exprimer les énergies en eV (1 eV = 1.6 × 10−19 J).
En termes de fréquences, on peut retenir 1 eV ≈ 240 THz, donc ϵ = 1.1 µeV. En conditions ambiantes
(T = 298 K), kBT = 26 meV. On trouve alors P ≈ 2 × 10−5. En RMN, les signaux se compensent entre les
spins ↑ et ↓. La polarisation représente donc la fraction de spins nucléaires qui vont effectivement contribuer
au signal RMN : moins que 1 sur 105. Les techniques d’hyperpolarisation, qui permettent d’excéder cette
polarisation thermique, sont un sujet de recherche actuel.

Remarque. Revenons à l’expression (94) de la température en fonction de l’énergie. Si U > Nϵ/2, la
température devient négative. De manière générale, on peut obtenir ce genre de résultat pour des systèmes
isolés dont l’énergie ne peut pas excéder un maximum. Il est alors possible que l’on diminue l’entropie en
augmentant l’énergie, ce qui donne lieu à une température négative. Cependant, ces états ne sont pas des
vrais états d’équilibre car aucun système n’est parfaitement isolé. Si un système à température négative est
mis en contact avec le reste de l’univers, il va lui rendre son excès d’énergie et s’équilibrer dans une région de
température positive. Mais de tels états métastables ayant formellement une température négative peuvent
être créés dans des systèmes de spin.

b) Entropie de mélange et paradoxe de Gibbs

L’étude du gaz parfait réaliste dans l’ensemble microcanonique implique des difficultés techniques qui
n’ont pas grand intérêt. Nous ferons cette étude dans l’ensemble canonique. Ici, nous prenons un modèle
simplifié qui évite ces difficultés, tout en donnant en fait les bons résultats. La simplification consiste à :

• Discrétiser les positions. On supposera que les N particules de gaz se distribuent parmi les M sites
d’un réseau, et qu’il peut éventuellement y avoir plusieurs particules par site. En termes du volume
occupé par le gaz, on peut écrire M = V/V0, où V0 est un volume élémentaire.

• ”Oublier” les vitesses des particules. Cette simplification a du sens car le nombre de configurations
possibles des vitesses pour un arrangement donné des particules sur le réseau apparait comme un
facteur multiplicatif dans le nombre de micro-états : Ω = Ωconfig · Ωvitesses. Il donne donc un terme
additif dans l’entropie : S = Sconfig +Svitesses. En oubliant la contribution des vitesses on se restreint
à calculer l’entropie configurationnelle du gaz. Pour le processus de mélange que nous allons étudier,
Svitesses reste constante, et nous allons obtenir la bonne variation d’entropie malgré cette restriction.

Pour chacune des N particules on peut choisir n’importe lequel des M sites, et donc a priori

Ωconfig(N,M) = MN , (97)

ce qui donne une entropie

Sconfig(N,M = V/V0) = NkB logM = NkB log V

V0
. (98)

Mais cette entropie a le mauvais goût de ne pas être extensive ! En effet,

Sconfig(λN, λV ) = λSconfig(N,V ) + λNkB log λ ̸= λSconfig(N,V ) (99)

Ceci a des conséquences désastreuses. Supposons par exemple que l’on laisse se mélanger deux gaz identiques
caractérisés par (N1,M1 = V1/V0) et (N2,M2 = V2/V0). Ils n’ont pas forcément le même nombre de
particules ou le même volume, mais ils ont la même densité : N1/M1 = N2/M2. L’entropie avant mélange
est alors

Si = N1kB logM1 +N2kB logM2. (100)

L’entropie après mélange est
Sf = (N1 +N2)kB log(M1 +M2), (101)
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d’où
∆Smix = Sf − Si = N1kB log V1 + V2

V1
+N2kB log V1 + V2

V2
> 0 (102)

Or le système est macroscopiquement identique avant et après mélange. Ses coordonnées thermodynamiques
ne devraient pas changer ! Cette contradiction porte le nom de paradoxe de Gibbs.

Pour éviter le paradoxe de Gibbs, nous devons préciser notre définition d’une configuration. Nous devons
tenir compte du fait que les particules sont indiscernables. On ne peut alors distinguer deux configurations
qui ne diffèrent que par une permutation des particules entre les sites : on doit les compter pour une seule
configuration. Pour N particules, il y a N ! permutations possibles, et donc en fait

Ωconfig(N,M) = MN

N ! . (103)

En utilisant la formule de Stirling,

Sconfig(N,V ) = NkB log V

NV0
+NkB, (104)

qui est bien extensive. En reprenant le calcul de l’entropie de mélange pour deux gaz identiques,

Si = N1kB log M1

N1
+N1kB +N2kB log M2

N2
+N2kB (105)

et
Sf = (N1 +N2)kB log M1 +M2

N1 +N2
+ (N1 +N2)kB, (106)

d’où
∆Smix = Sf − Si = (N1 +N2)kB log M1 +M2

N1 +N2
−N1kB log M1

N1
−N2kB log M2

N2
. (107)

Or, N1/M1 = N2/M2 = (N1 +N2)/(M1 +M2), et donc ∆Smix = 0.

Remarque. Cet ajout du N ! qui nous a permis d’éviter la contradiction dans la théorie n’a en fait rien
d’évident. La notion de particules indiscernables n’existe pas en mécanique classique, et il faut, en toute
rigueur, partir d’une description quantique et prendre sa limite classique pour ”démontrer” le N !.

Si les gaz sont maintenant différents, alors on retrouve

∆Smix = N1kB log V1 + V2

V1
+N2kB log V1 + V2

V2
. (108)

On peut analyser les conséquences pratiques de ce résultat pour un mélange d’eau douce et d’eau salée.
Les variations d’entropie dans ce processus sont dues aux ions dissous, qui se comportent essentiellement
comme un gaz parfait. Considérons le mélange de deux verres d’eau de volume V , l’un contenant N ions et
l’autre n’en contenant pas. On trouve

∆Smix = NkB log 2 (109)

Le énergie interne ne variant pas lors du mélange, le sel a dû effectuer un travail sur son environnement

W = T∆Smix ≈ 1 kWh · m−3, (110)

en supposant une eau de mer à 1 mol · L−1 de sel et T = 300 K. Ce n’est pas un travail négligeable
– à comparer, par exemple à la consommation énergétique d’un suisse moyen : 83 kWh par jour. Notre
description du système est trop simpliste pour préciser la nature exacte de ce travail. En fait, le mouvement
des ions va induire des écoulements d’eau, qui vont être dissipés par viscosité et produire en fin de compte
de la chaleur. Mais la récupération de ce travail sous forme d’électricité est un sujet de recherche actuel :
on parle d’énergie osmotique ou d’énergie bleue. On y reviendra plus tard dans le cours.

8) Réversibilité microscopique et irréversibilité macroscopique
Soit une enceinte séparée en deux volumes égaux (celui de droite et celui de gauche) par une paroi

amovible. On place une particule de gaz dans le compartiment de gauche puis on enlève la paroi. La
particule va alors évoluer dans toute l’enceinte, et on la verra aussi souvent aller de la gauche vers la droite
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que de la droite vers la gauche. Ceci est une conséquence de la réversibilité des équations du mouvement
microscopiques. Dans le cas classique, si l’équation de Newton

m
d2x

dt2 = −dEp(x)
dx (111)

admet une solution x(t), alors elle admet aussi comme solution x(−t) (car l’équation est invariante par
t 7→ −t). Si une trajectoire est parcourue dans un sens, on peut toujours trouver un jeu de conditions
initiales pour qu’elle soit parcourue dans l’autre sens.

On place maintenant un grand nombre N de particules dans le compartiment de gauche, puis on enlève
la paroi. Le gaz va alors diffuser pour occuper les deux compartiments. Cette évolution est manifestement
irréversible : il n’y a aucune chance que le gaz revienne se placer dans le compartiment de gauche. Vous
verrez dans le cours Introduction aux phénomènes de transport que dans une telle situation, la densité de
gaz n(x, t) obéit à l’équation de diffusion :

∂n

∂t
= D

∂2n

∂x2 . (112)

Cette équation n’est pas invariante par t 7→ −t, donc si n(x, t) est solution, le processus inverse n(x,−t)
ne l’est pas. Mais les équations macroscopiques viennent des équations microscopiques. Où a-t-on perdu la
réversibilité ?

La réversibilité est en fait une question d’échelle d’observation. A l’échelle macroscopique, on est sensible
non pas à la dynamique microscopique, mais à la statistique des particules. Une fois l’équilibre atteint, on
a une chance sur deux de trouver une particule donnée dans le compartiment de gauche. Mais pour que les
N particules soient à gauche la probabilité est

P(N à gauche) = 1
2N , (113)

avec N ∼ 1023 – cette probabilité est nulle à toutes fins utiles. L’irréversibilité est donc un phénomène
émergeant, qui est dû au très grand nombre de degrés de liberté d’un échantillon macroscopique.

IV. Systèmes couplés à un environnement : autres ensembles sta-
tistiques

Sauf indication contraire, les démonstrations de ce chapitre sont à savoir refaire. Elles pourront faire
l’objet de questions de cours. En partant du postulat d’équiprobabilité de ses micro-états, nous avons appris
à faire de la mécanique statistique sur un système isolé. Mais la plupart des systèmes réels ne sont pas isolés.
Nous devons généraliser notre approche à de tels systèmes.

1) Système couplé à un thermostat : ensemble canonique
a) Distribution canonique

On considère un système S placé en contact avec un réservoir R. Le système et le réservoir sont capables
d’échanger de l’énergie, mais aucune forme de travail mécanique ou chimique. Le réservoir est supposé
beaucoup plus gros que le système : l’effet des échanges avec S sur ses fonctions d’état est supposé négligeable.
Imaginez par exemple un verre d’eau en contact avec l’atmosphère. On dit alors que S est dans la situation
canonique.

Les micro-états de S peuvent avoir des énergies arbitraires, mais ils sont contraints par des valeurs
fixées des coordonnées X. On dit qu’ils forment un ensemble canonique. Pour déterminer les probabilités
canoniques, utilisons le fait que S ∪ R est un système isolé, et notons Utot son énergie. En utilisant la
distribution microcanonique sur les configurations de S ∪ R, on obtient pour une configuration du système
CS :

P(CS) = ΩR(Utot − E(CS))
ΩS∪R(Utot)

. (114)

C’est le nombre de configurations du réservoir compatibles avec CS, divisé par le nombre total de configura-
tions. Le réservoir étant beaucoup plus gros que le système, E(CS) ≪ Utot et on peut faire un développement
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limité :

P(CS) = 1
ΩS∪R(Utot)

exp
[

1
kB
SR(Utot − E(CS))

]
(115)

≈
exp

[
1
kB
SR(Utot)

]
ΩS∪R(Utot)

exp
[
−E(CS)

kB

∂SR(U = Utot)
∂U

]
(116)

=
exp

[
1
kB
SR(Utot)

]
ΩS∪R(Utot)︸ ︷︷ ︸

Z

exp
[
−E(CS)
kBTR

]
(117)

On définit la température d’un système dans la situation canonique comme la température microcano-
nique du réservoir : TR ≡ T . Le réservoir impose sa température au système : on dit qu’il joue le rôle de
thermostat. On retiendra que dans un ensemble canonique

P(C) = 1
Z(T,X) exp

[
−E(C)
kBT

]
. (118)

Z s’appelle la fonction de partition canonique. Elle est déterminée en pratique à partir de la condition
de normalisation des probabilités :

Z(T,X) =
∑

C
exp

[
−E(C)
kBT

]
(119)

Notation. On utilisera très souvent β ≡ 1/(kBT ) .

Notation. Parfois, on utilise Q à la place de Z pour la fonction de partition canonique.

Remarque. On a identifié la température du système comme la température microcanonique du réservoir
à l’énergie Utot. Mais est-ce vraiment la température ”physique” du réservoir ? A priori oui, vu que l’on a
supposé les coordonnées thermodynamiques de R non-affectées par les échanges avec S. C’est aussi cohérent
avec notre intuition : en laissant un verre d’eau chaude refroidir dans une pièce, on n’augmente pas la
température de la pièce. Mais il est utile de justifier que si R contient beaucoup plus de particules que S
(NR ≫ NS), alors c’est bien le cas. En général, la température de R peut varier selon l’énergie ES contenue
dans le système.

1
TR(Utot − ES) = ∂SR

∂U
(Utot − ES) (120)

= ∂SR

∂U
(Utot) − ES

∂2SR

∂U2 (Utot) + . . . (121)

(122)

Pour que la température du réservoir soit de fait constante, il faut

ES
∂2SR

∂U2 (Utot) ≪ ∂SR

∂U
(Utot). (123)

En ordre de grandeur de grandeur, ∂SR/∂U
2 ∼ 1/NR et ES ∼ NS, donc cette condition est bien équivalente

NS ≪ NR.

b) Evolution spontanée et énergie libre

Pour un système isolé, l’entropie fournit la condition d’évolution spontanée : elle est maximisée dans l’état
d’équilibre thermodynamique. Qu’en est-il pour un système en contact avec un thermostat ? Considérons
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le système combiné S ∪R, qui lui est isolé. On va chercher à isoler la contribution de S à son entropie. On
peut écrire

ΩS∪R(Utot) =
∑
CS

ΩR(Utot − E(CS)) (124)

=
∑
CS

exp
[

1
kB
SR(Utot − E(CS))

]
(125)

≈
∑
CS

exp
[

1
kB
SR(Utot) − E(CS)

kB

∂SR

∂U

∣∣∣∣
U=Utot

]
(126)

= exp
[

1
kB
SR(Utot)

]∑
CS

e−βE(CS)

︸ ︷︷ ︸
Z

, (127)

et donc
SS∪R = SR + kB logZ ≡ SR − F/T (128)

Maximiser l’entropie de S ∪ R revient donc à minimiser F , quantité qui ne dépend que des micro-états de
S et de T . On a défini ainsi l’énergie libre comme

F (T,X) = −kBT logZ(T,X). (129)

L’énergie libre est le potentiel thermodynamique adapté à un système en situation canonique. Elle ne peut
que diminuer lors d’une évolution spontanée et elle est minimisée dans l’état d’équilibre thermodynamique.

c) Coordonnées thermodynamiques

L’énergie interne s’identifie à l’énergie moyenne du système canonique :

U = ⟨E⟩ = 1
Z

∑
C
E(C)e−βE(C) = −∂ logZ

∂β
(130)

L’entropie satisfait toujours à sa définition statistique :

S = −kB
∑

C
P(C) logP(C) = −kB

∑
C

e−βE(C)

Z
(− logZ − βE(C)) (131)

= kB logZ + kBβ

Z

∑
C
E(C)e−βE(C) (132)

= U − F

T
. (133)

L’énergie libre que nous avons définie satisfait donc bien à la définition thermodynamique :

F = U − TS (134)

Par ailleurs, en utilisant l’identité thermodynamique fondamentale,

dF = dU − TdS − SdT (135)

= −SdT +
∑
i

JidXi. (136)

On en déduit les forces thermodynamiques comme dérivées partielles de F :

Ji = ∂F

∂Xi

∣∣∣∣
T,Xj ̸=i

. (137)
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En particulier, pour un gaz ou assimilé,

P = − ∂F

∂V

∣∣∣∣
T,N

et µ = ∂F

∂N

∣∣∣∣
T,V

(138)

Remarque. Les relations entre grandeurs thermodynamiques que nous avons établies sont vraies, peu
importe que l’on soit parti d’un système en situation canonique ou en situation microcanonique. C’est une
manifestation de l’équivalence entre ensembles statistiques que nous formaliserons à la fin de ce chapitre.
Par exemple, pour un système en situation canonique, il est toujours vrai que −P/T = ∂S/∂V |U,N . Le choix
entre cette expression et celle que nous venons d’établir en fonction de F est une question de commodité.
Pour un système en situation canonique, nous aurons plus facilement accès à l’expression de F (T, V,N) que
de S(U, V,N), mais rien ne nous empêche en principe d’établir cette dernière.

d) Premier principe et sens statistique de la chaleur

Même si nous avons pu établir toutes les relations entre fonctions d’état à partir de l’ensemble micro-
canonique, nous n’avons pas pu donner une définition microscopique de la chaleur, un système isolé étant
incapable de transferts thermiques. Nous pouvons le faire maintenant que nous savons décrire un système
en contact avec un thermostat.

Dans ce cas, l’énergie interne s’identifie microscopiquement à l’énergie moyenne canonique,

U =
∑

C
P(C)E(C) (139)

Donc, pour une transformation infinitésimale,

dU =
∑

C
dP(C)E(C) +

∑
C

P(C)dE(C). (140)

Considérons d’abord une transformation où le système ne reçoit pas de travail mécanique (δWext = 0). Alors
aucune des coordonnées X ne varie et les micro-états restent inchangés : dE(C) = 0. On identifie donc

δQ =
∑

C
dP(C)E(C). (141)

La chaleur reçue par un système apparait microscopiquement comme une variation d’occupa-
tion des micro-états.

Considérons maintenant une transformation impliquant un travail mécanique : les énergies des micro-
états peuvent varier. Plus précisément, supposons que la transformation consiste à changer l’une des coor-
données X de dX. Alors ∑

C
P(C) dE(C) =

∑
C

P(C)∂E(C)
∂X

dX (142)

En explicitant la probabilité canonique, on a E(C) = −kBT (logP(C) + logZ). On a donc∑
C

P(C) dE(C) = −kBT
∑

C
P(C) ∂

∂X
(logP(C) + logZ) dX (143)

= ∂

∂X
(−kBT logZ) dX − kBT

∑
C

P(C)∂ logP(C)
∂X

dX (144)

= ∂F

∂X

∣∣∣∣
T

dX − kBT
∂

∂X

∑
C

P(C)︸ ︷︷ ︸
=1

dX (145)

= ∂F

∂X

∣∣∣∣
T

dX = JdX (146)

où J est la force conjuguée à X. JdX représente le travail des forces intérieures au système : par exemple,
pour un gaz −∂F/∂V donne la pression P dans le gaz. Dans le cas où la transformation est réversible,

27/74
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le système est constamment en équilibre mécanique avec son environnement, donc P = Pext, et JdX
correspond bien au travail des forces extérieures qui apparait dans le premier principe. On conclut que pour
une transformation réversible

dU = δWext + δQ avec


δWext =

∑
C
P(C)dE(C)

δQ =
∑

C
dP(C)E(C).

(147)

La chaleur correspond à une variation de l’occupation des micro-états, alors que le travail correspond à une
modification des micro-états. On a par ailleurs

dU = TdS +
∑
i

JidXi (148)

= TdS + δWext (pour une transformation réversible). (149)

On identifie donc dS = δQ/T . En fait, pour une transformation réversible, les équations (149) et (140)
s’identifient terme à terme, mais ce n’est pas le cas pour une transformation irréversible, où le travail et
la chaleur peuvent tous deux contribuer à faire varier la population et l’énergie des micro-états, et où la
variation d’entropie n’est pas simplement liée à la chaleur.

A ce stade, nous avons intégralement retrouvé la thermodynamique à partir de la mécanique statistique.
Nous avons d’abord construit la fonction entropie du second principe, puis nous avons montré que les
variations d’énergie peuvent bien se décomposer en travail et en chaleur, dont nous avons donné le sens
microscopique.

2) Système échangeant des particules : ensemble grand canonique
D’autres ensembles statistiques peuvent être construits selon le type d’échanges autorisés entre le système

et le réservoir. Nous allons expliciter le cas important de l’échange de particules, puis nous généraliserons à
des échanges quelconques.

a) Distribution grand-canonique

On considère un système S placé en contact avec un réservoir R. Cette fois-ci, le système et le réservoir
peuvent échanger de l’énergie ou des particules (on supposera un seul type de particules), mais aucune
forme de travail mécanique. Comme précédemment, R est supposé assez gros pour que les échanges avec S
n’affectent pas ses fonctions d’état. On dit alors que S est dans la situation grand-canonique.

On note Utot l’énergie de S ∪R et Ntot son nombre de particules. Etant donné que les configurations du
système isolé S ∪R sont équiprobables, la probabilité d’une configuration CS de S est donnée par :

P(CS) = ΩR(Utot − E(CS), Ntot −N(CS))
ΩS∪R(Utot, Ntot)

. (150)

C’est le nombre de configurations de R compatibles avec CS, divisé par le nombre total de configurations.
Comme E(CS) ≪ Utot et N(CS) ≪ Ntot, on peut faire un développement limité :

P(CS) = 1
ΩS∪R(Utot, Ntot)

exp
[

1
kB
SR(Utot − E(CS), Ntot −N(CS))

]
(151)

≈
exp

[
1
kB
SR(Utot, Ntot)

]
ΩS∪R(Utot, Ntot)

exp

−E(CS)
kB

∂SR

∂U

∣∣∣∣U=Utot
N=Ntot

− N(CS)
kB

∂SR

∂N

∣∣∣∣U=Utot
N=Ntot

 (152)

=
exp

[
1
kB
SR(Utot, Ntot)

]
ΩS∪R(Utot, Ntot)︸ ︷︷ ︸

Ξ

exp
[
−E(CS) − µRN(CS)

kBTR

]
(153)

On définit la température et le potentiel chimique d’un système dans la situation grand-canonique comme
la température et le potentiel chimique du réservoir : TR ≡ T et µR = µ. Le réservoir impose sa température
et son potentiel chimique au système. On retiendra que dans l’ensemble grand-canonique
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P(C) = 1
Ξ(T, µ,X) exp

[
−E(C) − µN(C)

kBT

]
. (154)

Ξ s’appelle la fonction de partition grand-canonique. Elle est déterminée en pratique à partir de
la condition de normalisation des probabilités :

Ξ(T, µ,X) =
∑

C
exp

[
−E(C) − µN(C)

kBT

]
. (155)

b) Evolution spontanée et grand potentiel

Pour déterminer la conditions d’évolution spontanée dans la situation grand-canonique, on considère le
système isolé S ∪R et on cherche à isoler la contribution de S à son entropie. On a

ΩS∪R(Utot, Ntot) =
∑
CS

ΩR(Utot − E(CS), Ntot −N(CS)) (156)

=
∑
CS

exp
[

1
kB
SR(Utot − E(CS), Ntot −N(CS))

]
(157)

≈
∑
CS

exp

 1
kB
SR(Utot) − E(CS)

kB

∂SR

∂U

∣∣∣∣U=Utot
N=Ntot

− NS

kB

∂SR

∂N

∣∣∣∣U=Utot
N=Ntot

 (158)

= exp
[

1
kB
SR(Utot, Ntot)

]∑
CS

e−β(E(CS)−µN(CS))

︸ ︷︷ ︸
Ξ

, (159)

et donc
SS∪R = SR + kB log Ξ ≡ SR − Y/T (160)

Maximiser l’entropie de S ∪ R revient donc à minimiser Y , quantité qui ne dépend que des micro-états de
S et de T, µ. On a défini ainsi le grand potentiel comme

Y (T, µ,X) = −kBT log Ξ(T, µ,X). (161)

Le grand potentiel est le potentiel thermodynamique adapté à un système en situation grand-canonique.
Il ne peut qu’augmenter lors d’une évolution spontanée et il est maximisé dans l’état d’équilibre thermody-
namique.

Remarque. La notation Y n’est pas standard pout le grand potentiel. On trouve aussi G, J , Ω, ...

c) Coordonnées thermodynamiques

Dans l’ensemble grand-canonique, l’énergie et le nombre de particules moyens s’expriment facilement
comme des dérivées la fonction de partition par rapport à β et µ. On a :

N ≡ ⟨N⟩ = 1
Ξ
∑

C
N(C)e−β(E(C)−µN(C)) = 1

β

∂ log Ξ
∂µ

(162)

Par ailleurs,
⟨E⟩ = 1

Ξ
∑

C
E(C)e−β(E(C)−µN(C)) ⇒ −∂ log Ξ

∂β
= ⟨E⟩ − µ⟨N⟩, (163)
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et donc
U = ⟨E⟩ = µ

β

∂ log Ξ
∂µ

− ∂ log Ξ
∂β

. (164)

On établit maintenant l’identité thermodynamique pour le grand potentiel en partant de l’entropie :

S = −kB
∑

C
P(C) logP(C) = −kB

∑
C

e−β(E(C)−µN(C))

Ξ (− log Ξ − βE(C) + βµN(C)) (165)

= kB log Ξ + kBβ

Ξ
∑

C
E(C)e−β(E(C)−µN(C)) − kBβµ

Ξ
∑

C
N(C)e−β(E(C−µN(C))) (166)

= U − µN − Y

T
, (167)

soit

Y = U − TS − µN (168)

Par ailleurs, en utilisant l’identité thermodynamique fondamentale,

dY = dU − TdS − SdT − µdN −Ndµ (169)

= −SdT −Ndµ+
∑
i

JidXi. (170)

On en déduit les forces thermodynamiques comme dérivées partielles de Y :

Ji = ∂Y

∂Xi

∣∣∣∣
T,µ,Xj ̸=i

. (171)

3) Méthode générale pour construire un ensemble statistique
Les méthodes utilisées pour construire les ensembles canonique et grand canonique se généralisent pour

construire un ensemble statistique quelconque, adapté au système rencontré.

a) Recette

1. On choisit si l’on veut étudier le système à énergie ou à température fixée. On prend alors respecti-
vement comme point de départ l’ensemble microcanonique ou l’ensemble canonique. On ne considère
dans le suite que le cas canonique car il est de loin le plus fréquent.

2. On considère toutes les façons dont le système peut fournir du travail mécanique ou chimique :
δWext =

∑
i JidXi. Attention au signe : on utilise la convention du banquier. Pour chaque i, on

choisit de fixer soit Xi, soit Ji.
3. Supposons par exemple que l’on fixe J0, et tous les Xi ̸=0. Cela veut dire que le système est en contact

avec un réservoir deX0 (et d’énergie). En utilisant la distribution microcanonique de système+réservoir,
on obtient la probabilité d’une configuration du système :

P(C) = 1
Z(T, J0, Xi̸=0) exp

[
−E(C) + J0X0(C)

kBT

]
. (172)

On identifie alors l’expression de la fonction de partition :

Z(T, J0, Xi̸=0) =
∑

C
exp

[
−E(C) + J0X0(C)

kBT

]
. (173)

4. On identifie le potentiel thermodynamique

Φ = U − TS − J0X0 = −kBT log Z. (174)
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5. On détermine les valeurs moyennes de X0 et de E en dérivant la fonction de partition par rapport à
β et J0.

6. On écrit la différentielle de Φ pour déterminer les autres coordonnées thermodynamiques à partir de
ses dérivées partielles :

dΦ = −SdT −X0dJ0 +
∑
i̸=0

JidXi. (175)

b) Exemple : ensemble de Gibbs

On cherche à déterminer les propriétés d’équilibre d’un mélange liquide d’espèces chimiques i. Le système
peut recevoir du travail chimique par changement du nombre Ni de molécules i, et du travail mécanique
par l’action de forces de pression :

δWext = −PdV +
∑
i

µidNi. (176)

Le système ayant atteint l’équilibre chimique, on considèrera les nombres de particules Ni fixés. Par contre,
c’est la pression (plutôt que le volume) qui est imposée par le contact avec l’air ambiant. Le système n’est
pas tout à fait dans un situation canonique. L’ensemble des microétats caractérisés par (Ni, P, T ) fixés
s’appelle ensemble isotherme-isobare ou ensemble de Gibbs. D’après la recette, on identifie la probabilité
d’un microétat dans l’ensemble de Gibbs :

P(C) = 1
Z(T, P,Ni)

exp
[

−E(C) − PV (C)
kBT

]
. (177)

Le potentiel thermodynamique dans l’ensemble de Gibbs, noté G, s’appelle l’enthalpie libre (Gibbs free
energy en anglais) :

G = U − TS + PV = −kBT log Z(Ni, P, T ). (178)

En différentiant,
dG = −SdT + V dP +

∑
i

µidNi. (179)

c) Bilan

Ensemble Grandeurs fixées Fonction de partition Potentiel thermodynamique
Microcanonique (N,V, U) Ω =

∑
C 1 −S = −kB log Ω

Canonique (N,V, T ) Z =
∑

C e
− E(C)

kBT F = −kBT logZ = U − TS

Grand-canonique (µ, V, T ) Ξ =
∑

C e
− E(C)−µN(C)

kBT Y = −kBT log Ξ = U − TS − µN

Gibbs (N,P, T ) Z =
∑

C e
− E(C)+P V (C)

kBT G = −kBT log Z = U − TS + PV

4) Fluctuations et équivalence des ensembles
a) Ordre de grandeur des fluctuations

Nous avons étudié des systèmes ayant différents types d’échanges possibles avec leur environnement.
Pour chaque type d’échange, nous avons appliqué la méthode statistique afin de déterminer les fonctions
d’état. Nous avons supposé implicitement que les fonctions d’état ne dépendent pas de la façon dont nous
les avons établies – c’est ce que l’on attend d’une théorie cohérente ! Cependant, cela n’est vrai que pour
des systèmes contenant un grand nombre de particules : c’est que nous avons de fait supposé dans tout ce
qui précède.

Par exemple : pour un système isolé, l’énergie est fixée, alors que pour un système en situation canonique
l’énergie peut fluctuer. Pour que l’énergie ait un sens comme grandeur thermodynamique, il faut que ces
fluctuations soient petites devant l’énergie moyenne. On a vu que, dans l’ensemble canonique,

⟨E⟩ = −∂ logZ
∂β

. (180)
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En dérivant encore une fois,

∂2 logZ
∂β2 = − ∂

∂β

∑
C

E(C)e−βE(C)

Z
(181)

=
∑

C
E(C)2 e

−βE(C)

Z
+
∑

C
E(C)e

−βE(C)

Z2
∂Z

∂β
(182)

=
∑

C
E(C)2 e

−βE(C)

Z
+
∑

C
E(C)e

−βE(C)

Z

∂ logZ
∂β

(183)

= ⟨E2⟩ − ⟨E⟩2. (184)

Par ailleurs,
∂2 logZ
∂β2 = −∂⟨E⟩

∂β
= kBT

2 ∂⟨E⟩
∂T

≡ kBT
2CV , (185)

où l’on a identifié la capacité calorifique à volume constant CV . On a donc exprimé la variance de l’énergie :

⟨E2⟩ − ⟨E⟩2 = kBT
2CV . (186)

La capacité calorifique, comme l’énergie, est une grandeur extensive : CV ∝ N . On en déduit l’ordre de
grandeur des fluctuations relatives d’énergie :√

⟨E2⟩ − ⟨E⟩2

⟨E⟩
=

√
kBT 2CV

⟨E⟩
∝

√
N

N
∝ 1√

N
. (187)

Il faut donc N ≫ 1 pour que les fluctuations de E soient négligeables devant la valeur moyenne. Dans cette
limite, nous ne connaissons pas seulement la variance de E : nous connaissons en fait toute sa distribution
de probabilité. L’énergie est toujours une somme d’un grand nombre de variables aléatoires (les énergies des
particules individuelles, par exemple), et en vertu du théorème central limite cette somme a une distribution
gaussienne :

P(E) = 1√
2πkBT 2CV

exp
(

− (E − ⟨E⟩)2

kBT 2CV

)
. (188)

Remarque. Le théorème central limite s’applique si les corrélations entre les variables aléatoires qui
constituent la somme ne sont ”pas trop fortes”. Dans des systèmes fortement corrélés, on peut avoir des
fluctuations non-gaussiennes.

Ces résultats ce généralisent à n’importe quelle coordonnée X pouvant fluctuer :

⟨X2⟩ − ⟨X⟩2 = kBT
∂⟨X⟩
∂J

, (189)

où J est la force conjuguée à X. Ceci est une version simplifiée du théorème de fluctuation-dissipation : la
réponse de X à une petite perturbation de J est liée aux fluctuations de X à l’équilibre. On retiendra que
les fluctuations d’une grandeur extensive X à l’équilibre sont gaussiennes, avec un écart type
de l’ordre de

√
N .

En pratique, pour des systèmes thermodynamiques où N est grand, on pourra choisir dans quel ensemble
statistique les traiter. On fera souvent ce choix en fonction de la commodité calculatoire. Par exemple, on
verra que le gaz parfait classique se traite aisément dans l’ensemble canonique, alors que pour le gaz parfait
quantique une description grand-canonique est plus appropriée.

On discute maintenant de quelques points de thermodynamique qui font sens une fois que tous les
ensembles on été introduits.

b) Relation de Gibbs-Duhem

C’est une relation entre grandeurs thermodynamiques qui découle de l’extensivité de l’énergie. Nous
avons vu que s’il y a n façons de faire du travail mécanique ou chimique sur un système, il faut n + 1
coordonnées thermodynamiques pour décrire son état d’équilibre. Par exemple, si un système peut recevoir
du travail mécanique par des forces de pression et du travail chimique par ajout de particules, on peut
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décrire son état d’équilibre par les coordonnées (S, V,N). L’énergie interne peut alors s’exprimer comme
une fonction de ces coordonnées, U(S, V,N). L’extensivité de U , S, V et N implique que pour λ > 0,

U(λS, λV, λN) = λU(S, V,N). (190)

On peut prendre la dérivée partielle de cette équation par rapport à λ :

∂U

∂S

∣∣∣∣
V,N

∂(λS)
∂λ

+ ∂U

∂V

∣∣∣∣
S,N

∂(λV )
∂λ

+ ∂U

∂N

∣∣∣∣
S,V

∂(λN)
∂λ

= U(S, V,N). (191)

En posant λ = 1, on trouve

∂U

∂S

∣∣∣∣
V,N

S + ∂U

∂V

∣∣∣∣
S,N

V + ∂U

∂N

∣∣∣∣
S,V

N = U(S, V,N). (192)

En identifiant les dérivées partielles de l’énergie, on obtient la relation de Gibbs-Duhem :

U = TS − PV + µN (193)

Elle permet d’obtenir des expressions simples pour certains des potentiels thermodynamiques. Par
exemple, G = µN (ou G =

∑
i µiNi pour plusieurs espèces chimiques) et Y = −PV . Sa forme différentielle

est également utile. On a :

dU = TdS − PdV + µdN = TdS + SdT − PdV − V dP + µdN +Ndµ, (194)

soit
0 = SdT − V dP +Ndµ. (195)

c) Travail maximum récupérable

Nous avons identifié les potentiels thermodynamiques qui donnent la condition d’évolution spontanée
dans les différents ensembles statistiques. Il en existe une autre interprétation très pratique en termes de
travail maximum récupérable : la différence de potentiel thermodynamique entre deux macro-états corres-
pond au travail maximal qu’il est possible de récupérer par une transformation du système entre ces deux
états.

Considérons par exemple une évolution monotherme (à température T fixée par un thermostat) d’un
système de volume V et nombre de particules N fixés. Le travail fourni par le système est

−Wext = Q− ∆U (196)

d’après le premier principe. Le second principe nous donne ∆S ≥ Q/T , et donc

−Wext ≤ T∆S − ∆U = −∆F, (197)

l’égalité étant atteinte pour une transformation réversible. On trouve de la même façon que le travail
maximum récupérable pour une évolution monotherme et monobare est donné par ∆G, etc. Ces résultats
nous serons notamment utiles pour l’étude de l’énergie osmotique.

5) Micro-états quantiques et décohérence
Au tout début du chapitre III, nous avons admis que les micro-états d’un système quantique corres-

pondent aux états propres de son hamiltonien. Il est temps désormais de comprendre pourquoi c’est le cas.
En effet, vous avez appris au semestre dernier qu’un système quantique est décrit par une fonction d’onde,
qui n’est pas toujours une fonction propre du hamiltonien : en général, c’est une combinaison linéaire de
fonctions propres. Pourquoi les micro-états ne correspondraient-ils pas à toutes les valeurs possibles de la
fonction d’onde ? Cela est dû à un phénomène très fondamental que l’on appelle la décohérence. Nous
allons ici le mettre en évidence sur un exemple.

Considérons le système quantique le plus simple qui soit : un système à deux niveaux ou spin 1/2
(imaginez par exemple le spin nucléaire d’un proton en solution). On choisit une direction privilégiée z et

33/74
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on note | ↑⟩ et | ↓⟩ les deux états propres de l’opérateur Ŝz. La fonction d’onde décrivant le système peut
toujours se décomposer sous la forme

|Ψ(t)⟩ = λ(t)| ↑⟩ + µ(t)| ↓⟩. (198)

C’est ce que l’on appelle une superposition cohérente des états | ↑⟩ et | ↓⟩ : le système est à la fois dans
l’état | ↑⟩ et dans l’état | ↓⟩. Cela se traduit par des termes d’interférence dans les valeurs moyennes des
observables. En effet, la probabilité de trouver le spin dans l’état ↑ est P↑ = |⟨↑ |Ψ⟩|2 = |λ|2, et de la même
façon P↓ = |µ|2. La valeur moyenne d’une observable O est donnée par

⟨O⟩ = ⟨Ψ|O|Ψ⟩ (199)
= |λ|2⟨↑ |O| ↑⟩ + |µ|2⟨↓ |O| ↓⟩ + λ∗µ⟨↑ |O| ↓⟩ + µ∗λ⟨↓ |O| ↑⟩ (200)
= P↑⟨O⟩↑ + P↓⟨O⟩↓ + termes d’interférences. (201)

Par exemple

⟨Sx⟩ = ⟨Ψ|Sx|Ψ⟩ =
(
λ∗ µ∗ )( 0 1/2

1/2 0

)(
λ
µ

)
(202)

= |λ|2⟨Ŝx⟩↑ + |µ|2⟨Ŝx⟩↓︸ ︷︷ ︸
=0

+ 1
2(λ∗µ+ µ∗λ)︸ ︷︷ ︸

interférences

(203)

L’évolution temporelle ce λ(t) et µ(t) est régie par le hamiltonien du système. Si notre spin est en contact
avec un environnement à température T (les autres atomes de l’espèce chimique contenant le proton, les
molécules de solvant, etc) ce hamiltonien devient très complexe, et la dynamique de λ(t) et µ(t) apparait
aléatoire. Du fait de cette dynamique aléatoire, tout se passe comme si le spin était soit dans l’état | ↑⟩, soit
dans l’état | ↓⟩, avec les probabilités P↑ et P↓ données par l’ensemble canonique.

|Ψ(t)⟩ = | ↑⟩ (proba. P↑) ou | ↓⟩ (proba. P↓). (204)

C’est ce que l’on appelle une superposition incohérente. Les valeurs moyennes des observables dans un tel
état ne font pas apparaitre de termes d’interférence :

⟨O⟩ = P↑⟨O⟩↑ + P↓⟨O⟩↓. (205)

Cette transition d’un système entre un état de superposition quantique (ou cohérente) et un
état de superposition classique (ou incohérente) sous l’effet de l’interaction avec l’environne-
ment est ce que l’on appelle la décohérence.

On peut comprendre dans les grandes lignes l’origine du phénomène en étudiant l’évolution de notre
spin 1/2 sous l’effet d’un champ magnétique aléatoire. L’effet de l’environnement sur le spin peut en effet
être partiellement représenté par un champ magnétique fluctuant (le champ magnétique est une coordonnée
thermodynamique, qui est sujette à des fluctuations comme discuté au paragraphe précédent). Pour sim-
plifier, nous allons considérer une seule composante de ce champ : on note le hamiltonien correspondant
Ĥ = ℏγBŜx, B étant pour l’instant fixé, et on notera pour simplifier ℏγB/2 = ϵ. Supposons que le spin est
initialement dans l’état | ↑⟩. Son évolution est donnée par l’équation de Schrödinger :

iℏ
d|Ψ⟩
dt = Ĥ|Ψ⟩. (206)

En décomposant |Ψ(t)⟩ = λ(t)| ↑⟩ + µ(t)| ↓⟩, on obtient deux équations couplées pour λ et µ :

iℏ
d
dt

(
λ
µ

)
= ϵ

(
0 1
1 0

)(
λ
µ

)
, (207)

soit
dλ
dt = −i ϵ

ℏ
µ et dµ

dt = −i ϵ
ℏ
λ. (208)

En dérivant la première équation par rapport au temps, puis en y injectant le deuxième,

d2λ

dt2 = −(ϵ/ℏ)2λ, (209)
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qui a pour solution
λ(t) = λ0e

iϵt/ℏ + λ′
0e

−iϵt/ℏ. (210)
On en déduit, en intégrant une fois,

µ(t) = −λ0e
iϵt/ℏ + λ′

0e
−iϵt/ℏ. (211)

Les conditions initiales sont λ(0) = 1 et µ(0) = 0. On en déduit λ0 +λ′
0 = 1 et λ0 = λ′

0, donc λ0 = λ′
0 = 1/2,

ce qui nous donne finalement

λ(t) = cos(ϵt/ℏ) et µ(t) = − sin(ϵt/ℏ). (212)

On introduit la phase ϕ(t) = ϵt/ℏ. Alors

|Ψ(t)⟩ = cosϕ(t)| ↑⟩ − sinϕ(t)| ↓⟩, (213)

et la valeur moyenne d’une observable dans cet état |Ψ(t)⟩ s’écrit

⟨O⟩ = cos2 ϕ⟨↑ |O| ↑⟩ + sin2 ϕ⟨↓ |O| ↓⟩ − cosϕ sinϕ(⟨↑ |O| ↓⟩ + ⟨↓ |O| ↑⟩). (214)

En mécanique statistique, on s’intéresse à l’état d’équilibre thermodynamique, que l’on observe sur des
échelles de temps longues devant les fluctuations microscopiques. Donc, ce que l’on va observer en pratique,
c’est la valeur de ⟨O⟩ moyennée sur la phase aléatoire ϕ. On voit alors que le terme d’interférences (propor-
tionnel à cosϕ sinϕ) se moyenne à 0. Tout se passe comme si le spin était soit dans l’état ↑, soit dans l’état
↓, en l’occurence avec une probabilité ⟨cos2 ϕ⟩ϕ = ⟨sin2 ϕ⟩ϕ = 1/2.

Remarque. En modélisant l’environnement par un champ magnétique aléatoire, on ne retrouve pas les
probabilités canoniques. Pour les retrouver, nous aurions besoin d’un modèle plus complexe qui autorise
les échanges d’énergie avec l’environnement. Mais nous retrouvons tout de même la disparition des termes
d’interférences.

En résumé, un système quantique à l’équilibre thermodynamique, est, par définition, en
interaction avec un réservoir. En mécanique statistique, on s’intéresse aux propriétés de ce
système quantique sur des échelles de temps longues devant les fluctuations microscopiques
du réservoir. Sous ces conditions, tout se passe comme si le système quantique était dans une
superposition classique de ses états propres, qui jouent alors le rôle de micro-états dans la
description statistique.

Remarque. Dans le cours de RMN, vous étudierez des ensembles statistiques de systèmes quantiques
(spins) sur des temps courts (hors équilibre thermodynamique). Ils pourront alors garder un certain degré
de cohérence.

V. Gaz parfait classique et gaz parfait quantique
Nous avons maintenant tous les outils pour étudier le système ”de base” de la mécanique statistique :

le gaz parfait. C’est un système important car de nombreux systèmes plus complexes se réduisent à un gaz
parfait effectif, moyennant des approximations bien choisies. Dans ce chapitre, nous allons établir la loi des
gaz parfaits, étudier ses limites dans le cas quantique, puis voir comment la théorie du gaz parfait s’applique
au phénomène d’osmose et à l’énergie osmotique.

1) Gaz parfait classique
a) Micro-états

Un gaz parfait est un ensemble de particules ponctuelles sans interaction. Nous allons considérer N
particules, dans une enceinte de volume V fixé. En vertu de l’équivalence des ensembles étudiée plus haut,
nous avons le choix de l’ensemble statistique dans lequel nous placer pour déterminer ses coordonnées
thermodynamiques. Pour un système classique, on choisira très souvent l’ensemble canonique : l’enceinte
contentant le gaz est en contact avec un environnement qui lui impose une température T . L’avantage de la
situation canonique est qu’il n’y a pas de contrainte sur l’énergie des micro-états. En effet, les micro-états du
système correspondent alors à toutes les valeurs possibles des positions et des impulsions des N particules :
C = (r1, . . . , rN ,p1, . . . ,pN ).
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b) Fonction de partition et normalisation de l’espace des phases

L’énergie d’un micro-état correspond simplement à l’énergie cinétique des particules : par définition du
gaz parfait, les particules n’ont pas d’énergie potentielle d’interaction :

E(C) =
N∑
i=1

p2
i

2m, (215)

en supposant que toutes les particules ont la même masse m. Alors, en appliquant näıvement la définition
de la fonction de partition canonique, on a envie d’écrire

Z =
∫ N∏

i=1
dri dpi exp

[
−β

N∑
i=1

p2
i

2m

]
. (216)

La somme discrète de la définition est devenue une intégrale, vu que les positions et les impulsions des
particules peuvent varier continument. Cependant, cette expression ne peut pas être correcte vu qu’elle
n’est pas sans dimension. On doit en fait la normaliser par le ”volume” d’un micro-état dans l’espace des
phases (l’espace des positions et des impulsions). Cela revient à quadriller l’espace des phases : de combien
doit-on changer les positions et les vitesses des particules pour passer dans un autre micro-état ? On ne sait
pas déterminer ce volume de façon univoque dans le cadre de la mécanique classique, mais il se trouve que
sa valeur n’a pas de conséquence sur les résultats obtenus pour des quantités observables. Le traitement
quantique du problème, que nous verrons dans la suite, nous apprend que le volume d’un micro-état est en
fait donné par la constante de Planck : plus précisément, nous devons diviser l’expression ci-dessus par h3N .
Qualitativement, cela rend compte du principe d’incertitude d’Heisenberg : nous ne pouvons connaitre le
produit de la position et de l’impulsion d’une particule avec une précision plus grande que h :

∆x∆p ≳ h. (217)

Nous devons également inclure un facteur 1/N ! dans l’expression de la fonction de partition pour rendre
compte du caractère indiscernable des particules. En fin de compte, l’expression correcte est

Z =
∫ N∏

i=1

dri dpi
N !h3N exp

[
−β

N∑
i=1

p2
i

2m

]
. (218)

L’intégrande ne comporte aucune quantité dépendant de la position. Les intégrales sur les ri sont donc
triviales et donnent chacune le volume V de l’enceinte. L’intégrale sur les pi, elle, se factorise en N intégrales
identiques :

Z = V N

N !h3N

(∫
dp e−βp2/2m

)N
. (219)

Il suffit maintenant d’appliquer la formule de l’intégrale gaussienne multidimensionnelle (trois dimensions
ici) :

Z = V N

N !h3N

(√
π3(2m/β)3

)N
. (220)

On réarrange habituellement cette expression de la façon suivante :

Z = 1
N !

(
V

Λ3
T

)N
avec ΛT =

√
h2

2πmkBT
. (221)

ΛT s’appelle la longueur d’onde de de Broglie thermique. En mécanique quantique, on représente
une particule d’impulsion p par une onde de longueur λ = h/p, la longueur d’onde de de Broglie associée à la
particule. La longueur d’onde de de Broglie thermique est obtenue en prenant pour p l’impulsion thermique√

2πmkBT : l’impulsion typique d’une particule dans un gaz à température T .

➢ Ordre de grandeur : pour de l’hélium à T = 300 K, ΛT = 51 pm (de l’ordre du diamètre atomique).

On verra qu’un gaz parfait présente des effets quantiques si sa densité dépasse 1/Λ3
T .
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Remarque. La fonction de partition ZN d’un gaz parfait classique de N particules (et plus généralement
la fonction de partition d’un système de N particules classiques sans interaction) s’exprime simplement en
termes de la fonction de partition Z1 à une particule : ZN = ZN1 /N !. On verra que ce n’est pas le cas pour
des particules quantiques.

c) Energie libre et loi des gaz parfaits

On calcule maintenant le potentiel thermodynamique pertinent, ici l’énergie libre.

F = −kBT logZ = kBT logN ! −NkBT log V

Λ3
T

. (222)

Dans la limite thermodynamique, on utilise l’approximation de Stirling :

F = −NkBT

(
log V

NΛ3
T

+ 1
)
. (223)

On peut maintenant calculer la pression :

P = − ∂F

∂V

∣∣∣∣
T,N

= NkBT

V
. (224)

On a donc démontré la loi des gaz parfaits !

PV = NkBT (225)

Dans le cadre de la thermodynamique, nous ne pouvions que le postuler sur la base d’observations.

Remarque. On peut raisonner en quantité de matière plutôt qu’en nombre de particules. Le nombre de
moles dans le système est alors n = N/NA, et on a par définition kBNA = R, la constante des gaz parfaits.
On retrouve alors la loi des gaz parfaits sous la forme PV = nRT , souvent utilisée en chimie.

d) Energie, capacité thermique, théorème d’équipartition

On calcule l’énergie moyenne du gaz parfait en dérivant la fonction de partition :

U = −∂ logZ
∂β

. (226)

Or en reprenant l’expression (220), on voit que

logZ = −3N
2 log β + termes indépendants de β. (227)

On obtient alors
U = 3

2NkBT. (228)

Cette expression se généralise très simplement à des systèmes plus complexes que le gaz parfait – en fait, à
tout système dont l’énergie microscopique est une fonction quadratique de ses degrés de liberté. Imaginons
une particule ayant ℓ degrés de liberté q1, . . . , qℓ, dont l’énergie s’écrit sous la forme

ϵ =
ℓ∑

i,j,=1
qiAijqj = qTAq. (229)

Un gaz de N de ces particules aura une fonction de partition de la forme

Z ∝
(∫

dqe−βqTAq
)N

, (230)
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et donc, vue la formule de l’intégrale gaussienne,

logZ = −N ℓ

2 log β + termes indépendants de β. (231)

On en déduit U = NℓkBT/2, et le

Théorème d’équipartition : un degré de liberté quadratique classique contribue kBT/2 à l’énergie
moyenne par particule.

Remarque. Nous reviendrons sur ce résultat dans le cas quantique, dont nous verrons qu’il peut ne pas
être vrai à basse température.

➢ Exemple : pour une molécule monoatomique (He par exemple), on compte trois degrés de liberté
de translation, et on retrouve U/N = 3kBT/2. Pour une molécule diatomique (O2 ou CO), il y a trois
degrés de liberté de translation, deux degrés de liberté de rotation, plus un degré de liberté vibrationnel qui
contribue deux termes quadratiques à l’énergie, comme il y a une énergie potentielle élastique associée. Au
total, U/N = 7kBT/2.

Le comptage des degrés de liberté sera abordé plus en détail dans le cours de spectroscopie. Le point
important à retenir est que, grâce au théorème d’équipartition, on peut déterminer sans calcul l’énergie
moyenne d’un système de particules sans interaction. Inversement, la capacité thermique CV = dU/dT , qui
est souvent mesurée expérimentalement, nous renseigne sur la structure microscopique du système étudié.

e) Distribution de Maxwell-Boltzmann sur les états à une particule

Un micro-état du gaz parfait de N particules est défini par la donnée des positions et des impulsions de
chacune des particules : C = (r1, . . . , rN ,p1, . . . ,pN ). Les particules étant indépendantes, il est équivalent
de spécifier pour chacune des N particules le micro-état (r1,p1) qu’elle occupe. On va chercher à déterminer
le nombre moyen de particules dans un micro-état (r1,p1) donné. Le résultat va nous être très utile pour
comprendre le comportement du gaz parfait quantique.

⟨nr1,p1⟩ = N

∫ N∏
i=2

dridpi
N !h3(N−1)P(r1, . . . , rN ,p1, . . . ,pN )︸ ︷︷ ︸

probabilité que la particule 1 soit dans (r1,p1)

. (232)

On a N ! au dénominateur car on doit prendre en compte le caractère indiscernable des N particules (et pas
seulement N − 1). En utilisant l’expression de la probabilité canonique, on trouve

⟨nr1,p1⟩ = e−βp2
1/2mZN−1

ZN
. (233)

Or,
log(ZN−1/ZN ) = logZN−1 − logZN = β(F (N) − F (N − 1)) (234)

En faisant le développement limité qui est parfaitement justifié dans la limite thermodynamique,

log(ZN−1/ZN ) = β

(
F (N) −

[
F (N) − ∂F

∂N

∣∣∣∣
V,T

])
= β

∂F

∂N

∣∣∣∣
V,T

= βµ. (235)

En faisant apparaitre le potentiel chimique, le résultat devient très compact :

⟨nr1,p1⟩ = e−β(p2
1/2m−µ). (236)

Le nombre d’occupation moyen du micro-état (r1,p1) à une particule ne dépend en fait que de son énergie
p2

1/2m ≡ ϵ. On retiendra donc :
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Dans un gaz de particules classiques sans interaction, le nombre d’occupation moyen d’un état à
une particule d’énergie ϵ à température kBT = 1/β et sous un potentiel chimique µ est donné par

⟨nϵ⟩ = e−β(ϵ−µ) (distribution de Maxwell-Boltzmann). (237)

On peut expliciter le potentiel chimique à partir de l’expression (223) de l’énergie libre :

µ = ∂F

∂N

∣∣∣∣
V,T

= kBT log
(
NΛ3

T

V

)
. (238)

Dans le régime où la description classique est valide (densité très inférieure à 1/Λ3
T ) le potentiel chimique

est toujours négatif. On peut réécrire

⟨nϵ⟩ = NΛ3
T

V
e−βϵ. (239)

On vérifie bien que le nombre de particules dans un micro-état est proportionnel au nombre de particules
total.

2) Gaz parfait et statistiques quantiques
a) Micro-états à une particule

Considérons d’abord une seule particule quantique dans une bôıte de volume V = L3. Son hamiltonien
ne contient qu’un terme d’énergie cinétique :

Ĥ1 = p̂2

2m. (240)

L’équation de Schrödinger indépendante du temps s’écrit alors

− ℏ2

2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
Ψ(x, y, z) = EΨ(x, y, z). (241)

En imposant que la fonction d’onde s’annule sur les bords de la bôıte, les solutions s’écrivent

Ψk(x, y, z) =
(

2
L

)3/2
sin(kxx) sin(kyy) sin(kzz), avec ki = niπ

L
, ni ∈ N, (242)

et les énergies correspondantes sont

Ek = ℏ2k2

2m . (243)

Ces solutions définissent les micro-états à une particule.

b) Fonction de partition à une particule

On peut calculer la fonction de partition canonique d’un ”gaz parfait” contenant une seule particule
quantique.

Z1 =
∑

k

e−βℏ2k2/2m =
( ∞∑
n=0

exp
[
−n2 βℏ2π2

2mL2

])3

. (244)

Dans la limite thermodynamique L → ∞, on peut assimiler la somme à une intégrale :

Z1 =
(∫ ∞

0
dn exp

[
−n2 βℏ2π2

2mL2

])3

. (245)
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En revenant à k = nπ/L, on trouve

Z1 =
(
L

π

∫ ∞

0
dk e−βℏ2k2/2m

)3
=
(
L

2π

∫ ∞

−∞
dk e−βℏ2k2/2m

)3
(246)

= V

∫ dk
(2π)3 e

−βℏ2k2/2m. (247)

On retiendra pour la suite que, dans la limite thermodynamique, on peut remplacer
∑

k 7→ V
∫ dk

(2π)3 . En
posant maintenant p = ℏk, on trouve

Z1 = V

∫ dp
h3 e

−βp2/2m. (248)

Cela correspond bien au résultat classique. En partant des micro-états quantiques, on a trouvé par le calcul
la normalisation de l’espace des phases par la constante de Planck, que l’on avait dû admettre dans le cas
classique.

c) Micro-états à N particules

L’hamiltonien de N particules dans une bôıte est la somme des hamiltoniens à une particule :

ĤN =
N∑
i=1

p̂2
i

2m. (249)

Les solutions de l’équation de Schrödinger stationnaire à N particules, ĤNΨ = EΨ, peuvent être obtenues
par combinaison linéaire de produits de solutions à une particule :

Ψk1,...,kN
(r1, . . . , rN ) = Ψk1(r1) . . .ΨkN

(rN ) (250)

vérifie l’équation à N particules avec

Ek1,...kN
= ℏ2

2m

N∑
i=1

k2
i . (251)

Cependant, toutes les combinaisons linéaires des Ψk1,...,kN
ne sont pas des solutions physiques de l’équation

de Schrödinger. En effet, les particules étant indiscernables, leur densité de probabilité de présence doit
rester invariante par échange de deux particules :

|Ψ(r1, . . . , ri, . . . , rj , . . . , rN )|2 = |Ψ(r1, . . . , rj , . . . , ri, . . . , rN )|2 (252)

Les fonctions d’onde physiques sont donc soit symétriques,

Ψ+(r1, . . . , ri, . . . , rj , . . . , rN ) = Ψ+(r1, . . . , rj , . . . , ri, . . . , rN ), (253)

soit antisymétriques,

Ψ−(r1, . . . , ri, . . . , rj , . . . , rN ) = −Ψ−(r1, . . . , rj , . . . , ri, . . . , rN ), (254)

par échange de deux particules. Vous avez vu que les fonctions d’onde symétriques décrivent des bosons,
particules de spin entier, alors que les fonctions d’onde antisymétriques décrivent des fermions, particules
de spin demi-entier. En pratique, on construit les fonctions d’onde symétriques ou antisymétriques pour un
choix donné de k1, . . . ,kN en sommant sur toutes les permutations P possibles des N indices. La fonction
antisymétriques est donnée par

Ψ−
k1,...,kN

= 1√
N !

∑
P

(−1)PP[Ψk1 . . .ΨkN
]. (255)

Ici (−1)P désigne le signe de la permutation P (1 si le nombre de transpositions effectué par P est pair, -1
sinon). La fonction symétrique s’obtient selon

Ψ+
k1,...,kN

= 1√
N !
∏

k nk!

∑
P

P[Ψk1 . . .ΨkN
], (256)
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où nk désigne le nombre de fois où k apparait dans la séquence k1, . . . ,kN . Le détail de ces expressions n’est
pas essentiel pour la suite du cours. Le point important à retenir est que cette nécessité de symmétriser les
fonctions d’onde rend difficile le calcul de la fonction de partition à N particules dans le cas quantique, vu
que l’on ne peut plus la décomposer en un produit de fonctions de partition à une particule :

ZN =
∑

Ψ±
k1,...,kN

e−βEk1,...,kN ̸= 1
N !

(∑
k

e−βEk

)N
. (257)

Par exemple, dans le cas fermionique, il est clair que l’on ne peut pas faire la somme sur les k de façon
indépendante, car les états ayant deux fois le même k sont interdits par le principe d’exclusion de Pauli. Il
doit exister des conditions dans lesquelles le système quantique se comporte de façon classique, et les deux
expressions ci-dessus sont égales. Il faut en fait que la température soit suffisamment élevée, de façon à ce
que la distance moyenne inter-particule soit plus grande que la longueur d’onde de de Broglie thermique :
(V/N)1/3 ≫ ΛT . Mais ce n’est pas évident à ce stade.

d) Grande fonction de partition

Deux allons tout de même pouvoir déterminer les propriétés du gaz parfait quantique grâce à deux
astuces stratégiques.

1. Un bon choix de nombres quantiques. Nous allons passer en représentation par nombre d’occupation.
Au lieu de spécifier le ki correspondant à chacune des particules dans un micro-état, nous allons
spécifier, pour chacun des k possibles, le nombre de particules pour lesquelles ki = k. Nous pouvons
le faire car, avec la symmétrisation, l’ordre des ki n’est pas important. Nous allons aussi prendre
explicitement en compte que pour un même k, une particule peut avoir différentes valeurs du spin
σ = −S,−S + 1, . . . S. Un micro-état est alors désigné par {nk,σ}, et on notera g = 2S + 1 la
multiplicité de spin.

2. L’utilisation de l’ensemble grand-canonique. Cela va nous permettre de sommer sur les nk,σ de façon
indépendante. Grâce à l’équivalence des ensembles dans la limite thermodynamique on retrouvera les
mêmes propriétés que si l’on était parti de l’ensemble canonique.

En effet, la grande fonction de partition s’écrit

Ξ =
∑

{nk,σ}

e
−β
∑

k,σ
(nk,σEk−µnk,σ) =

∏
k

(∑
n

[
e−β(Ek−µ)

]n)g
(258)

On peut tout de suite prendre le logarithme pour transformer le produit en somme :

log Ξ = g
∑

k

log
(∑

n

[
e−β(Ek−µ)

]n)
. (259)

Il faut maintenant distinguer les cas selon si l’on a affaire à des bosons ou à des fermions. Pour des fermions,
n = 0 ou 1, et donc

log Ξ− = g
∑

k

log
(

1 + e−β(Ek−µ)
)
. (260)

Pour des bosons, n varie entre 0 et +∞. On constate que la somme diverge si µ > 0 : on verra dans la suite
pourquoi c’est le cas. Pour l’instant, on suppose que µ < 0, et on somme la série géométrique :

log Ξ+ = g
∑

k

log
(

1
1 − e−β(Ek−µ)

)
. (261)

On peut condenser les deux expressions en une si l’on introduit le paramètre η qui vaut 1 pour les bosons
et −1 pour les fermions :

log Ξη = −ηg
∑

k

log
(

1 − ηe−β(Ek−µ)
)
. (262)

On peut maintenant exprimer les coordonnées thermodynamiques. Grâce à la relation de Gibbs-Duhem, on
sait que Y = −kBT log Ξ = −PV , et donc

βP = −ηg

V

∑
k

log
(

1 − ηe−β(Ek−µ)
)
. (263)
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Par ailleurs,
N = 1

β

∂ log Ξ
∂µ

= g
∑

k

1
eβ(Ek−µ) − η

. (264)

Dans la limite thermodynamique, on peut remplacer les sommes par des intégrales (
∑

k 7→ V
∫ dk

(2π)3 ), et
on introduit également le paramètre z ≡ eβµ) :

βP = −ηg
∫ dk

(2π)3 log
(
1 − ηze−βEk

)
(265)

N

V
= g

∫ dk
(2π)3

1
z−1eβEk − η

. (266)

Ces équations contiennent toute la thermodynamique du gaz parfait quantique. Elle contiennent notamment
de façon implicite l’équation d’état P = f(T, V,N).

e) Statistiques quantiques

Une bonne façon de comprendre qualitativement le comportement de ces gaz quantiques est de s’intéresser
au nombre d’occupation moyen d’un état k, σ. En observant l’expression (258) de la fonction de partition,
on voit que

⟨nk,σ⟩ = −1
g

∂ log Ξη
∂(βEk) = e−β(Ek−µ)

1 − ηe−β(Ek−µ) = 1
eβ(Ek−µ) − η

. (267)

Ce résultat est assez important pour être rendu plus explicite.

Dans un gaz de particules sans interaction, le nombre d’occupation moyen d’un état à une particule
d’énergie ϵ à température kBT = 1/β et sous un potentiel chimique µ est donné par les formules
suivantes.

• Pour des bosons :

⟨nϵ⟩ = 1
eβ(ϵ−µ) − 1

(distribution de Bose-Einstein) (268)

• Pour des fermions :

⟨nϵ⟩ = 1
eβ(ϵ−µ) + 1

(distribution de Fermi-Dirac) (269)

A température suffisamment élevée, le potentiel chimique doit se réduire à son expression classique
µ = kBT log(nΛ3

T ), donc βµ est grand et négatif quand T est grand (ce qui correspond à z = eβµ ≪ 1). On
retrouve alors le résultat classique de Maxwell-Boltzmann (⟨nϵ⟩ = e−β(ϵ−µ)) que ce soit pour des bosons ou
pour des fermions.

f) Gaz quantique à haute température : interaction effective

En quoi est-ce que le gaz quantique diffère du gaz classique ? A haute température, on doit retrouver le
comportement du gaz classique. Comme on vient de voir, la limite haute température correspond en fait
à z = eβµ ≪ 1. On peut déterminer les corrections à la loi des gaz parfaits que l’on obtient en s’écartant
de cette limite. Pour cela, on fait un développement limité en z des deux équations (265) et (266), puis on
élimine z entre les deux développements pour trouver P en fonction de N . Le calcul est détaillé dans le
Kardar par exemple. On trouve :

PV = NkBT

[
1 − η

25/2

(
nΛ3

T

g

)
+O

(
nΛ3

T

g

)2]
, (270)

avec n = N/V . Ce résultat nous dit que :
• Les effets quantiques apparaissent lorsque nΛ3

T /g ≳ 1. Pour une densité donnée du gaz, cela corres-
pond à une température suffisamment basse.
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• Le signe de la correction à la pression du gaz parfait dépend de la nature bosonique ou fermionique
des particules. Pour un gaz de fermions, la pression est plus élevée que pour un gaz parfait classique.
Cela rend compte d’une répulsion effective entre les fermions, conséquence du principe d’exclusion
de Pauli. Pour un gaz de bosons, la pression est plus faible que pour un gaz parfait classique. Cela
rend compte d’une attraction effective entre les bosons, qui traduit leur tendance à la condensation
de Bose.

Ces corrections quantiques rentrent-elles vraiment en jeu dans des systèmes chimiques ? Peut-on ren-
contrer des systèmes ”très quantiques”, pour lesquels nΛ3

T ≫ 1 ? Pour un gaz moléculaire comme l’hélium,
nous avons estimé ΛT = 51 pm à température ambiante : pour une densité raisonnable, les corrections
quantiques sont négligeables. Il faut aller à très basse température pour voir des effets quantiques appa-
raitre. Par exemple, à T = 4 K, ΛT = 440 pm. Or l’hélium est liquide à cette température : la distance
moyenne inter-particule est donc de l’ordre de la taille atomique (70 pm) et les effets quantiques sont donc
importants.

Pour des gaz moléculaires, les effets quantiques n’apparaissent donc que pour des températures cryogéniques.
En revanche, un gaz d’électrons se comporte de façon fortement quantique même à température ambiante,
car un électron est beaucoup plus léger qu’un atome. Les gaz d’électrons se trouvent dans les métaux. Le
cuivre métallique, par exemple, est formé par un réseau d’ions Cu2+ qui baignent dans un gaz d’électrons :
chacun des atomes de cuivre y a contribué deux électrons. La distance moyenne entre deux électrons est de
l’ordre de la constante de réseau du cuivre, soit environ 0.4 nm. Or, à T = 300 K la longueur d’onde de de
Broglie associée à un électron est ΛT = 4.4 nm. Le gaz d’électrons se trouve donc dans un régime fortement
quantique : on parle de gaz de Fermi dégénéré.

Les gaz de bosons dans un régime fortement quantique se rencontrent en fait aussi le plus souvent
dans des systèmes électroniques. A température suffisamment basse, les électrons dans un métal peuvent
acquérir des interactions attractives : ils vont alors s’apparier pour former des paires de Cooper. Les paires de
Cooper sont des bosons, et ce sont les aspects quantiques du comportement collectif de ces paires de Cooper
qui donnent lieu à la supraconductivité – phénomène de grande importance technologique, qui permet le
fonctionnement des aimants de RMN/IRM, par exemple.

g) Gaz de Fermi dégénéré

On peut comprendre le comportement du gaz de fermions à basse température en étudiant graphique-
ment le comportement des équations (265) et (266). L’équation (266) nous donne le nombre de particules
en fonction du potentiel chimique à une température donnée. Pour chaque température, on peut trouver
numériquement trouver le potentiel chimique correspondant à un nombre de particules fixé pour obtenir le
potentiel chimique en fonction de la température. On voit que le potentiel chimique devient positif lorsque
la température décroit. A très basse température (β → ∞),

eβ(Ek−µ)
{

−→ 0 si Ek < µ
−→ +∞ si Ek > µ

. (271)

Le potentiel chimique d’un gaz d’électrons est souvent appelé énergie de Fermi. On définit le vecteur d’onde
de Fermi kF selon EkF = µ. Alors, quand β → ∞,

N

V
= g

∫
|k|<kF

dk
(2π)3 = g

6π2 k
3
F. (272)

Donc

kF =
(

6π2

g

N

V

)1/3

. (273)

L’énergie de Fermi à température nulle est alors

EF = µ(β → ∞) = ℏ2k2
F

2m . (274)

On peut maintenant observer le comportement du nombre d’occupation moyen ⟨nϵ⟩ en fonction de la
température. Lorsqu’on baisse la température, les particules essayent d’occuper des états d’énergie de plus
en plus basse. Mais elles ne peuvent pas toutes se mettre dans l’état fondamental à cause du principe
d’exclusion de Pauli. La distribution de Fermi acquiert alors une forme de marche : à basse température,
ce sont tous les états à une particule d’énergie inférieure à l’énergie de Fermi qui sont occupés. Le gaz de
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Fermi a donc une énergie moyenne et une pression non nulles à température nulle, ce qui est radicalement
différent du gaz classique.

Avec cette image, on peut comprendre le changement de signe du potentiel chimique. On a µ = ∂F/∂N ,
avec F = U − TS. Dans le gaz parfait classique, l’incrément d’énergie interne dû à l’ajout d’une particule
(3kBT/2), est plus que compensé par l’incrément d’entropie associé (un plus grand nombre de particules
a plus de configurations), donc F diminue et le potentiel chimique est négatif. Dans un gaz de Fermi
dégénéré, la particule ajoutée doit occuper un niveau d’énergie situé au-dessus du niveau de Fermi. Au
bout d’un certain nombre de particules, le coût énergétique associé excède le gain d’entropie, et le potentiel
chimique est alors positif.

Pour les électrons du cuivre l’énergie de Fermi vaut environ 7 eV ≈ 28kBT à température ambiante.
Donc même à T = 300 K, les électrons du cuivre sont bien décrits comme un gaz de Fermi à température
nulle.

h) Condensation de Bose-Einstein

Pour un gaz de bosons, on observe que le potentiel chimique augmente et tend vers 0 quand la température
tend vers 0 comme kBT log(nΛ3

T /g). Cela implique une divergence du nombre d’occupation de l’état fonda-
mental à une particule :

⟨nϵ=0⟩ = 1
e−βµ − 1 −→

µ→0
∞ (275)

En fait, le nombre d’occupation du fondamental devient macroscopique (d’ordre N) en-dessous d’une
température critique TB. C’est ce que l’on appelle la condensation de Bose-Einstein. Pour le voir, il faut re-
partir de l’expression du nombre de particules avant le passage à la limite thermodynamique qui transforme
la somme en intégrale :

N = g
∑

k

1
eβ(Ek−µ) − 1

. (276)

Si le terme k = 0 est beaucoup plus grand que tous les autres, on n’a pas le droit de transformer la somme
en intégrale vu que la fonction à intégrer possède une singularité en 0. On peut cependant isoler le terme
k = 0 (qui donne le nombre N0 de particules dans l’état fondamental), et transformer le reste de la somme
en intégrale :

N = N0 + gV

∫ dk
(2π)3

1
z−1eβEk − 1 . (277)

En faisant le changement de variable x = βℏ2k2/(2m) dans l’intégrale, on peut réécrire

N = N0 + gV

Λ3
T

f(z), avec f(z) = 2√
π

∫ ∞

0

dxx1/2

z−1ex − 1 . (278)

z = eβµ peut varier entre 0 et 1. Sur cet intervalle, f est bornée par sa valeur en z = 1 : f(z) ≤ f(1) =
ζ3/2 ≈ 2.612. Donc si la température est suffisamment basse pour que gζ3/2/Λ3

T < N/V , il n’existe pas de
z qui permette de vérifier l’équation ci-dessus avec N0 = 0, en on a donc N0 ̸= 0. La température de Bose
est donnée par la condition gζ3/2/Λ3

TB
= N/V , soit

TB = h2

2πmkB

(
n

gζ3/2

)2/3
. (279)

Pour T < TB, on trouve
N0 = N

[
1 − (T/TB)3/2

]
. (280)

Le nombre d’occupation moyen ⟨nϵ⟩ devient singulier en ϵ = 0 pour T < TB. Thermodynamiquement, la
pression et l’énergie moyenne du gaz de bosons tendent vers 0 à température nulle, mais selon des lois
particulières et différentes du cas classique. Par exemple, la pression se comporte selon P ∝ T 5/2, avec
un préfacteur indépendant de la densité. La condensation de Bose-Einstein est une des manifestations les
plus spectaculaires de la mécanique quantique, et un phénomène d’importance technologique majeure. En
particulier, la supraconductivité résulte d’une condensation de Bose-Einstein de paires d’électrons (paires
de Cooper).
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3) Solution diluée comme un gaz parfait : osmose
La gaz parfait est un modèle très utile en chimie, car il décrit bien les molécules en solution diluée.

En effet, dans une solution suffisamment diluée, les solutés ne se rencontrent que très rarement : c’est
donc une bonne approximation de considérer qu’ils n’interagissent pas entre eux. Les solutés subissent des
collisions très fréquentes avec les molécules de solvant. Cependant, la distribution de vitesses qui en résulte
est identiques à celle que l’on aurait dans un gaz parfait à la même température. Plus précisément, la
dynamique de la vitesse des solutés est différente (elle change beaucoup plus souvent de direction que dans
un gaz), mais la distribution statistique reste la même. Une conséquence importante du comportement ”gaz
parfait” des solutions est le phénomène d’osmose, que nous allons discuter dans ce paragraphe.

a) Mise en évidence expérimentale

L’expérience canonique mettant en évidence le phénomène d’osmose est celle du tube en U. Le tube est
séparé en deux compartiments par une paroi. A gauche, on place un volume V de solvant pur. A droite, on
place le même volume de solvant, dans lequel on a dissous un soluté S à une concentration cs. On choisit le
matériau de la paroi pour que celle-ci se comporte de façon semi-perméable : elle laisse passer le solvant, mais
pas le soluté. Alors, on observe un écoulement de solvant du compartiment de gauche vers le compartiment
de droite : le système tente d’égaliser les concentrations des deux côtés de la paroi. C’est ce que l’on appelle
l’osmose. Si l’on veut stopper l’écoulement, il faut appliquer sur le compartiment de droite une certaine
pression, que l’on appelle pression osmotique, souvent notée Π. Pour des concentrations cs suffisamment
faibles, elle s’exprime selon la

Loi de Van’t Hoff :
Π = kBTcs. (281)

Nous allons établir la loi de van’t Hoff à partir de la mécanique statistique. Il s’agit en fait de l’analogue
de la loi des gaz parfaits pour la solution diluée.

b) Importance des effets osmotiques

L’osmose est un phénomène très important pour les systèmes biologiques. En effet, les membranes de
cellules se comportent comme des parois semi-perméables : elles laissent passer l’eau (et quelques ions)
mais pas les macromolécules (ADN, protéines). Il est donc crucial pour la stabilité d’une cellule que le
milieu extérieur contienne des solutés à une concentration similaire à celle à l’intérieur (milieu isotonique).
Si l’extérieur est plus concentré que l’intérieur (milieu hypertonique) l’osmose va vider les cellules de leur
eau : c’est pour cela que le sel conserve les aliments. Si l’extérieur est moins concentré que l’intérieur (milieu
hypotonique) l’osmose va remplir les cellules d’eau et les faire exploser.

La pression osmotique détermine le coût en énergie des processus de filtration. La filtration consiste
typiquement à pousser une solution à travers une membrane qui est perméable au solvant et pas au soluté :
on parle aussi d’osmose inverse. En effet, on cherche à induire un écoulement dans le sens inverse de
l’osmose : du plus concentré vers le moins concentré. Pour contrer le flux osmotique spontané et obtenir
l’osmose inverse, il faut appliquer au minimum une pression égale à la pression osmotique. Ces pressions
peuvent être considérables : par exemple, pour dessaler l’eau de mer (concentration en sel ∼ 0.6 mol/L), la
pression minimale à appliquer est de l’ordre de ∆Π = 30 bar.

Historiquement, l’osmose a été découverte en 1748 par l’abbé Nollet, qui avait placé dans une bassine
d’eau une fiole d’éthanol fermée par une vessie de porc. Il se trouve que la vessie de porc est légèrement
perméable à l’eau, mais pas à l’éthanol !

c) Loi de van’t Hoff : démonstration microscopique

On revient à la situation du tube en U. On note Ns le nombre de molécules de soluté, confinées au
compartiment de droite, et N le nombre total de molécules de solvant, libres de se répartir entre les deux
compartiments. On notera N ′ le nombre de molécules de solvant dans le compartiment de droite (et N −N ′

dans le compartiment de gauche). On applique sur le compartiment de droite une surpression Π par rapport à
la pression atmosphérique P0, et on cherche à déterminer la concentration en soluté cs dans le compartiment
de droite à l’équilibre thermodynamique. Π sera alors la pression osmotique correspondant à cs.
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Condition d’équilibre. Dans une situation de pression imposée et température imposée, c’est l’enthal-
pie libre G qui est minimisée dans l’état d’équilibre. L’enthalpie libre totale du système se somme entre les
deux compartiments

Gtot = G(Nw = N −N ′, Ns = 0, P0, T ) +G(Nw = N ′, Ns, P0 + Π, T ). (282)

Physiquement, le système va ajuster la variable interne N ′ (le solvant va s’écouler à travers la membrane
semi-perméable) jusqu’à ce que Gtot soit minimale :

∂Gtot

∂N ′ = 0 ⇒ − ∂

∂Nw
G(Nw = N −N ′, Ns = 0, P0, T ) + ∂

∂Nw
G(Nw = N ′, Ns, P0 + Π, T ). (283)

On identifie le potentiel chimique du solvant µw = ∂G/∂Nw, et la condition d’équilibre s’écrit donc

µw(T, P0, cs = 0) = µw(T, P0 + Π, cs). (284)

Le potentiel chimique du solvant doit s’égaliser entre les deux compartiments à l’équilibre. On va donc
s’attacher à calculer ce potentiel chimique.

Fonction de partition. Il sera plus aisé de partir d’un système en situation canonique : Ns molécules de
soluté mélangées à Nw molécules de solvant à volume fixé V et température T . On considère des molécules
sans degrés de liberté internes, mais le raisonnement serait le même en présence de tels degrés de liberté.
Un micro-état est alors défini par les positions et les impulsions de chacune des particules, et son énergie
s’écrit de façon générale

E(C) =
Nw∑
i=1

p2
i

2mw
+

Ns∑
i=1

p2
i

2ms
+ Uw(rw1 , . . . , rwNw

) + Us(rs1, . . . , rsNs
) + Usw(rw1 , . . . , rwNw

, rs1, . . . , rsNs
). (285)

Nous ne considérons a priori pas un gaz parfait, mais une solution où les molécules interagissent entre elles :
il y a donc une énergie potentielle associée. Il y a une énergie d’interaction entre molécules de solvant Uw,
une énergie d’interaction entre molécules de soluté Us et une énergie d’interaction solvant-soluté Usw. Nous
allons maintenant utiliser l’hypothèse de solution diluée pour faire deux approximations :

• On néglige l’énergie d’interaction entre molécules de soluté, qui sont en moyenne toujours assez
éloignées pour que cette énergie soit faible.

• De la même façon, l’énergie d’interaction entre une molécule de soluté et le solvant ne dépend pas
des positions des autres molécules de soluté, ces interactions étant de portée beaucoup plus courte
que la distance moyenne entre solutés. On peut alors écrire :

Usw(rw1 , . . . , rwNw
, rs1, . . . , rsNs

) =
Ns∑
i=1

usw(rsi , rw1 , . . . , rwNw
). (286)

Les détails du calcul ne sont pas exigibles, mais il faut savoir en donner les étapes principales. La fonction
de partition s’exprime alors comme

Z = 1
Nw!(ΛwT )3Nw

1
Ns!(ΛsT )3Ns

∫
[drw][drs]e−β

[
Uw(rw

1 ,...,r
w
Nw

)+
∑Ns

i=1
usw(rs

i ,r
w
1 ,...,r

w
Nw

)
]
, (287)

où l’on a noté [dr] =
∏
i dri. On cherche maintenant à séparer les contributions du solvant et du soluté :

Z = 1
Nw!(ΛwT )3Nw

∫
[drw]e−βUw(rw

1 ,...,r
w
Nw

) 1
Ns!(ΛsT )3Ns

∫
[drw][drs]e−β

[
Uw(rw

1 ,...,r
w
Nw

)+
∑Ns

i=1
usw(rs

i ,r
w
1 ,...,r

w
Nw

)
]

∫
[drw]e−βUw(rw

1 ,...,r
w
Nw

)

(288)
On voit apparaitre la fonction de partition du solvant pur Zw, ainsi qu’une moyenne sur les configurations
du solvant :

Z = Zw · 1
Ns!(ΛsT )3Ns

∫
[drs]

〈
e−βusw(rs

1) . . . e−βusw(rs
Ns

)
〉
w
. (289)

Mais comme les particules de soluté sont considérées indépendantes,〈
e−βusw(rs

1) . . . e−βusw(rs
Ns

)
〉
w

=
〈
e−βusw(rs

1)
〉
w
. . .
〈
e−βusw(rs

Ns
)
〉
w
. (290)
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Par ailleurs, dans un système homogène, les quantités moyennées sont indépendantes des rsi . On peut alors
écrire 〈

e−βusw(rs)
〉
w

= e−βϕ(Nw,V,T ). (291)

est une fonction qui ne dépend que du solvant, et donc de ses coordonnées thermodynamiques Nw, V, T .
Elle représente l’énergie libre d’interaction d’une particule de soluté avec le solvant. Comme les interactions
solvant-soluté sont de portée très courte devant la taille du système, ϕ doit être une quantité intensive, ne
dépendant que de la densité du solvant. La dépendance en température de ϕ n’a pas d’importance pour la
suite, et on écrira pour simplifier ϕ(Nw, V, T ) = ϕ(Nw/V ). On trouve finalement

Z = Zw · Z0
s e

−βNsϕ(Nw/V ), (292)

où Z0
s est la fonction de partition de Ns particules de gaz parfait.

Potentiel chimique. L’énergie libre s’écrit

F (Nw, Ns, V, T ) = Fw(Nw, V, T )︸ ︷︷ ︸
solvant pur

+F0(Ns, V, T )︸ ︷︷ ︸
gaz parfait

+Nsϕ(Nw/V )︸ ︷︷ ︸
mélange

. (293)

ϕ représente en fait l’énergie libre de solvatation d’un soluté. On peut maintenant calculer les potentiels
chimiques du solvant et du soluté :

µw(Nw, Ns, V, T ) = ∂F

∂Nw

∣∣∣∣
V

= µw(V, T ) + Ns
V
ϕ′(Nw/V ) (294)

µs(Ns, Nw, V, T ) = ∂F

∂Ns

∣∣∣∣
V

= kBT log csΛ3
T + ϕ(Nw/V ). (295)

On a noté µw(V, T ) le potentiel chimique du solvant pur.
Introduction de la pression. On voit que le soluté se comporte comme un gaz parfait, placé dans un

potentiel constant déterminé par le solvant. Pour le solvant, l’interprétation est moins claire. Par ailleurs,
on voudrait en fin de compte exprimer le potentiel chimique en fonction de la pression. Pour cela, il faudrait
exprimer le volume en fonction de la pression, mais ce n’est pas facile. L’astuce consiste à calculer l’enthalpie
libre G = F + PV , puis calculer le potentiel chimique du solvant comme µw = ∂G/∂Nw|P . On commence
par exprimer la pression en fonction du volume :

P (Ns, Nw, V, T ) = −∂F

∂V
= Pw(V, T ) + NskBT

V
+ NsNw

V 2 ϕ′(Nw/V ). (296)

Ici Pw(V, T ) est la pression du solvant pur. On trouve alors pour l’enthalpie :

G = Gw(Nw, V, T )︸ ︷︷ ︸
solvant pur

+G0(Ns, V, T )︸ ︷︷ ︸
gaz parfait

+Ns
[
ϕ(Nw/V ) + Nw

V
ϕ′(Nw/V )

]
︸ ︷︷ ︸

ψ(ρw=Nw/V )

(297)

On dérive maintenant par rapport à Nw à pression P constante. Attention, maintenant le volume dépend
de Nw :

µw(Nw, Ns, T, P ) = ∂G

∂Nw

∣∣∣∣
P

= µw(T, P ) + ∂G0

∂V

∂V

∂Nw

∣∣∣∣
P

+Nsψ
′(ρw) ∂ρw

∂Nw

∣∣∣∣
P

(298)

Il faut se rappeler qu’on est dans la limite Ns petit. Jusqu’à maintenant, on n’a gardé que les termes d’ordre
1 en Ns, et on va faire de même dans cette expression. Tout d’abord, on explicite l’enthalpie libre du gaz
parfait :

G0(Ns, V, T ) = Nsµ0(Ns, V, T ) = NskBT log NsΛ
3
T

V
⇒ ∂G0

∂V
= −NskBT

V
. (299)

Le volume et la densité du solvant dépendent a priori de Ns. Mais ils interviennent déjà avec un facteur Ns,
donc on va pouvoir les approcher par leurs valeurs à Ns = 0. On considère V = Vw(P ), le volume du solvant
pur à la pression P , et ρw = Nw/Vw(P ). Alors, on a simplement ∂V/∂Nw|P = V/Nw, et ∂ρw/∂Nw|P = 0 :
à une pression donnée, la densité d’un liquide ne dépend pas de la quantité qu’on en a dans le récipient. On
obtient alors

µw(Nw, Ns, T, P ) = µw(T, P ) − kBT
Ns
Nw

= µw(T, P ) − kBTxs. (300)
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On note xs = Ns/Nw la fraction moléculaire de soluté. Il est frappant que cette expression ne dépend
plus de la nature des interactions entre solvant et soluté, mais seulement de la quantité de
soluté. C’est le signe d’un effet entropique. Le potentiel chimique du solvant représente la
variation d’enthalpie libre de la solution lorsqu’on y ajoute une molécule de solvant (à pression
constante). Le terme −kBTxs correspond à l’augmentation d’entropie du soluté qui a un plus
grand volume accessible quand on ajoute du solvant.

Loi de van’t Hoff. On peut maintenant enfin établir la loi de van’t Hoff ! On avait dans l’état d’équilibre
du tube en U

µw(T, P0, cs = 0) = µw(T, P0 + Π, cs) ⇒ µw(T, P0) = µw(T, P0 + Π) − kBTxs. (301)

On peut écrire

µw(T, P0 + Π) = µw(T, P0) +
∫ P0+Π

P0

dP ∂µ(T, P )
∂P

∣∣∣∣
T

(302)

On se souvient maintenant de la relation de Gibbs-Duhem. En prenant sa forme différentielle, on a

−SdT − V dP +Ndµ = 0 ⇒ ∂µ

∂P

∣∣∣∣
T

= V

N
. (303)

Donc
µw(T, P0 + Π) = µw(T, P0) +

∫ P0+Π

P0

dP V (P )
Nw

(304)

En supposant que la densité du solvant ne dépend pas de la pression dans le domaine de pression considéré,

µw(T, P0 + Π) = µw(T, P0) + ΠV
Nw

. (305)

Finalement, la condition d’équilibre s’écrit

µw(T, P0) = µw(T, P0) + ΠV
Nw

− kBTxs, (306)

soit
Π = kBT

Ns
V

= kBTcs. (307)

VI. Mécanique statistique des réactions chimiques
Nous avons vu que les systèmes chimiques en phase gazeuse ou en solution diluée peuvent être bien

décrits comme des mélanges de gaz parfaits. Dans ce chapitre, nous allons étendre les résultats du chapitre
précédent pour prédire un état d’équilibre chimique à partir de la structure microscopique des molécules en
réaction.

1) Gaz parfait et degrés de liberté internes
Nous avons étudié jusqu’à maintenant des gaz parfaits de particules ponctuelles, qui ont pour seuls degrés

de liberté leur position et leur vitesse. Mais tous les résultats précédents se généralisent à des entités plus
complexes que des particules ponctuelles (typiquement, des molécules), qui, en plus des degrés de liberté de
translation, possèdent des degrés de liberté internes. On adoptera souvent une description classique pour
les premiers et une description quantique pour les seconds. Le micro-état d’une molécule dans l’ensemble
canonique est alors spécifié par la position r et l’impulsion p de son centre de masse et par un ensemble de
nombres quantiques associés aux degrés de liberté internes, que l’on peut ”emballer” dans un seul nombre
quantique ℓ pour ne pas perdre en généralité : C1 = (r,p, ℓ). Pour spécifier le micro-état d’un système de N
molécules, il faut donner le micro-état de chacune d’entre-elles : CN = (r1, . . . , rN ,p1, . . . ,pN , ℓ1, . . . , ℓN ).

Le modèle du gaz parfait suppose l’absence d’interaction entre particules. Cela équivaut à dire que
l’énergie totale peut s’écrire comme une somme des énergies des particules individuelles :

E(CN ) =
N∑
i=1

E(ri,pi, ℓi) =
N∑
i=1

[
p2
i

2m + E(ℓi)
]
. (308)
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Alors, la fonction de partition canonique du système à N particules peut s’écrire comme le produit de
fonctions de partition à une particule :

ZN =
∑
CN

e−βE(CN ) = 1
N !

(∑
C1

e−βE(C1)

)N
= ZN1

N ! ≡ zN

N ! . (309)

Le facteur 1/N ! vient de l’indiscernabilité des N particules. L’énergie libre s’écrit alors

F = −kBT logZN (310)
= −NkBT log z + kBT (N logN −N) (311)
= NkBT (log(N/z) − 1), (312)

où l’on a utilisé la formule de Stirling à la deuxième ligne. On en déduit le potentiel chimique (quantité
cruciale pour la suite) :

µ = ∂F

∂N

∣∣∣∣
V,T

= kBT log N
z
. (313)

On peut maintenant détailler l’expression de z pour séparer la contribution des degrés de liberté de trans-
lation (que l’on connait déjà) et celle des degrés de liberté internes :

z =
∫ drdp

h3

∑
ℓ

e−β(p2/(2m)+E(ℓ)) (314)

=
[∫ drdp

h3 e−β(p2/(2m))
]

︸ ︷︷ ︸
V/Λ3

T

∑
ℓ

e−βE(ℓ)

︸ ︷︷ ︸
zint

. (315)

La fonction de partition à une particule se factorise donc en une contribution translationnelle pure (ztrans =
V/Λ3

T , calculée au chapitre précédent) et une contribution des degrés de liberté internes que l’on note zint.
Dans le cas d’une solution diluée, zint contient également une contribution due aux interactions avec le
solvant (voir calcul de la pression osmotique). On peut alors écrire le potentiel chimique en fonction de la
concentration c = N/V :

µ = kBT log
( c
c◦

)
avec c◦ = zint

Λ3
T

. (316)

2) Constante d’équilibre chimique
Considérons un mélange de n espèces chimiques Ai, en équilibre par rapport à la réaction

n∑
i=1

νiAi = 0, (317)

où les coefficients stoechiométriques νi sont négatifs pour les réactifs et positifs pour les produits. Dans le
cadre de la mécanique statistique, nous étudions ce système dans l’ensemble de Gibbs, où la température,
la pression et les nombres de particules Ni sont fixés. Lorsqu’on met les réactifs en contact, on relâche un
contrainte sur les Ni : ils peuvent varier selon Ni = N0

i + νiξ, où ξ est l’avancement de la réaction et les
N0
i sont les nombres de particules initiaux. On cherche à déterminer ξ (et donc les Ni) dans le nouvel état

d’équilibre. A T et P constantes, on obtient l’état d’équilibre en minimisant l’enthalpie libre :

∂G

∂ξ

∣∣∣∣
T,P

= 0. (318)

Remarque. En réalité, les Ni ne sont pas fixés dans l’état d’équilibre chimique : ils peuvent fluctuer
autour de leur valeur moyenne. On choisit cependant de faire les calculs dans l’ensemble de Gibbs où les Ni
sont fixés. On obtiendra à la fin une relation entre coordonnées thermodynamiques qui est toujours vraie
en vertu de l’équivalence des ensembles.

En partant de la définition thermodynamique G = U + PV − TS, on trouve

dG = −SdT − V dP +
n∑
i=1

µidNi = −SdT − V dP +
n∑
i=1

νiµidξ. (319)
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Donc
∂G

∂ξ

∣∣∣∣
T,P

=
n∑
i=1

νiµi = 0 à l’équilibre. (320)

En utilisant l’expression (316) pour le potentiel chimique d’un système de type gaz parfait,

n∑
i=1

νiµi = 0 ⇔
n∑
i=1

νikBT log
(
ci
c◦
i

)
= 0 (321)

⇔ kBT log
( ∏n

i=1 c
νi
i∏n

i=1(c◦
i )νi

)
= 0 (322)

⇔
n∏
i=1

cνi
i =

n∏
i=1

(c◦
i )νi ≡ K◦(T ). (323)

On a démontré ainsi la loi d’action des masses, qui stipule qu’à l’équilibre chimique
∏
i c
νi
i est égal à une

constante (la constante d’équilibre K◦(T )) qui ne dépend que de la température. On a également obtenu
une expression de la constante d’équilibre en termes des fonctions de partition à une molécule des espèces
en réaction :

K◦(T ) =
n∏
i=1

(zi
V

)νi

=
n∏
i=1

(
[zint]i

Λ3
i

)νi

. (324)

Remarque. La loi d’action des masses n’est valide que pour des systèmes chimiques pouvant être décrits
comme un mélange de gaz parfaits. Si ce n’est pas le cas, on introduit les activités des espèces chimiques,
qui viennent remplacer les concentrations dans l’Eq. (323).

Pour exploiter cette expression, on doit s’intéresser à la fonction de partition zint associée aux degrés de
liberté internes d’une molécule.

3) Fonction de partition interne
Les degrés de liberté internes des molécules sont étudiés en détail dans le cours de Spectroscopie. Ici, on se

limitera à des considérations très simples sur les degrés de liberté électroniques, rotationnels et vibrationnels.
On négligera les couplages entre vibration et rotation, les rotations internes, ainsi que les effets de spin
nucléaire. Dans ce cas, les degrés de liberté se traitent de façon indépendante :

zint = zelec · zrot · zvib. (325)

a) Cas limites en température

On a vu que, de façon générale, la fonction de partition interne s’écrit

zint =
∑
ℓ

e−βEℓ . (326)

Ce somme pourra se simplifier dans deux cas limites :
• Si l’écart typique en énergie entre les états ℓ est très grand devant kBT , la somme est dominée par

l’état ℓ de plus basse énergie :
zint ≈ g0e

−βE0 , (327)

où g0 est la dégénérescence de l’état fondamental.
• Si l’écart en énergie typique entre les états ℓ est très petit devant kBT , on peut approcher la somme

par une intégrale :
zint ≈

∫ ∞

0
dϵ ρ(ϵ)e−βϵ, (328)

où ρ(ϵ) est la densité d’états à l’énergie ϵ.
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b) Fonction de partition électronique

Les écarts entre niveaux d’énergie électroniques dans une molécule est de l’ordre de plusieurs dizaines
de fois kBT à température ambiante : nous sommes donc dans le premier cas limite. Par ailleurs, l’état
fondamental électronique n’est en général pas dégénéré. Alors,

zelec = e−βE0 . (329)

Remarque. Il y aura une dégénérescence de l’état fondamental pour des molécules ayant des électrons
non-appariés : NO,NO2,O2, etc.

c) Fonction de partition rotationnelle

On étudiera seulement le cas d’une molécule linéaire pouvant être décrite comme un rotateur rigide,
dont les niveaux d’énergie sont donnés par

Eℓ = ℓ(ℓ+ 1) ℏ2

8π2I
, (330)

avec I le moment d’inertie de la molécule et ℓ ∈ N. Chacun des niveaux est 2ℓ+ 1 fois dégénéré. La fonction
de partition correspondante s’écrit

zrot =
∞∑
ℓ=0

(2ℓ+ 1)e−ℓ(ℓ+1) ℏ2
8π2IkBT . (331)

Pour simplifier cette expression, on définit la température rotationnelle Θrot = ℏ2/(8π2IkB). Alors

zrot =
∞∑
ℓ=0

(2ℓ+ 1)e−ℓ(ℓ+1)Θrot/T . (332)

Pour la plupart des molécules, Θrot ∼ 0.1 − 1 K. Même pour des molécules ayant un petit moment d’inertie,
elle reste inférieure à la température ambiante (pour H2, Θrot = 87.6 K). Vu que kBΘrot représente l’écart
en énergie typique entre deux niveaux rotationnels, nous sommes dans le deuxième cas limite et la somme
peut être approchée par une intégrale :

zrot =
∫ ∞

0
dℓ (2ℓ+ 1)e−ℓ(ℓ+1)Θrot/T (333)

=
∫ ∞

0
dℓ (2ℓ+ 1)e−(ℓ2+ℓ+1/4−1/4)Θrot/T (334)

= eΘrot/(4T )
∫ ∞

0
dℓ (2ℓ+ 1)e−(ℓ+1/2)2Θrot/T (335)

= eΘrot/(4T ) T

Θrot

∫ ∞

0
dℓ d

dℓ

[
−e−(ℓ+1/2)2Θrot/T

]
(336)

= eΘrot/(4T ) T

Θrot

[
e−(ℓ+1/2)2Θrot/T

]0

+∞
(337)

zrot = T

Θrot
. (338)

Pour une molécule linéaire possédant un plan de symétrie (comme H2,CO2,C2H2) cette expression doit être
corrigée par un facteur de symétrie σ = 2 :

zrot = 1
σ

T

Θrot
. (339)

Ce résultat ce généralise à une molécule non-linéaire ayant trois axes principaux de rotation A, B et C. On
trouve

zrot =
√
π

σ

[
T

Θrot,A
· T

Θrot,A
· T

Θrot,A

]1/2
, (340)

où le facteur de symétrie σ dépend du groupe de symétrie ponctuelle de la molécule.
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d) Fonction de partition vibrationnelle

Les degrés de liberté vibrationnels d’une molécule se décrivent comme M oscillateurs harmoniques
indépendants, chacun ayant sa pulsation propre ωi. Les niveaux d’énergie correspondants sont

Ein = ℏωi
(
n+ 1

2

)
, n ∈ N. (341)

Pour une molécule constituée de N atomes, le nombre de modes vibrationnels est M = 3N − 5 si elle est
linéaire et M = 3N − 6 si elle n’est pas linéaire. La fonction de partition vibrationnelle s’écrit alors

zvib =
M∏
j=1

∞∑
nj=0

e−βℏωj(nj+1/2). (342)

Comme pour les rotations, on définit une température caractéristique pour chaque mode j : Θj,vib = ℏωj/kB.
Ces températures vibrationnelles peuvent être de l’ordre de la température ambiante, donc on est dans
aucun des cas limites. Cependant, les sommes peuvent se calculer directement en reconnaissant une série
géométrique :

zvib =
M∏
j=1

e−Θj,vib/(2T )
∞∑

nj=0

(
e−Θj,vib/T

)nj

(343)

=
M∏
j=1

e−Θj,vib/(2T )

1 − e−Θj,vib/T
. (344)

4) Exemple : substitution isotopique
Les détails de l’exemple ne sont pas à connâıtre, mais des raisonnements similaires pourront être de-

mandés à l’examen.
Les résultats ci-dessus permettent en principe de calculer la constante d’équilibre d’une réaction chimique

arbitraire à partir de données spectroscopiques. Ils sont particulièrement intéressants dans les cas spéciaux
où l’on peut tirer des conclusions qualitatives avec peu de données, comme les réactions d’échange isotopique.
Considérons par exemple la réaction en phase gazeuse

H2 + D2 = 2HD. (345)

A l’équilibre, les concentrations des gaz vérifient

[HD]2

[H2][D2] = K◦(T ). (346)

On peut également exprimer la loi d’action des masses en fonction des pressions partielles, obtenues par un
gaz parfait A comme PA = kBT [A] :

P 2
HD

PH2PD2

= K◦(T ). (347)

En vertu de l’approximation de Born-Oppenheimer, l’énergie de l’état fondamental électronique est la même
pour H2, D2 et HD. Les constantes de force associées aux degrés de liberté vibrationnels sont également
inchangées. La formule (324) nous donne donc

K◦(T ) =
(

ΛH2ΛD2

Λ2
HD

)3 z2
HD,rotz

2
HD,vib

zH2,rotzD2,rotzH2,vibzD2,vib
. (348)

On va pouvoir faire un grand nombre de simplifications grâce aux relations simples entre les masses des
réactifs et des produits :

mH2 = 2mH, mD2 = 4mH, mHD = 3mH. (349)

Par ailleurs, pour les masses réduites

µH2 = 1
2mH, µD2 = mH, µHD = 2

3mH. (350)
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On en déduit (
ΛH2ΛD2

Λ2
HD

)3
=
(

m2
HD

mH2mD2

)3/2

=
(

32m2
H

2mH · 4mH

)3/2

=
(

9
8

)3/2
. (351)

Pour la contribution rotationnelle,

z2
HD,rot

zH2,rotzD2,rot
= T/ΘHD,rot

(T/(2ΘH2,rot))(T/(2ΘD2,rot))
= 4ΘH2,rotΘD2,rot

ΘHD,rot
, (352)

en prenant bien en compte les facteurs de symétrie. Or la température rotationnelle est inversement pro-
portionnelle au moment d’intertie I = µr2, où r est la distance inter-atomique. Donc

z2
HD,rot

zH2,rotzD2,rot
= 4 µ2

HD
µH2µD2

= 4 1/2
(2/3)2 = 32

9 . (353)

Pour la contribution vibrationnelle,

z2
HD,vib

zH2,vibzD2,vib
=

(
e−ΘHD,vib/(2T )

1−e−ΘHD,vib/T

)2

e
−ΘH2,vib/(2T )

1−e−ΘH2,vib/T
e

−ΘD2,vib/(2T )

1−e−ΘD2,vib/T

(354)

= (1 − e−ΘH2,vib/T )(1 − e−ΘD2,vib/T )
(1 − e−ΘHD,vib/T )2 e(−ΘHD,vib+ΘH2,vib/2+ΘD2,vib/2)/T . (355)

Or Θvib = ℏω/kB ∝ µ−1/2, donc Θvib,HD = (3/4)1/2Θvib,H2 et Θvib,D2 = (1/2)1/2Θvib,H2 . Par ailleurs,
Θvib,H2 = 6215 K, donc on peut considérer 1 − e−ΘH2,vib/T ≈ 1. Finalement,

K◦(T ) = 4
(

9
8

)1/2
e−0.013·ΘH2,vib/T = 4.24 × e−78/T (K). (356)

On trouve que la réaction est exothermique (la constante d’équilibre décroit avec la température) du fait de
la différence d’énergies de point zéro vibrationnelles entre les réactifs et les produits. La constante d’équilibre
est augmentée (facteur 4) du fait de la diminution de symétrie rotationnelle entre les réactifs et les produits.

VII. Mécanique statistique aux interfaces
1) Isothermes d’absorption
a) Définitions

Figure 1 – Illustration du processus d’ad-
soprtion : un adsorbant solide peut piéger
des molécules de gaz à sa surface. Adapté
de [DGLR].

L’adsorption désigne l’accumulation d’une espèce chimique
à une interface. Souvent, il s’agit d’une interface solide-liquide
et solide-gaz. Dans ce cas, le solide est appelé adsorbant et
une molécule adsorbée est appelée adsorbat. On distingue deux
types de phénomènes d’adsorption selon la force de l’interac-
tion adsorbant-adsorbat :

• Si l’adsorbat forme une liaison covalente avec l’adsor-
bant, l’énergie d’interaction est de l’ordre de plusieurs
eV et on parle de chimisorption.

• Si l’adsorbat ne forme pas de liaison covalente avec l’ad-
sorbant, l’énergie d’interaction (due principalement aux
forces de van der Waals) est de l’ordre de quelques di-
zaines de meV et on parle de physisorption.

Une molécule physisorbée peut en général diffuser sur la sur-
face, alors qu’une molécule chimisorbée reste fixe. Les modèles
étudiés dans ce chapitre peuvent s’appliquer à la fois à la chi-
misroption et à la physisorption.

On caractérise un processus d’adsorption par le nombre
Nads de molécules adsorbées pour des valeurs données de
température et de pression. La courbe Nads(P ) à T fixée s’ap-
pelle une isotherme d’adsorption. Il existe trois méthodes principales pour la mesure d’une isotherme d’ad-
sorption :
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• Méthode gravimétrique : l’adsorbant est placé sur une balance. On mesure sa variation de masse en
fonction de la pression de gaz appliquée.

• Méthode volumétrique : l’adsorbant est placé dans une enceinte hermétique. On mesure le volume de
gaz qu’il faut y introduire pour obtenir une pression donnée.

• Microbalance à cristal de quartz (ou QCM, pour Quartz Crystal Microbalance) : l’adsorbant est placé
sur un cristal de quartz piezoélectrique. On mesure la fréquence de résonance du cristal, très sensible
à la masse qu’il supporte, en fonction de la pression de gaz appliquée.

La comparaison d’une isotherme d’adsorption expérimentale à un modèle théorique permet de déduire
des informations sur la structure de l’adsorbant et les interactions en jeu dans le processus d’adsorption.
Une de ces informations est la surface spécifique de l’adsorbant, exprimée en m2/kg : c’est la surface
effectivement disponible à l’adsorption par unité de masse de l’adsorbant (qui se présente souvent sous
forme de poudre). C’est une caractéristique très importante pour la catalyse hétérogène : on souhaite en
général qu’un catalyseur ait la plus grande surface spécifique possible. Nous allons étudier ci-dessous deux
modèles d’adsorption, et voir comment ils peuvent être utilisés pour déterminer une surface spécifique.

b) Modèle de Langmuir

On considère un adsorbant solide en équilibre avec une gaz moléculaire à pression P et température T .
On suppose que le solide possède M sites, considérés comme indépendants, chacun susceptible d’adsorber
une molécule du gaz. Les molécules adsorbées constituent un système en situation grand-canonique : leur
nombre Na peut fluctuer, mais le gaz avec lequel elles sont en équilibre impose leur impose la température T
et le potentiel chimique µ. On cherche à déterminer le nombre moyen de molécules adsorbées, qui s’exprime
en fonction de la fonction de partition grand-canonique :

Ξ =
∑

C
e−β(E(C)−µNa(C)) ⇒ ⟨Na⟩ = 1

β

∂ log Ξ
∂µ

. (357)

Les sites étant indépendants et discernables, un micro-état du système est déterminé par la donnée des
micro-états de chacun des sites : C = (n1, C1, . . . , nM , CM ), où ni = 0 ou 1 selon si une molécule est adsorbée
ou non sur le site i et Ci est le micro-état de la molécule sur le site i, si celle-ci est présente. Les énergies
sont également additives entre les sites : E(C) =

∑M
i=1 niE(Ci). La grande fonction de partition se factorise

donc selon

Ξ =
∑
n1,C1

· · ·
∑

nM ,CM

e−β
∑M

i=1
ni(E(Ci)−µ) =

∑
n1,C1

e−βn1(E(C1)−µ) · · ·
∑

nM ,CM

e−βnM (E(CM )−µ) ≡ ξM , (358)

où l’on a noté ξ la grande fonction de partition d’un site. Sans perte de généralité, on peut adopter une
description quantique pour les degrés de liberté de la molécule adsorbée : son micro-état est représenté par
une nombre quantique ℓ et l’énergie correspondante est Eℓ. La fonction de partition d’un site s’écrit alors

ξ =
∑
n=0,1

∑
ℓ

e−βn(Eℓ−µ) = 1 + eβµ
∑
ℓ

e−βEℓ ≡ 1 + eβµza(T ), (359)

où l’on a défini la fonction de partition canonique d’un adsorbat, za(T ). Nous pouvons ainsi calculer la
fraction adsrobée θ ≡ ⟨Na⟩/M :

θ = 1
βM

∂ log Ξ
∂µ

= 1
β

∂ log ξ
∂µ

= eβµza(T )
1 + eβµza(T ) . (360)

On se souvient maintenant que le potentiel chimique d’un gaz parfait moléculaire s’écrit

µ = kB log
( c
c◦

)
= kBT log

(
NΛ3

T

V zint(T )

)
= kBT log

(
P

kBT

Λ3
T

zint(T )

)
, (361)

où zint est la fonction de partition interne d’une molécule. On obtient alors l’isotherme de Langmuir :

θ(P ) = PKL

1 + PKL
, avec KL = Λ3

T

kBT

za(T )
zint(T ) . (362)

L’expression de KL n’est pas à connaitre par coeur, mais il faut savoir la redémontrer. On observe que :
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Figure 2 – Isothermes d’adsorption de Langmuir pour différentes valeurs de KL. Ici KL est normalisée par
P−1

0 = K0
L. Adapté de [BGK].

• A basse pression, on a une relation linéaire entre fraction adsrobée et pression : θ ≈ PKL. C’est en
fait le résultat donné par un modèle plus simple – celui de Henry.

• Il y a une saturation à haute pression (θ ≈ 1), car tous les sites sont alors occupés.
• La constante de Langmuir KL peut-être approximativement reliée à la chaleur d’adsorption Qa, c’est-

à-dire la différence entre l’énergie moyenne ϵg d’une molécule de gaz et l’énergie ϵa d’une molécule
adsorbée, qui est une quantité accessible expérimentalement. On suppose pour cela que les degrés
de liberté internes (vibrations, rotations) d’une molécule ne sont pas affectés par le processus d’ad-
sorption, ou alors qu’ils contribuent suffisamment peu à la fonction de partition pour pouvoir écrire
za(T ) ≈ zint(T )z−βϵa , où ϵa est l’énergie d’interaction entre la molécule et l’adsrobant. Dans ce cas,
on a

KL = K0
L e

βQa , (363)

avec K0
L = βΛ3

T e
βϵg . Plus la chaleur d’adsorption est élevée (l’adsorption est énergétiquement favo-

rable), plus la constante de Langmuir est grande et plus la fraction adsorbée est grande à une pression
donnée.

c) Modèle BET et surface spécifique

Le modèle de Langmuir est attrayant par sa simplicité, mais il est souvent insuffisant pour décrire les
expériences. En effet, il ne prend pas en compte la possibilité pour les molécules de former plusieurs couches
à la surface de l’adsorbant. Une telle possibilité est introduite dans le modèle développé par Brunauer,
Emmett et Teller en 1938 : ils ont donné leurs noms à l’isotherme BET dont nous établissons maintenant
l’expression.

Figure 3 – Schéma du modèle BET, autorisant la formation de plusieurs couches adsorbées. Source :
Wikipédia.

Le modèle BET est en fait une extension directe du modèle de Langmuir. La grande fonction de partition
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de la phase adsorbée s’écrit toujours
Ξ = ξM , (364)

où ξ est la fonction de partition d’un site. Cependant, un site peut désormais accueillir un nombre arbitraire
de molécules :

ξ = 1 +
∞∑
n=1

eβµnZn(T ), (365)

où Zn(T ) est la fonction de partition canonique d’une ”châıne” de n molécules adsorbées. BET supposent
que ces n molécules sont indépendantes :

Zn(T ) =
n∏
i=1

zia(T ), (366)

où zia(T ) est la fonction de partition d’un molécule dans la ième couche adsrobée. Ils supposent par ailleurs
que les fonctions de partition moléculaires sont identiques à partir de la deuxième couche adsorbée : en effet,
à partir de la deuxième couche, un adsorbat n’est en contact qu’avec d’autres adsorbats. Alors

Zn(T ) = z1
a(T )[z2

a(T )]n−1 (367)

Ainsi, on peut calculer la grande fonction de partition en sommant la série géométrique, supposant qu’elle
converge :

ξ = 1 +
∞∑
n=1

eβµnz1
a(T )[z2

a(T )]n−1 (368)

= 1 + eβµz1
a(T )

∞∑
n=1

eβµ(n−1)[z2
a(T )]n−1 (369)

= 1 + eβµz1
a(T )

∞∑
n=0

(
eβµz2

a(T )
)n (370)

= 1 + eβµz1
a(T )

1 − eβµz2
a(T ) . (371)

On en déduit θ = ⟨Na⟩/M , qui correspond ici au nombre de molécules adsorbées normalisé par le nombre
maximal de molécules pouvant être contenu dans une monocouche :

θ = 1
β

∂ log ξ
∂µ

= z1
ae
βµ

(1 − eβµz2
a)(1 + eβµ(z1

a − z2
a)) . (372)

Le calcul est à savoir refaire jusqu’à ce point. Si nécessaires, les expressions des constantes C et P0 seront
données.

On reprend maintenant l’expression (361) du potentiel chimique du gaz parfait :

µ = kBT log
(

P

kBT

Λ3
T

zint(T )

)
⇒ eβµ = P

kBT

Λ3
T

zint(T ) . (373)

Il fait alors sens de poser

P0 = zint(T )
z2
a(T )

kBT

Λ3
T

et C = z1
a(T )
z2
a(T ) , (374)

et on obtient ainsi l’expression de l’isotherme BET :

θ(P ) = C

(1 − P/P0)(1 + (C − 1)P/P0)
P

P0
. (375)

L’expression de l’isotherme BET n’est pas à connaitre par coeur, mais il faut savoir commenter l’ex-
pression et la signification des paramètres. On voit que θ(P ) diverge quand P = P0 : c’est cohérent avec
la condition de convergence de la série géométrique qui peut s’exprimer comme P/P0 < 1. Physiquement,
quand P = P0, le gaz se condense sous forme d’un liquide à la surface du solide : P0 correspond donc à la pres-
sion de vapeur saturante du liquide adsorbé. Sous les mêmes hypothèses que dans le paragraphe précédent,
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la constante C peut s’exprimer en fonction de quantités thermodynamiques : la chaleur d’adsoprtion Qa et
la chaleur de condensation de l’adsorbat Qc :

C = eβ(Qa−Qc). (376)

La chaleur de condensation correspond à la différence d’énergie moyenne entre une molécule de gaz et
une molécule du liquide adsorbé (molécule adsorbée dans la deuxième couche ou au-delà). Pour C > 1,
l’isotherme BET est concave : la première couche s’adsorbe facilement mais les couches suivantes s’adsorbent
difficilement. Pour C < 1, l’isotherme BET est convexe, car l’adsorption des couches de liquide est alors
plus facile que l’adsorption de la première couche.

Figure 4 – Isothermes BET pour différentes valeurs de C, et comparaison à des données expérimentales
d’adsorption de l’eau sur l’alumine et la silice. Source : [BGK].

En ajustant une isotherme d’adsorption expérimentale avec le modèle BET, on obtient donc de nom-
breuses informations sur les interactions microscopiques des molécules avec l’adsorbant et entre elles. L’une
de ces informations est la surface spécifique de l’adsorbant – très utile en pratique – nous explicitons donc ici
comment l’obtenir. Avec nos notations, la surface spécifique est Σ = Mσ2/m, où σ2 est la surface occupée
par une molécule adsorbée et m est la masse d’adsorbant. La donnée obtenue dans une expérience n’est pas
directement θ, mais plutôt le volume Va de gaz adsorbé en fonction de la pression. On a θ = Va/Vm, où Vm
est le volume d’une monocouche de gaz adsorbé. On peut alors réarranger l’équation BET pour obtenir

P/P0

Va(1 − P/P0) = C − 1
VmC

P

P0
+ 1
VmC

. (377)

La courbe représentant la quantité dans le membre de gauche en fonction de P/P0 est une droite dont le
pente est (C− 1)/(VmC) et l’ordonnée à l’origine est 1/(VmC) – on peut donc l’ajuster pour déterminer Vm
et C. On détermine ensuite le nombre de molécules dans une monocouche d’adsrobat par M = Vm/v, où v
est le volume moléculaire du gaz, et enfin la surface spécifique selon

ΣBET = Vmσ
2

vm
. (378)

2) Tension de surface
La tension de surface est une coordonnée thermodynamique que l’on peut définir pour tout système

possédant une interface. C’est une notion cruciale pour l’étude des émulsions, poudres, milieux poreux,
ainsi que de tous les systèmes impliquant des gouttes : surfaces déperlantes, impression, etc.

a) Définition et origine

Pour un système possédant une interface (comme ceux étudiés au paragraphe précédent), l’aire A de
cette interface est une coordonnée thermodynamique. On définit la force conjuguée de A selon
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γ = ∂F

∂A

∣∣∣∣
T,V,N

. (379)

γ est la tension de surface ou tension superficielle associée à l’interface considérée. La différentielle de
l’énergie libre s’écrit alors

dF = −SdT − PdV + µdN + γdA. (380)

γdA représente donc le coût en énergie (libre) pour augmenter l’aire de l’interface de dA à volume fixé. γ
est une énergie par unité de surface. Dans tous les cas pratiques, il y a bien un coût énergétique à créer
une interface. En effet, une interface sépare en général une phase gazeuse d’une phase condensée (solide
ou liquide), ou alors deux phases condensées. Les particules d’une phase condensée ont des interactions
attractives avec leurs plus proches voisines. En créant de l’interface, on amène des particules qui étaient dans
le volume en surface, où elles ont moins de voisines de la même phase – on déstabilise donc énergétiquement
le système. Si la création d’une interface entre deux phases abaisse l’énergie libre du système, les deux phases
sont miscibles et il ne peut y avoir d’interface.

Pour formaliser cet argument, considérons deux verres de volume V/2 remplis de liquide, dont les surfaces
libres, chacune d’aire A, sont exposées à l’air, alors qu’une surface d’aire A′ est en contact avec le verre.
Leur énergie libre totale vaut

F2 = 2(F (N/2, V/2, T ) + γLAA+ γSLA
′), (381)

où F est l’énergie libre du liquide sans interface, et γLA et γSL sont respectivement les tensions de surface
liquide-air et verre-liquide. Si maintenant on ”fusionne” les deux verres pour former une enceinte fermée de
volume V , l’énergie libre vaut

F1 = F (N,V, T ) + 2γSLA
′ = 2F (N/2, V/2, T ) + 2γSLA

′, (382)

par extensivité de l’énergie libre ; on en déduit que F2 − F1 = 2γLAA.

Eau

Eau

Eau

Figure 5 – ”Fusion” de deux verres d’eau.

Par ailleurs, on peut écrire qu’en fusionnant les deux verres,
on a gagné l’énergie d’interaction entre les molécules de liquide
qui étaient auparavant en contact avec l’air :

F2 − F1 ≈ U2 − U1 ≈ A

σ2 ϵ (383)

où σ est une taille moléculaire et ϵ l’énergie d’interaction ty-
pique entre deux molécules : A/σ2 représente alors le nombre
de molécules à l’interface. On en déduit, en ordre de grandeur,

γLA ∼ ϵ

2σ2 . (384)

➢ La taille d’une molécule d’eau est σ ∼ 0.3 nm et l’énergie de cohésion moléculaire peut être estimée
comme ϵ ∼ kBTvap avec Tvap = 100◦C. On estime alors la tension de surface eau-air à γ ∼ 100 mN/m, ce
qui est très proche de la valeur mesurée γ = 72 mN/m.

➢ Le raisonnement en ordre de grandeur est toujours valide pour une interface solide-air. L’estimation
quantitative dépend alors fortement du type de solide. Pour des solides dont la cohésion est assurée par des
liaisons ioniques, covalentes ou métalliques, ϵ ∼ 1 eV et γ ∼ 500 − 5000 mN/m : on parle de surfaces de
haute énergie. Pour des solides dont la cohésion est assurée par des interactions de van der Waals (tels que
les matériaux polymères), ϵ ∼ kBT et γ ∼ 10 − 50 mN/m. On parle de surfaces de basse énergie.

Figure 6 – Etirement d’un film liquide.

Pourquoi parle-t-on de tension de surface ? On peut en fait
interpréter γ comme une force par unité de longueur (ce qui
explique aussi le choix des N/m plutôt que J/m2 comme unité
conventionnelle). Pour le voir, on peut imaginer une expérience
où l’on maintient en équilibre un film liquide de accroché à un
barreau cylindrique de longueur L (Fig. 7), et on suppose qu’il
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faut lui appliquer pour cela une force K = Kex. Lorsqu’on
augment la longueur du film de dx, on incrémente les aires de
chacune des interfaces par Ldx, et donc l’énergie libre varie
de dF = 2γLdx. Or, à température constante, on a aussi que
dF = dU − TdS (comme F = U − TS). Par ailleurs, le premier principe donne

dU = δW + δQ = Kdx+ TdS (385)

si l’on suppose la transformation réversible. En regroupant, on obtient la force appliquée par l’opérateur :

K = 2γL. (386)

Une interface tire donc sur ses frontières latérales avec une force par unité de longueur γ : l’interface se
comporte véritablement comme une membrane élastique sous tension. Une première conséquence est que
des objets suffisamment légers (comme les araignées d’eau) peuvent flotter sur l’eau sans percer la surface.
Considérons en effet pour simplifier une boule de rayon R et de masse m posée sur une surface d’eau. Son
poids mg lui fait déformer la surface, qui résiste avec une force qui est au maximum de l’ordre de 2πRγ. Il
y a donc flottaison tant que

mg

R
≲ 2πγ. (387)

Pour une araignée d’eau, R ∼ 0.1 mm et m ∼ 5 mg, ce qui donne mg/R ∼ 500 mN/m – pile à la limite de
flottaison.

b) Mouillage et capillarité

Figure 7 – Mouillage total, partiel et angle
de contact.

On parle de mouillage pour désigner la façon dont se com-
porte une goutte de liquide L déposée à la surface d’un solide
S. On distingue deux situations :

• Mouillage total : le liquide s’étale complètement jusqu’à
former un film d’épaisseur moléculaire.

• Mouillage partiel : la goutte se stabilise avec un angle
de contact θ non nul.

La transition entre ces deux comportements est déterminée par
le coefficient d’étalement

S = γSA − (γSL + γLA), (388)

qui correspond à la différence d’énergie libre par unité de sur-
face entre un solide sec et un solide recouvert d’un film li-
quide. Il y a mouillage total pour S > 0 et mouillage par-
tiel pour S < 0. Souvent, il y a mouillage total pour les sur-
faces de ”haute énergie” définies plus haut (comme les surfaces
métalliques) et mouillage partiel pour les surfaces de ”basse
énergie”.

Dans le cas de mouillage partiel, l’angle de contact est
déterminé par l’équilibre des forces agissant sur la ligne de
contact. Ces forces sont les trois tensions de surface qui tirent
sur leurs interfaces respectives. En projetant le long de l’inter-
face, on obtient la loi de Young-Dupré :

γLA cos θ = γSA − γSL. (389)

On peut la réécrire en fonction du coefficient d’étalement

S = γLA(cos θ − 1), (390)

et on voit alors que l’angle de contact ne peut être défini que si S < 0 (S = 0 correspond à θ = 0).
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Figure 8 – Surfaces hydrophiles et hydro-
phobes.

On caractérise les solides selon l’angle de contact adopté
par une goutte d’eau à leur surface :

• Si θ < π/2, on parle d’un solide hydrophile. Cela corres-
pond en effet à γSA > γSL : le solide abaisse son énergie
de surface dans la région couverte par le liquide.

• Si θ > π/2, on parle d’un solide hydrophobe. Cela cor-
respond en effet à γSA < γSL : le solide paye un coût en
énergie de surface dans la région couverte par le liquide.

Par abus de langage, on utilise souvent les termes hydrophile
et hydrophobe même si le liquide n’est pas l’eau.

Les gouttes ont des formes de calottes sphériques si elles
sont suffisamment petites pour que leur poids soit négligeable
devant les forces de tension de surface (aussi appelées forces
capillaires). Au-delà d’une certaine taille ℓc, les gouttes sont
aplaties sous l’effet de leur poids. Pour une goutte de rayon R
d’un liquide de masse volumique ρ, l’énergie potentielle de pesanteur est de l’ordre de ρR3gR, alors que
l’énergie de surface est de l’ordre de γR2 (γ = γLA). Si les énergies de pesanteur et de surface sont du même
ordre de grandeur pour R ∼ ℓc, on trouve

ℓc =
√

γ

ρg
. (391)

ℓc s’appelle la longueur capillaire. Pour l’eau à température ambiante, ℓc = 2.7 mm.

Figure 9 – Ascension capillaire d’un li-
quide dans un tube de rayon R.

Au contact d’une paroi solide verticale, un liquide forme un
ménisque : le ménisque monte si la paroi est hydrophile et des-
cend si la paroi est hydrophobe. On peut montrer que la taille
typique du ménisque est donnée par la longueur capillaire.
Lorsqu’on plonge dans un liquide un tube fait en matériau hy-
drophile, le liquide remonte dans le tube. C’est le phénomène
d’ascension capillaire, qui permet notamment la montée de
la sève jusqu’au feuillage des arbres. On peut déterminer la
hauteur de montée h dans un tube de rayon R en minimisant
l’énergie libre du système par rapport à h. On a

F (h) − F (0) = A(h) · (γSL − γSA)︸ ︷︷ ︸
gain d’énergie de surface

+ m(h) · g · h2 ,︸ ︷︷ ︸
énergie de pesanteur

(392)

où A(h) est l’aire de l’interface solide-liquide et m(h) la masse
de liquide dans le tube (dont le centre de gravité se trouve en
h/2). On a A(h) = 2πRh et m(h) = ρπR2h, où ρ est la masse volumique du liquide. Finalement,

F (h) − F (0) = 2πRh · (γSL − γSA) + 1
2ρπR

2h2, (393)

et la condition ∂F/∂h = 0 à l’équilibre nous donne

h = 2(γSA − γSL)
ρRg

= 2γLA cos θ
ρRg

. (394)

Ce résultat s’appelle la loi de Jurin de l’ascension capillaire. Elle dit que la hauteur de montée est d’autant
plus importante que le tube est fin et que sa paroi est hydrophile. A noter, cependant, que même si la paroi
est complètement mouillante, le liquide ne monte pas à l’infini : on a alors θ = 0 et h = 2γLA/(ρR).

c) Tensioactifs et micelles

La tension de surface est donc une propriété très importante pour un liquide, qui contrôle les effets de
mouillage et de capillarité. Comment peut-on la contrôler ? Nous avons deux principaux leviers à disposition :
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• La température. En général, une tension de surface liquide-air diminue quand la température aug-
mente.

• La composition chimique. Lorsqu’on ajoute un soluté à un solvant, la solution résultante peut avoir
une tension de surface plus ou moins élevée que le solvant pur, selon le soluté. Par exemple, un
mélange eau-éthanol a une tension de surface plus faible que l’eau pure.

Les tensioactifs ou surfactants (surfactants en anglais) sont des molécules très efficaces pour réduire la
tension de surface d’une solution aqueuse. Ce sont des molécules amphiphiles, c’est-à-dire qu’elles une tête
hydrophile et une queue (chaine carbonée) hydrophobe (Fig. 13). Ces molécules ont un avantage énergétique
considérable à se placer à l’interface eau-air (par rapport à une dissolution complète dans l’eau) : en effet,
elles peuvent alors avoir leur tête qui pointe dans l’eau et leur queue qui pointe dans l’air.

Figure 10 – Quelques structures moléculaires de tensioactifs et quelques formes possibles de micelles.

Figure 11 – Séparatrice de Gibbs.

Nous allons déterminer l’évolution de la tension de surface
en fonction de la concentration de tensioactif en solution. On
l’obtient simplement à partir de la relation de Gibbs-Duhem
pour la surface, mais encore faut-il savoir ce que l’on entend
par ”surface”. Microscopiquement, à une interface liquide-gaz,
la densité ne change pas de façon abrupte : on passe de la den-
sité du liquide à sa vapeur sur une échelle de quelques tailles
moléculaires. Cependant, on peut placer une séparation ima-
ginaire à une côte arbitraire z = zG. Cette surface s’appelle
la séparatrice de Gibbs (Gibbs dividing surface). On définit le
nombre de molécules en surface pour une espèce chimique i
comme

Ns
i = Ni −N l

i −Ng
i , (395)

où N l
i (Ng

i ) est le nombre de molécules qu’aurait un liquide
(gaz) homogène s’étendant jusqu’à z = zG. Plus simplement,
c’est le nombre de molécules de i ”en trop” à droite de zG moins le nombre de molécules ”manquantes” à
gauche de zG. Selon le choix de zG, ce nombre peut être positif ou négatif. On définit également l’excès de
surface Γi = Ni/A. Avec ces définitions, on peut traiter l’interface comme tout autre système thermodyna-
mique et écrire sa relation de Gibbs-Duhem :

U = TS + γA+ µsNs + µwNw, (396)

où µs et µw sont les potentiels chimiques du tensioactif et du solvant et Ns, Nw sont les nombres de
molécules en surface respectifs. Par rapport à la version en volume, le terme −PV est remplacé par γA (le
signe change car la pression ”pousse”, alors que la tension de surface ”tire”). On sait par ailleurs (identité
thermodynamique fondamentale), que

dU = TdS + γdA+ µsdNs + µwdNw. (397)

Donc, en différentiant l’Eq. (396), on obtient

0 = Adγ +Nsdµs +Nwdµw, (398)
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soit, en introduisant les excès de surface Γi = Ni/A,

−dγ = Γsdµs + Γwdµw. (399)

Ce résultat est vrai peu importe la position zG de la séparatrice de Gibbs. On peut donc fixer zG de façon
à ce que l’excès de surface du solvant soit nul : Γw = 0. On a alors dγ = −Γsdµs. Or, le potentiel chimique
du tensioactif en surface doit être égal à son potentiel chimique en solution. Pour une solution suffisamment
diluée, ce potentiel chimique a une expression du type gaz parfait :

µs = kBT log(cs/c◦). (400)

On en déduit
∂γ

∂ log cs

∣∣∣∣
T,P

= −kBTΓs. (401)

Cette équation, qui donne la variation de la tension de surface en fonction de la concentration de tensioactif,
s’appelle l’isotherme de Gibbs. Elle dit bien que, si le tensioactif a un excès de surface positif (il a une
affinité pour la surface), on diminue la tension de surface en augmentant sa concentration.

Remarque. Il ne faut pas oublier que ce résultat repose sur une position particulière de zG, donc sur
une définition bien précise de Γs.

Les détails du calcul qui suit ne sont pas exigibles, mais il faudra savoir expliquer qualitativement l’effet
de la formation des micelles sur la tension de surface. Il nous reste à déterminer l’excès de surface Γs : il s’agit
en fait d’étudier l’adsorption du tensioactif à la surface, pour laquelle on pourrait adopter un modèle de type
Langmuir, par exemple. En fait, si l’affinité du tensioactif pour la surface est suffisamment forte, celle-ci est
rapidement saturée en tensioactif et Γs est une constante. C’est ce que l’on observe expérimentalement dans
des mesures de tension de surface d’une solution aqueuse en fonction de la concentration de phospholipides
(Fig. 12) : γ est une fonction affine de log cs. Mais on observe aussi une rupture de pente à une concentration
particulière c∗ : pour c > c∗, la tension de surface ne dépend quasiment plus de la concentration de tensioactif.
Que se passe-t-il ?

Figure 12 – Tension de surface d’une so-
lution de phospholipides en fonction de sa
concentration. Les différents symboles cor-
respondent à des longueurs différentes des
châınes carbonées. Repris de Stafford et al.,
Biochemistry 28, 5113 (1989).

Les tensioactifs ont une affinité particulière pour la surface,
mais ils ont aussi une affinité entre eux. Ils vont donc avoir ten-
dance à former des agrégats appelés micelles. La micellisation
est associée à un gain énergétique, vu que les que dans une
micelles les têtes polaires sont en contact avec l’eau, alors que
les queues apolaires ne sont en contact qu’entre elles. Selon la
chimie (et surtout, en fait, la forme géométrique) des tensioac-
tifs, les micelles peuvent être soit sphériques, soit cylindriques,
soit avoir des formes plus complexes. On va voir que la rup-
ture de pente correspond à la concentration micellaire critique
(CMC) où les micelles commencent à se former. En présence
de micelles, la tension de surface est toujours déterminée par

dγ = −Γsdµs ≡ −Γsdµ1, (402)

où µs ≡ µ1 est le potentiel chimique du tensioactif monomère
en solution (les micelles ne peuvent pas s’adsorber en surface).
La solution de monomère peut toujours être considérée diluée :

µ1 = kBT log(c1/c
◦). (403)

Notre problème est donc de déterminer c1 en fonction de la
concentration totale de tensioactif introduit cs. On considère
pour cela l’équilibre chimique entre une micelle de taille α et le tensioactif monomère :

αM = Mα. (404)

A l’équilibre,
nα

(N1)α = zα
(z1)α , (405)
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où N1 est le nombre de monomères, z1 est la fonction de partition moléculaire d’un monomère, nα est le
nombre de micelles de taille α et zα est la fonction de partition moléculaire d’une micelle de taille α. On
note Nα le nombre de monomères contenus dans une micelle de taille α (Nα = αnα) et on introduit les
fractions moléculaires Nα/Ntot, où Ntot est le nombre total de molécules (solvant et soluté). On peut alors
écrire

1
α

xα
xα1

= Nα−1
tot

zα
(z1)α . (406)

On sépare maintenant les parties translationnelles des fonctions de partition moléculaires :

zα = V

Λ3
α

zα,int = V

Λ3
α

e−βαfα,int , (407)

où l’on a défini l’énergie libre interne par particule dans une micelles de taille α, fα. Enfin, on réarrange ces
expressions pour obtenir

xα = αxα1 e
α(ϵ1−ϵα)/kBT ≡ Kαx

α
1 , (408)

avec
ϵα = fα,int + kBT

α
log(ρΛ3

α), (409)

où ρ = Ntot/V est la densité moyenne de la solution. Dans le cas de tensioactifs de forme ”conique” qui
forment des micelles sphériques, une taille de micelle est souvent beaucoup plus favorable que tous les autres
(un des ϵα est beaucoup plus négatif que les autres). Alors la conservation de la matière s’écrit

xs = x1 + xα, (410)

où xs est la fraction moléculaire totale de tensioactif (sous forme de micelles ou non). En remplaçant
dans (408), on obtient

xs = x1 +Kαx
α
1 . (411)

On définit la concentration micellaire critique c∗ comme la concentration totale pour laquelle le nombre de
monomères libres est égal au nombre de monomères dans les micelles. La fraction moléculaire correspondante
est x∗ = (Kα)1/(1−α) et donc

c∗ = ρ(Kα)1/(1−α). (412)

On voit que pour x1 ≪ 1, on a xs ≈ x1 : tout le tensioactif est présent sous forme de monomères. Mais pour
x > x∗ le terme en Kαx

α
1 devient dominant et on a x1 ≈ (xs/Kα)1/α. Comme α est de l’ordre de 10 − 100,

x1 crôıt très lentement en fonction de xs : la concentration de monomère augmente très peu par rapport à
la CMC.

Finalement, on a les expressions approchées suivantes pour le potentiel chimique du monomère en fonc-
tion de la concentration totale introduite :

cs < c∗ : µ1 ≈ kBT log(cs/c◦)

cs > c∗ : µ1 ≈ kBT log
[
ρ

c◦

(
csρ

Kα

)1/α
]

(413)

Vu que dγ = −Γsdµ1, on en déduit cs < c∗ : ∂γ
∂ log cs

∣∣∣
T,P

= −kBTΓs

cs > c∗ : ∂γ
∂ log cs

∣∣∣
T,P

= −kBTΓs/α
(414)

Au delà de la CMC, on s’attend à ce que γ en fonction de log cs soit toujours une droite, mais dont la pente
est divisée par α.

La formation de micelles limite le pouvoir nettoyant d’un savon. Le pouvoir nettoyant est déterminé par
la concentration de tensioactif libre (qui peut servir à solubiliser des particules hydrophobes de saleté). Il
ne sert donc à rien d’ajouter du savon à une concentration plus grande que la CMC – il ne nettoiera pas
mieux ! Les CMC sont plutôt faibles pour les tensioactifs usuels (10 µM − 10 mM).
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d) Écoulements de Marangoni

La possibilité de moduler la tension de surface implique l’existence de systèmes avec une tension de
surface non-homogène. On peut créer un gradient de tension de surface à une interface eau-air par exemple
en la chauffant localement, ou en créant un gradient de concentration de tensioactif. S’il y a un gradient de
tension de surface, l’interface ”tire” plus fort d’un côté que de l’autre, ce qui induit un écoulement de liquide,
des tensions de surface faibles vers les tensions de surface élevées. Cet écoulement s’appelle un écoulement
de Marangoni.

Figure 13 – Processus de formation des larmes de vin.

L’effet Marangoni est connu pour être responsable de la formation des larmes de vin. Le verre contenant
le vin étant hydrophile, il y a formation d’un ménisque ascendant au niveau de la paroi. L’alcool du vin
s’évapore plus vite que l’eau, et sa concentration dans le vin diminue plus vite en haut du ménisque (où il
y a moins de volume disponible pour repeupler l’interface en alcool). Or le vin moins concentré en alcool a
une tension de surface plus élevée : il y a donc un gradient de tension de surface, qui induit un écoulement
de Marangoni qui remonte le long de la paroi du verre. L’écoulement résulte en une accumulation de vin en
haut du ménisque, qui retombe sous l’effet de la gravité en formant des gouttes.

Dans l’industrie, l’effet Marangoni est utilisé dans le processus de séchage des wafers en silicium. Il est
également utilisé pour contrôler l’effet ”tâche de café”, important à éviter dans l’impression à jet d’encre,
par exemple.

VIII. Systèmes en interaction
Nous avons étudié jusqu’à maintenant des systèmes de particules indépendantes. Or, les interactions

entre particules sont à l’origine des véritables comportements collectifs tels que les transitions de phase,
dont les changements d’état de la matière. Cependant, le calcul de la fonction de partition est bien plus
difficile pour des particules en interaction. Nous allons voir dans ce chapitre des méthodes permettant de
lever cette difficulté, ainsi que des exemples de comportements collectifs dûs aux interactions.

1) Nature des interactions
Pour N particules sans interaction, l’énergie d’un micro-état est la somme des énergies cinétiques des N

particules :

E(C) =
N∑
i=1

p2
i

2m. (415)

On dit qu’il y a interaction entre les particules si l’énergie d’un micro-état comprend également un terme
d’énergie potentielle, qui dépend des positions des particules :

E(C) =
N∑
i=1

p2
i

2m + U(r1, . . . , rN ). (416)
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Dans la plupart des cas, cette énergie potentielle s’écrit comme la somme des énergies d’interaction de toutes
les paires de particules :

U(r1, . . . , rN ) =
∑
i<j

V(ri − rj). (417)

Figure 14 – Potentiel de Lennard-Jones.

A quoi ressemble le potentiel d’interaction V ? Pour des par-
ticules non chargées, il est attractif à longue distance du fait
des forces de van der Waals. A courte distance, il est répulsif
à cause du principe de Pauli : deux particules (molécules)
ne peuvent pas s’interpénétrer. Une modélisation souvent uti-
lisée pour le potentiel d’interaction intermoléculaire est celle
de Lennard-Jones :

VLJ(r) = 4ϵ
[(σ

r

)12
−
(σ
r

)6
]
. (418)

A longue distance, il varie en −1/r6, qui est la loi de puissance
attendue pour une interaction de van der Waals. Le choix du
comportement en 1/r12 à courte distance est arbitraire : il rend
compte d’une répulsion très forte pour des distances r ≲ σ.

On peut également considérer des interactions entre d’autres types de degrés de liberté, par exemple
des spins, qui occupent des positions fixes sur un réseau. Un micro-état d’un système de N spins 1/2 est
spécifié par la donnée du nombre quantique mS = ±1/2 pour chacun des spins. De façon équivalente, on
peut spécifier une variable binaire Si = 2mSi = ±1 pour chacun des spins : C = (S1, . . . SN ) = {Si}. Les
interactions magnétiques entre les spins ont tendance à les aligner, et elles sont à relativement courte portée.
On modélise cela par une énergie du type

E({Si}) = −J
∑
<i,j>

SiSj . (419)

Ici J est ce que l’on appelle une constante de couplage, et la notation < i, j > signifie que l’on somme sur
toutes les paires de proches voisins sur le réseau. La présence d’un champ magnétique externe h peut être
modélisée par

E({Si}) = −J
∑
<i,j>

SiSj − h
∑
i

Si (420)

Les variables binaires Si peuvent être utilisés pour décrire autres chose que des spins : elles peuvent cor-
respondre par exemple à la présence ou l’absence d’une particule. Cette versatilité fait que les modèles de
spins sur réseau sont utilisés dans de nombreux domaines.

2) Méthodes de calcul de la fonction de partition
La fonction de partition canonique d’un système de N particules en interaction est donnée par une

intégrale multiple de la forme

Z(N,V, T ) =
∫ ∏N

i=1 dridpi
N !h3N exp

−β
N∑
i=1

p2
i

2m − β
∑
i<j

V(ri − rj)

 . (421)

En l’absence d’interactions on pouvait calculer cette intégrale en la factorisant enN intégrales indépendantes :
Z = zN/N !, avec

z =
∫ drdp

h3 e−βp2/(2m). (422)

Avec le terme d’interaction, une telle factorisation est impossible, et on devra employer des méthodes
spécifiques pour calculer ne serait-ce qu’une approximation de la fonction de partition.

1. Développement perturbatif. Il s’agit de traiter l’interaction comme un petit paramètre, par rap-
port auquel on peut faire un développement limité de la fonction de partition :

Z(N,V, T ) =
∫ ∏N

i=1 dridpi
N !h3N exp

[
−β

N∑
i=1

p2
i

2m

]1 − β
∑
i<j

V(ri − rj) + . . .

 (423)
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Les termes ce développement ne sont toujours pas factorisables, mais ils peuvent être plus faciles à
calculer que la fonction de partition en entier. On n’abordera pas en détails les calculs perturbatifs
de fonctions de partition dans ce cours.

2. Approximation de champ moyen. Il s’agit de remplacer l’interaction par une interaction moyenne
de façon autocohérente : on verra ce que cela signifie précisément dans la suite. L’approximation de
champ moyen est un outil spécifique au problème à N corps, et utilisé dans de nombreux domaines.
Par exemple, la méthode Hartree-Fock en chimie quantique et la théorie de Poisson-Boltzmann en
électrochimie reposent sur cette approximation. On en étudiera plusieurs exemples dans ce cours.

3. Solution exacte. Dans certains cas particuliers, il est possible d’évaluer exactement la fonction de
partition, malgré le terme d’interaction. On en verra un exemple avec le modèle d’Ising 1D.

4. Simulation numériques. On peut bien sûr calculer numériquement la fonction de partition. Ce-
pendant, celle-ci contient un nombre de termes qui est de l’ordre de eN , avec N ∼ 1023 pour un
échantillon macroscopique. On ne peut donc résoudre numériquement que des systèmes de taille li-
mitée, qui ne vont pas toujours donner une idée du comportement dans la limite thermodynamique.
Les simulations sont donc un outil précieux, mais qui ne remplace pas les méthodes analytiques.

3) Condensation en champ moyen
Nous étudions dans ce paragraphe un premier exemple de système en interaction résolu en champ

moyen. Nous verrons comment les interactions entre particules d’un gaz font qu’en-dessous d’une certaine
température, celui-ci se condense pour former un liquide.

Les détails du calcul qui suit ne sont pas exigibles, mais il faut savoir expliquer les principales étapes
et hypothèses. Il faut savoir tracer qualitativement et interpréter les courbes f(ρ) et P (V ) au-dessus et
en-dessous de la température critique.

a) Approximation du potentiel d’interaction

Nous étudions donc un système de N particules en interaction dans l’ensemble canonique, et la fonction
de partition à calculer est

Z(N,V, T ) =
∫
V N

∏N
i=1 dridpi
N !h3N exp

−β
N∑
i=1

p2
i

2m − β
∑
i<j

VLJ(ri − rj)

 . (424)

La notation V N signifie que l’intégrale sur chacune des positions a pour domaine le volume du système. Nous
allons commencer par décomposer le potentiel d’interaction V en deux parties. La répulsion à courte distance
étant très forte, on peut considérer que le potentiel est infini lorsque la séparation entre les particules est
inférieure à r0, le diamètre d’une particule. On approche en fait le potentiel de Lennard-Jones par

ṼLJ(r) =
{

+∞ pour r < r0
−u0(r0/r)6 ≡ v(r) pour r > r0

(425)

où u0 est une énergie bien choisie. Les régions où le potentiel d’interaction est infini imposent des contraintes
sur les positions (r1, . . . , rN ) : les configurations où deux particules sont distantes de moins que r0 donnent
une contribution nulle à l’intégrale. On peut donc définir un domaine d’intégration contraint Ṽ (N) qui
exclut ces configurations, et écrire

Z(N,V, T ) =
∫
Ṽ (N)

∏N
i=1 dridpi
N !h3N exp

−β
N∑
i=1

p2
i

2m − β
∑
i<j

v(ri − rj)

 . (426)

L’intégrale sur les impulsions peut, par ailleurs, être calculée de façon indépendante pour donner

Z(N,V, T ) =
∫
Ṽ (N)

∏N
i=1 dri
N !Λ3N

T

exp

−β
∑
i<j

v(ri − rj)

 . (427)
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b) Approximation de champ moyen

On fait maintenant l’approximation de champ moyen à proprement parler : on remplace le terme d’in-
teraction par sa valeur moyenne. On peut le réécrire en introduisant la densité ρ(r) du système :〈∑

i<j

v(ri − rj)
〉

= 1
2

∫
dr1dr2⟨ρ(r1)ρ(r2)⟩v(r1 − r2). (428)

Si l’on néglige les corrélations de densité et que l’on suppose le système homogène, alors

⟨ρ(r1)ρ(r2)⟩ = ⟨ρ(r1)⟩⟨ρ(r2)⟩ = ⟨ρ(r)⟩2 = (N/V )2 (429)

On en déduit 〈∑
i<j

v(ri − rj)
〉

= 1
2

(
N

V

)2 ∫
dr1dr2v(r1 − r2) (430)

= N2

2V

∫
dr v(r)︸ ︷︷ ︸

≡−uvm

= −uvmN
2

2V . (431)

On n’a pas cherché à calculer cette dernière intégrale et on l’a simplement noté −uvm, où u ∼ r3
0 est le

volume moléculaire et u ∝ u0 est une énergie moléculaire. Nous avons finalement à calculer

Z(N,V, T ) = 1
N !Λ3N

T

exp
[
βuvmN

2

2V

] ∫
Ṽ (N)

N∏
i=1

dri (432)

c) Volume exclu

Il nous reste à calculer l’intégrale sur les positions, qui ne donne pas simplement V N , comme il y a une
contrainte de ”volume exclu” sur le domaine d’intégration. En fait, on peut calculer les N intégrales l’une
après l’autre. On peut toujours choisir la position de la particule 1 sans contrainte. Une fois la particule 1
placée, la particule 2 est contrainte à un volume V − vm. Une fois la particule 2 placée, la particule 3 est
contrainte à un volume V − 2vm, etc. Mathématiquement,∫

Ṽ (N)

N∏
i=1

dri =
∫
V−(N−1)vm

drN · · ·
∫
V−vm

dr2

∫
V

dr1 (433)

= (V − (N − 1)vm) . . . (V − vm)V ≈ (V −Nvm/2)N (434)

La dernière égalité est vraie dans la limite de faible densité Nvm ≪ V . En effet

log
N−1∏
n=0

(V − nvm) =
N−1∑
n=0

log
[
V
(

1 − nvm
V

)]
≈
N−1∑
n=0

(log V − nvm/V ) (435)

≈ N log V − N2

2
vm
V

≈ N log(V −Nvm/2). (436)

Finalement, on obtient la fonction de partition dans l’approximation de champ moyen :

Z(N,V, T ) ≈ (V −Nvm/2)N

N !Λ3N
T

exp
[
βuvmN

2

2V

]
. (437)

d) Energie libre et stabilité

En faisant, comme d’habitude, l’approximation de Stirling, on obtient l’énergie libre en fonction de la
densité ρ = N/V :

f ≡ F

V
= −kBT

V
logZ = kBT

[
ρ log ρΛ3

T

1 − bρ
− ρ

]
− aρ2, (438)

avec a = uvm/2 et b = vm/2. Si a = 0 et b = 0 (pas d’interactions et pas de volume exclu) on retrouve
l’énergie libre du gaz parfait. Mais nous devons encore vérifier l’autocohérence de notre approximation de
champ moyen.
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Figure 15 – Courbes f(ρ) pour différentes
températures. Pour l’une des courbes, la
portion instable est indiquée en rouge et
la double tangente en bleu. Par rapport à
l’Eq. (438), on a soustrait une fonction af-
fine pour mieux voir la forme des courbes.

Nous avons supposé une densité uniforme pour faire le cal-
cul. L’énergie libre obtenue correspond-elle bien à une densité
uniforme ? A haute température, f est une fonction convexe
de ρ. Mais en-dessous d’une température Tc (on peut trou-
ver Tc = (8/27)u/kB), f(ρ) présente une portion concave :
f ′′(ρ) < 0 (Fig. 15). Le système est alors instable : en effet,

ρ2f ′′(ρ) = − 1
V

∂P

∂V
. (439)

Si f ′′(ρ) < 0, alors ∂P/∂V > 0. Un système dont la pression
augmente quand on augmente son volume est instable. Cela
veut dire que, si un système a une densité moyenne dans la
portion concave, celle-ci ne peut être uniforme. Une façon pour
le système de redevenir stable est de se séparer en une phase de
haute densité (ρl, liquide) et une phase de basse densité (ρg,
gazeuse). Si elles sont en équilibre, les deux phases doivent
avoir le même potentiel chimique. Comme µ = ∂F/∂N |V,T =
f ′(ρ), cela implique f ′(ρl) = f ′(ρg). Par ailleurs, si l’on note x
la fraction volumique de gaz, par extensivité de l’énergie libre
on a

f(ρ) = xf(ρg) + (1 − x)f(ρl), (440)
avec

ρ = xρg + (1 − x)ρl (441)
On trouve alors

f(ρ) = f(ρg) + ρ− ρg
ρl − ρg

(f(ρl) − f(ρg)). (442)

C’est l’équation de la droite qui passe par les points (ρl, f(ρl)) et (ρg, f(ρg)). Le système est bien stable sur
cette droite car f ′′(ρ) = 0. Le potentiel chimique du système diphasé doit être égal au potentiel chimique
de chacune des phases, donc la pente de la droite que l’on vient de trouver doit être égale à f ′(ρl) = f ′(ρg).
Les densités des deux phases peuvent donc être déterminées graphiquement en traçant la double tangente
à la courbe f(ρ) (une tangente qui touche la courbe en deux points). L’énergie libre du système diphasé
est donnée par cette double tangente : en se séparant en deux phases, le système a ”convexifié” son énergie
libre.

Dans le système diphasé, la pression est donnée par

P = − ∂[V f(ρ)]
∂V

∣∣∣∣
T,N

(443)

avec
V f(ρ) = V

[
f(ρg) − ρg

ρl − ρg
(f(ρl) − f(ρg))

]
+ N

ρl − ρg
(f(ρl) − f(ρg)), (444)

donc
P = f(ρg) − ρg

ρl − ρg
(f(ρl) − f(ρg)). (445)

Lorsque le système est séparé en deux phases, la pression est indépendante du volume total. Cette pression
est appelée la pression de vapeur saturante.

e) Equation d’état de van der Waals et diagramme de phase

On visualise mieux le comportement du système que l’on vient de résoudre en observant les isothermes
P (V ). En calculant P = −∂F/∂V à partir de l’expression (438) de l’énergie libre, on trouve

P = NkBT

V −Nb
− aN2

V 2 . (446)

C’est l’équation d’état du gaz de van der Waals que vous avez vue en cours de thermodynamique. Ses
isothermes P (V ) sont décroissantes pour T > Tc, mais présentent une région croissante (∂P/∂V > 0) pour
T < Tc. Cette région correspond aux densités moyennes instables identifiées à partir de l’énergie libre. On
peut montrer que la pression de vapeur saturante peut être identifiée à partir de la construction de Maxwell :
les aires de l’isotherme au-dessus et en-dessous de cette pression sont égales.
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Figure 16 – Isothermes P (V ) du gaz de
van der Waals et diagramme de phase sim-
plifié de l’eau dans le plan (P, T ).

Donc, quand on compresse un gaz de particules en interac-
tion, il n’y a pas de transition de phase si T > Tc : le système
reste dans un même état dit ”supercritique”. Par contre pour
T < Tc passé un certain volume le gaz commence à se conden-
ser en liquide (la pression est alors constante) jusqu’à devenir
complètement liquide (la pression peut alors continuer à aug-
menter).

L’approximation de champ moyen pour un système de par-
ticules en interaction reproduit donc un grand nombre de
caractéristiques d’un corps pur réel, visualisées dans un dia-
gramme (P, T ). Notre solution décrit :

• L’existence d’une phase liquide à basse température et
d’une phase gazeuse à haute température.

• L’absence de distinction entre ces phases au-delà d’une
température Tc (Tc = 374◦C pour l’eau).

• Le fait que la pression est imposée à une température
donnée s’il y a équilibre entre un liquide et sa vapeur.

Le modèle que nous avons étudié ne décrit cependant pas la
phase solide. Cela est dû au fait que nous avons négligé les
corrélations de densité, qui sont clairement présentes dans un
solide ordonné.

Remarque. Sur les isothermes de la figure 16, on voit que
la pression est égale à la pression de vapeur saturante même
en dehors de la région instable, de façon à ce que la pression
soit continue en fonction du volume. Le système pourrait en
fait continuer à suivre l’isotherme initiale jusqu’à la région in-
stable : il serait dans ce cas dans un état métastable, qui se
séparerait en deux phases sous l’effet de la moindre perturba-
tion extérieure. L’eau surfondue (liquide en-dessous de 0◦C)
est un exemple d’état métastable.

Remarque. A faible densité, l’équation d’état de van der
Waals se réduit à la loi de gaz parfaits. On peut développer la
pression en puissances de la densité (développement du viriel)
pour obtenir les premières corrections à la loi des gaz parfaits comme on avait fait pour le gaz quantique :

P = ρkBT

[
1 + ρvm

2

(
1 − u

kBT

)
+O(ρ2)

]
(447)

Le signe de la première correction à la pression dépend de la force de la partie attractive du potentiel
intermoléculaire, comparée à kBT .

4) Modèle d’Ising en champ moyen
Nous étudions maintenant un autre modèle, dont la solution en champ moyen rend compte de la transition

ferromagnétique-paramagnétique dans un aimant : le fameux modèle d’Ising. Fameux, car il s’applique en
fait à bon nombre d’autres systèmes.

Un aimant perd son aimantation au-delà d’une température Tc, appelée température de Curie. L’aiman-
tation d’un aimant vient du fait que tous ses spins électroniques pointent dans la même direction (état
ferromagnétique), ce qui est énergétiquement favorable : les interactions magnétiques ont tendance à ali-
gner les spins entre eux. Mais au-delà de Tc l’agitation thermique désaligne les spins, qui pointent dans des
directions aléatoires (état paramagnétique), et l’aimantation moyenne est alors perdue.

On peut rendre compte de cette transition par un modèle élémentaire où les N spins sont des variables
binaires Si = ±1 placées sur un réseau, que l’on ne spécifie pas pour l’instant. Comme vu plus haut, l’énergie
d’un micro-état du systèmes est donnée par

E({Si}) = −J
∑
<i,j>

SiSj (448)
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où J est une constante de couplage, positive car l’énergie est abaissée si deux spins voisins s’alignent. La
fonction de partition associée s’écrit :

Z =
∑
{Si}

exp

βJ ∑
<i,j>

SiSj

 , (449)

où
∑

{Si} signifie que l’on somme sur Si = ±1 pour chacun des Si. Cette somme est a priori impossible
à calculer : nous allons donc procéder à une approximation de champ moyen. Pour cela, on écrit que
Si = ⟨Si⟩ + δSi et on suppose que les fluctuations δSi sont petites devant la valeur moyenne. Alors

SiSj = (⟨Si⟩ + δSi)(⟨Sj⟩ + δSj) (450)
= ⟨Si⟩⟨Sj⟩ + δSi⟨Sj⟩ + δSj⟨Si⟩ + δSiδSj (451)
≈ m2 +m(δSi + δSj) (452)
= m2 +m(Si + Sj − 2m) = −m2 +m(Si + Sj), (453)

où l’on a défini l’aimantation moyenne m = ⟨Si⟩, indépendante du site considéré. On peut écrire alors

Z ≈
∑
{Si}

exp

−NβJm2q/2 + βJm

2

N∑
i=1

Si
∑

j voisin de i
1 + βJm

2

N∑
j=1

Sj
∑

i voisin de j
1

 (454)

=
∑
{Si}

exp
[

−NβJm2q/2 + βJqm

N∑
i=1

Si

]
, (455)

où l’on a définit la coordination q du réseau, ie le nombre de voisins d’un site. Le facteur 1/2 vient du fait
qu’avec le réarrangement de la somme, on a compté chaque paire de voisins deux fois : il y a Nq/2 paires
de voisins. On voit ici pourquoi en supposant les fluctuations petites on a fait une approximation de champ
moyen : cela revient en fait à supposer que chaque spin subit le champ local moyen exercé par ses voisins
(hloc = qJm).

Le calcul de la fonction de partition se réduit alors au calcul de la fonction de partition d’un seul spin :

Z =
∑
{Si}

e−NβJqm2/2 exp
[
βJqm

N∑
i=1

Si

]
= e−NβJm2

[ ∑
S=±1

eβJqmS

]N
(456)

=
[
2e−βJqm2/2cosh(βJqm)

]N
, (457)

et on en déduit l’énergie libre

F = −kBT logZ = NJqm2/2 −NkBT log [2cosh(βJqm)] . (458)

On a donc l’énergie libre en fonction de m, mais on ne connait pas m. On détermine m en rendant l’approxi-
mation de champ moyen auto-cohérente – on calcule l’aimantation moyenne dans le cadre de l’approxima-
tion :

m = ⟨Sk⟩ =
∑
{Si}

Sk
e−βE({Si})

Z
= 1
Z

∑
{Si}

Sk exp
[

−NβJm2q/2 + βJqm

N∑
i=1

Si

]
(459)

=
[∑

S=±1 e
βJqmS

]N−1

[2cosh(βJqm)]N
∑

Sk=±1
Ske

βJqmSk (460)

= sinh(βJqm)
cosh(βJqm) = tanh(βJqm). (461)

La solution complète du problème est donc donnée par :{
F = NJqm2/2 −NkBT log [2cosh(βJqm)]
m = tanh(βJqm) . (462)
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m

m

f(m)

f(m)

Figure 17 – Solution graphique
de l’équation autocohérente
pour m, au-dessus et en-dessous
de la température critique.

L’équation pour m n’a pas de solution explicite, mais son comporte-
ment se comprend qualitativement grâce à une construction graphique.
Elles sont en effet données par les abscisses m∗ des intersections entre la
courbe y = m et y = tanh(βJqm). On a tanh(x) → ±1 quand x → ±∞ et
tanh x ∼ x quand x → 0. Donc au voisinage de m = 0, y = tanh(βJqm)
est une droite de pente βJq. Si βJq < 1, ie T > Tc = Jq/kB, les deux
courbes ont une seule intersection en m = 0. Mais pour T < Tc, les
courbes ont trois intersections, en 0 et ±m∗(T ). La forme de l’énergie
libre nous indique que pour T < Tc, la solution m = 0 est instable : elle
correspond à un maximum de l’énergie libre alors que ±m∗(T ) sont des
minima.

Notre solution rend donc compte de la transition paramagnétique-
ferromagnétique. L’aimantation est nulle en moyenne au-dessus d’une
température de Curie, et elle acquiert une valeur moyenne non-nulle en-
dessous. Qu’avons-nous perdu dans l’approximation de champ moyen ?
En fait, nous avons négligé les fluctuations du champ local appliqué sur
chaque spin, ou, de façon équivalente, les corrélations entre les spins voi-
sins. Cette approximations est d’autant meilleure que le nombre q de
voisins d’un spin est grand (le champ est ”automoyenné” par les voisins),
donc que la dimension de l’espace est grande. En effet, un spin a 2 voisins
sur un réseau linéaire, 4 sur un réseau carré, 6 sur un réseau cubique,
etc. On peut montrer que l’approximation de champ moyen est exacte au
voisinage de la température critique en dimension d’espace supérieure à
4. Elle est en revanche qualitativement fausse en dimension 1, où il n’y a
en fait pas de transition de phase comme on verra dans la suite.

5) Classification des transitions de phase
a) Ordre d’une transition de phase

Nous avons étudié deux transitions de phase, chacune représentative des deux grandes classes de transi-
tions de phase qui existent dans la nature. Dans tous les cas, une transition de phase est caractérisée par le
changement abrupt d’une coordonnée thermodynamique que l’on appelle paramètre d’ordre. Dans le cas de
la condensation, le paramètre d’ordre est la densité ρ, dans le cas du modèle d’Ising, c’est l’aimantation m.

• Les transitions de phase du premier ordre sont caractérisées par une discontinuité du paramètre
d’ordre. Elles peuvent donner lieu à une coexistence des deux phases et elles possèdent une chaleur
latente : pour faire passer le système d’une phase à l’autre, il faut lui fournir de la chaleur alors que la
température ne varie pas. La transition liquide-gaz est un exemple de transition de phase du premier
ordre. Nous avons vu qu’en cas de coexistence entre un liquide et sa vapeur, la pression est fixée pour
une température donnée. De façon équivalente, la température est fixée pour une pression donnée,
d’où l’existence d’une chaleur latente.

• Les transitions de phase du second ordre sont caractérisées par un paramètre d’ordre continu à la
transition. Cependant, des dérivées secondes du potentiel thermodynamique peuvent être disconti-
nues, voire diverger à la transition. Par exemple, la susceptibilité magnétique diverge à la température
de Curie. Une transition du second ordre n’a pas de chaleur latente. La transition ferromagnétique-
paramagnétique est un exemple de transition de phase du second ordre.

C’est une grande force de la mécanique statistique que de pouvoir prédire de telles caractéristiques
générales du comportement collectif d’un système à partir de ses interactions microscopiques.

b) Premier ordre : transition brutale ou coexistence ?

Une transition de phase du premier ordre peut soit donner lieu à une coexistence de deux phases, soit
se faire brutalement, selon les contraintes imposées au système. Nous avons étudié la transition liquide-gaz
d’un système fermé (nombre de particules fixé). Sa densité moyenne est alors imposée par les contraintes
(pression ou volume, et température), et nous avons vu qu’il y a coexistence pour certaines valeurs de
densité moyenne. En revanche, dans un système ouvert (où le nombre de particules peut varier) la densité
moyenne n’est pas imposée par les contraintes : le système va donc adopter la densité qui minimise son
grand potentiel et il y aura une transition abrupte.
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Considérons en effet un gaz de particules en interaction en situation grand-canonique (µ, V, T ) fixés. Sa
grande fonction de partition peut s’écrire

Ξ =
∞∑
N=0

eβµNZ(N,V, T ), (463)

où Z(N,V, T ) est la fonction de partition canonique de ce même gaz à (N,V, T ) fixés, que nous avons
calculée plus haut :

Z(N,V, T ) = exp[−βF (N,V, T )] = exp
[
−N log ρΛ3

T

1 − bρ
+N + βaNρ

]
≡ exp[Nβg(ρ)]. (464)

On a donc

Ξ =
∞∑
N=0

eNβ(µ+g(ρ=N/V )) (465)

On voit que les quantités sommées sont exponentielles en N . Par la méthode du col, la somme est égale à
son plus grand terme dans la limite thermodynamique, et le grand potentiel vaut donc

Y = −kBT log Ξ = − max
N

[N(µ+ g(N/V ))], (466)

et comme Y = −PV on obtient la pression selon

P = max
ρ

[ρ(µ+ g(ρ))]. (467)

La fonction ρ(µ + g(ρ)) a un seul maximum local pour T > Tc et deux maxima locaux pour T < Tc : le
système va donc ”choisir” la maximum global parmi ces deux maxima locaux. La hauteur relative des deux
maxima locaux varie en fonction de µ : il y a donc une valeur de µ critique pour laquelle le système change
brutalement de densité. C’est ce qu’il se passe dans la condensation capillaire (voir Série 12).

c) Second ordre : exposants critiques

On touche ici à la notion d’exposant critique, très utilisée dans la théorie des transitions de phase, sur
l’exemple de la susceptibilité magnétique dans le modèle d’Ising en champ moyen. En présence d’un champ
magnétique (voir Série 12) l’équation autocohérente pour l’aimantation s’écrit

m = tanh[β(Jqm+ h)]. (468)

On se place à T > Tc en suppose h suffisamment petit pour que β(Jqm+ h) ≪ 1. Alors, on peut utiliser le
fait que pour x ≪ 1, tanh(x) ≈ x pour écrire

m ≈ βJqm+ βh = m
Tc
T

+ h

kBT
. (469)

En réarrangeant, on obtient la sensibilité magnétique à champ nul

χm = ∂m

∂h
(h = 0) = 1

kB(T − Tc)
. (470)

On voit donc que la susceptibilité magnétique diverge quand T s’approche de Tc comme 1/(T − Tc)γ avec
γ = 1. γ s’appelle un exposant critique. On peut déterminer de tels exposants pour toutes les quantités
physiques qui ont un comportement singulier au voisinage de la transition de phase. Par exemple, juste en-
dessous de la température critique, l’aimantation croit comme (Tc − T )β avec β = 1/2 (β est une notation
conventionnelle pour cet exposant, à ne pas confondre avec l’inverse de la température). La donnée des
exposants critiques détermine complètement le comportement d’un système au voisinage d’une transition
de phase du second ordre. Des systèmes microscopiquement très différents peuvent avoir les mêmes exposants
critiques : on dit alors qu’ils appartiennent à la même classe d’universalité. Si l’on arrive à identifier a priori
à quelle classe d’universalité appartient un système, on peut déterminer un grand nombre de ses propriétés
sans calcul.
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6) Solution exacte du modèle d’Ising 1D
On peut calculer exactement la fonction de partition du modèle d’Ising sur un réseau 1D ou 2D. Nous

allons faire ici le calcul en 1D ; en 2D, le calcul est beaucoup plus compliqué (il a valu à Onsager le prix
Nobel de chimie en 1968). Les solutions exactes sont très importantes car elles permettent d’être sûr du
résultat : si l’on arrive à ramener la description d’un système à un modèle exactement soluble, on peut
prédire son comportement avec certitude. Dans les cas où il n’y a pas de solution exacte, les approximations
que l’on peut faire sont souvent non contrôlées. Avec les approximations de champ moyen, par exemple, on
obtient un résultat, mais on peut difficilement savoir s’il est très différent du résultat exact ou non. Le seul
moyen de juger de la pertinence du résultat est de le confronter à des observations expérimentales.

On considère donc un modèle d’Ising de N spins, à température T et en présence d’un champ magnétique
h, sur une réseau unidimensionnel. On supposera en fait que les spins sont disposés sur un cercle (conditions
aux limites périodiques). Alors, l’énergie d’un micro-état {Si} = (S1, . . . , SM ) peut s’écrire

E({Si}) = −J
N∑
i=1

SiSi+1 − h

N∑
i=1

Si, (471)

avec SN+1 ≡ S1.

Remarque. On pourrait aussi considérer des spins disposés sur une ligne, mais cela particulariserait
le premier et le dernier spin, rendant le calcul légèrement plus compliqué, pour un même résultat dans la
limite thermodynamique.

Nous avons donc à calculer la fonction de partition

Z =
∑
{Si}

exp
[
βJ

N∑
i=1

SiSi+1 + βh

N∑
i=1

Si

]
, (472)

que l’on peut aussi écrire

Z =
∑
{Si}

exp
[
βJ

N∑
i=1

SiSi+1 + 1
2βh

N∑
i=1

(Si + Si+1)
]
, (473)

On peut introduire la notation suivante :

Z =
∑

S1=−1,1

∑
S2=−1,1

· · ·
∑

SN =−1,1
T (S1, S2)T (S2, S3) . . . T (SN , S1), (474)

avec
T (Si, Sj) = exp [βJSiSj + βh(Si + Sj)/2] . (475)

On définit maintenant la matrice T, appelée matrice de transfert selon

T =
[
T (−1,−1) T (−1, 1)
T (1,−1) T (1, 1)

]
=
[
eβ(J−h) e−βJ

e−βJ eβ(J+h)

]
. (476)

On peut aussi noter Tij les éléments de la matrice T, avec i, j = 1 ou 2. Par exemple T12 = T (−1, 1). On
peut donc réécrire la fonction de partition en termes des éléments de la matrice de transfert :

Z =
∑
i1=1,2

∑
i2=1,2

· · ·
∑

iN =1,2
Ti1i2Ti2i3 . . .TiN i1 . (477)

Examinons le cas N = 3, en ayant en tête la formulé générale pour le produit de deux matrices en fonction
de leurs coefficients (A ·B)ij =

∑
k AikBkj :

ZN=3 =
∑
i1=1,2

∑
i2=1,2

∑
i3=1,2

Ti1i2Ti2i3Ti3i1 (478)

=
∑
i1=1,2

∑
i3=1,2

(T2)i1i3Ti3i1 (479)

=
∑
i1=1,2

(T3)i1i1 = Tr(T3), (480)
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où l’on a introduit la trace (Tr) d’une matrice – la somme de ses éléments diagonaux. De la même façon,
on obtiendra dans le cas général

Z = Tr(TN ). (481)

La matrice T est à symétrique réelle, elle est donc diagonalisable. Il existe une matrice de passage P et des
valeurs propres λ+, λ− telles que

T = PDP−1 avec D =
[
λ+ 0
0 λ−

]
. (482)

Comme la trace est invariante par permutation circulaire (Tr(ABC) = Tr(CAB) = Tr(BCA)), on a

Tr(TN ) = Tr(DN ) = λN+ + λN− . (483)

On détermine les valeurs propres de T en résolvant l’équation caractéristique det(T − λIN ) = 0, soit∣∣∣∣ eβ(J−h) − λ e−βJ

e−βJ eβ(J+h) − λ

∣∣∣∣ = 0. (484)

C’est une équation du second degré pour λ :

(eβ(J−h) − λ)(eβ(J+h) − λ) − e−2βJ = 0 (485)
⇐⇒ λ2 − 2λeβJcosh(βh) + 2sinh(2βJ) = 0 (486)

⇐⇒ λ± = eβJ
(

cosh(βh) ±
√

cosh2(βh) − 2e−2βJsinh(2βJ)
)
. (487)

Il faut savoir refaire la construction de la matrice de transfert, mais le calcul explicite de ses valeurs propres
ne sera pas demandé en question de cours. On trouve que les valeurs propres sont bien réelles, comme il se
doit pour une matrice symétrique, et λ+ > λ−. On a alors

Z = λN+ + λN− = λN+

(
1 −

λN−
λN+

)
∼

N→∞
λN+ . (488)

Seule la plus grande valeur propre compte dans la limite thermodynamique. On a donc le résultat final pour
la fonction de partition exacte du modèle d’Ising 1D :

Z = eNβJ
(

cosh(βh) +
√

cosh2(βh) − 2e−2βJsinh(2βJ)
)N

. (489)

A partir de la définition (472) de la fonction de partition, on voit que l’aimantation est donnée par

m = 1
N

〈
N∑
i=1

Si

〉
= 1
βN

∂ logZ
∂h

. (490)

On peut calculer cette dérivée peu sympathique pour obtenir

m = sinh(βh)
1 + cosh(βh)

(
cosh2(βh) − 2e−2βJsinh(2βJ)

)−1/2

cosh(βh) +
(
cosh2(βh) − 2e−2βJsinh(2βJ)

)1/2 . (491)

On voit que l’aimantation moyenne est toujours nulle en l’absence de champ (h = 0) : le modèle d’Ising
1D ne présente pas de transition de phase paramagnétique-ferromagnétique. Par ailleurs, m est toujours une
fonction continue de h, peu importe la température : il n’y a jamais de changement brutal de l’aimantation
en fonction du champ comme dans la solution champ moyen (voir Série 12). Il faudrait résoudre le modèle
en dimension plus grande que 1 pour avoir une transition de phase.

La méthode de la matrice de transfert est en fait très puissante : elle peut-être généralisée pour calculer
exactement la fonction de partition d’un système 1D avec n’importe quel type d’interaction (pas seulement
des interactions entre proches voisins). Ces solutions par matrice de transfert sont utilisées notamment pour
décrire le comportement d’électrolytes dans des milieux poreux.
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