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I. Introduction et rappels

1) A quoi sert la mécanique statistique ?

Le but de la mécanique statistique est de décrire des systémes ayant un grand nombre de
degrés de liberté.

La plupart des systémes étudiés en sciences naturelles ont un ”grand” nombre de degrés de liberté (cor-
respondant souvent & un grand nombre de particules). L expérience montre que ces systémes macroscopiques
peuvent avoir des comportements qui ne découlent pas de fagon évidente de celui de leurs constituants mi-
croscopiques. On parle de phénoménes émergeants. Selon la célebre formule du physicien Phil Anderson,
more is different.

> Exemples :

e Rien n’indique a priori dans la structure d’une molécule d’eau qu’un grand nombre de ces molécules pourra
former une phase liquide ou une grande variété de phases solides selon les conditions de température et de
pression.

e [’aimantation d’un atome de fer isolé pointe toujours dans une direction aléatoire. Un échantillon macrosco-
pique de fer peut développer une aimantation qui pointe durablement dans une direction particuliere.

e Un oiseau seul n’apparait pas voler dans une direction particuliere. Un grand nombre d’oiseaux forme une
nuée qui posséde une dynamique collective complexe.

e Une particule de gaz n’a pas plus de raison de traverser une boite de gauche & droite que de droite & gauche.
Un échantillon macroscopique de gaz initialement confiné au c6té gauche de la boite va nécessairement diffuser
vers la droite pour occuper toute la boite.
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Que signifie "grand” ? Dans un systéme suffisamment grand pour observer ces phénomenes émergeants,
il est en pratique impossible de suivre chaque particule individuellement.

> En effet, considérons un volume de 1 L rempli d’air en conditions ambiantes. A priori, nous savons
parfaitement déterminer la trajectoire de chacune des molécules dans ce volume en résolvant les équations de Newton.
Mais pour combien de molécules devrions-nous le faire 7 En conditions ambiantes, 1 L d’air pése un 1 g, et la masse
molaire moyenne de l'air est de 29 g/mol. Notre volume contient donc 0.03 mol d’air, soit 1.8 x 10%2 molécules. Si
nous voulons faire résoudre les équations du mouvement pour ces molécules & un ordinateur, il faut commencer par
y stocker la configuration initiale, soit 6 nombres par molécule (3 coordonnées de position, 3 de vitesse). Un nombre
est typiquement représenté par 8 octets, donc nous aurions besoin au total de 10'? To. C’est 10 fois plus que
I’ensemble des données sur internet.

La résolution des équations microscopiques du mouvement pour un échantillon macroscopique de matiéere
est donc impossible. Mais elle est aussi inutile. En effet, I’expérience montre que 1’évolution macro-
scopique d’un systéme peut étre décrite par un nombre restreint de coordonnées thermody-
namiques ou fonctions d’état. Par exemple, pour déterminer le travail que peut fournir la détente de
notre litre de gaz (imaginez gonfler un airbag), nous avons besoin de connaitre sa pression et sa température
initiales, alors que les coordonnées exactes de chacune de ses molécules n’ont aucune importance.

Thermodynamique vs. mécanique statistique. Vous avez étudié 'année derniére la thermodyna-
mique, qui est une approche phénoménologique permettant de décrire ’évolution de ces fonctions d’état.
Phénoménologique signifie qu’il s’agit d’un ensemble de lois qui ont été formulées pour rendre compte d’ob-
servations macroscopiques. La thermodynamique ne sait rien de la structure microscopique de la matiere.
Par opposition, la mécanique statistique est une théorie fondamentale, ou 'on démontre ces lois a partir
des équations microscopiques. La mécanique statistique établit le lien entre macroscopique et mi-
croscopique. C’est une théorie trés puissante car elle est tres générale : elle peut prendre comme point
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de départ une dynamique microscopique quelconque (classique, quantique ou autre). Elle n’a en fait méme
pas besoin de connaitre les détails de la dynamique microscopique, mais seulement les états accessibles
a cette dynamique (que nous définirons précisément dans la suite). Cela lui donne des applications tres
interdisciplinaires, en physique, chimie et au-dela.

Concreétement, et entre autres choses, dans ce cours :

e On apprendra a déterminer les propriétés thermodynamiques d’un gaz parfait a partir de la structure
des particules qui le constituent. On verra comment le modele de gaz parfait permet de comprendre
des réactions chimiques aussi bien en phase gaz (catalyse hétérogene) qu’en phase liquide (solution
diluée).

e On définira la température pour un systéme quantique et on déterminera la statistique d’occupation
de ses niveaux d’énergie. Ces résultats sont la base pour comprendre des spectroscopies trés utiles en
chimie (notamment infrarouge et RMN), ainsi que pour comprendre le comportement des électrons
dans les solides.

e On verra comment les interactions microscopiques entre particules donnent lieu aux changements
d’état de la matiere, et plus généralement aux transitions de phase.

e On apprendra (grace & 'interprétation microscopique de I’entropie) & avoir une intuition qualitative
de létat d’équilibre (notamment chimique) de systémes complexes.

Mécanique

Mécanique

classique quantique

More Is Different

Broken symmetry and the nature of
the hierarchical structure of science.

P. W. Anderson

Boltzmann

La mécanique statistique s’étend bien au-dela de ce qui sera vu dans ce cours, car il s’agit d’'un domaine
de recherche vivant. Pour le comprendre, il est utile d’adopter une perspective historique. En effet, pendant
plusieurs siecles, la recherche en physique visait a établir les lois régissant la matiere a des échelles de plus en plus
petites. La mécanique classique, développée au XVIle siecle, a longtemps été suffisante pour décrire la dynamique des
objets a ’échelle "humaine”. En paralléle, au début du XIXe siécle, la thermodynamique s’est développée pour décrire
les systémes ou la notion phénoménologique de chaleur est importante. La mécanique statistique a été développée
dans le sillage de la thermodynamique, principalement par Ludwig Boltzmann, a la fin du XIXe siecle — époque ou
I'on ne savait pas encore que la matiére était constituée d’atomes. Boltzmann a en fait supposé que la matiere avait
des constituants élémentaire discrets, hypothése qu’avaient du mal & accepter la plupart de ses contemporains. Au
début du XXe siécle, I’existence des atomes ne fait plus de doutes : cela a poussé au développement de la mécanique
quantique pour décrire la dynamique de ces derniers. Ce développement est essentiellement achevé dans les années
1950, et une partie de la communauté scientifique pense alors étre armée pour comprendre n’importe quel systéme
par simple application de la mécanique quantique. C’est contre cette idée que s’insurge Phil Anderson dans More is
different, publié en 1972 : le passage du microscopique au macroscopique fait émerger de nouvelles lois physiques. 11
est impressionnant de constater que les comportements collectifs de particules quantiques sont toujours étudiés grace
a la méthode statistique de Boltzmann, qui ne pouvait méme pas étre certain de ’existence des atomes. Aujourd’hui,
les lois régissant les constituants élémentaires de la matiére (dans des conditions “raisonnables”) sont essentiellement
établies, et la "frontiere” de la recherche consiste plutot a comprendre leurs comportements collectifs : la mécanique
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statistique sous-tend en fait la plupart des questions de recherche actuelles en physico-chimie fondamentale. Ses
méthodes se sont également étendues & d’autres domaines : biologie des systémes, économie, intelligence artificielle.
Deux prix Nobel de physique récents (Giorgio Parisi en 2021 et John Hopfield en 2024) ont été attribués pour des
travaux fondamentaux en mécanique statistique, précurseurs de la révolution de I'TA.

2) Rappels de thermodynamique

La thermodynamique est une description phénoménologique de systémes a grand nombre
de degrés de liberté a 1’équilibre thermique. Vous avez étudié la thermodynamique dans le cours
Physique IT 'année derniere. Ici, je rappelle seulement les deux principes de la thermodynamique en insistant
sur leur caractére phénoménologique : ils sont établis sur la base d’observations. En fait, la thermodynamique
est née au début du XIX€ siecle, époque ou I’on ne savait pas encore que la matiere est constituée d’atomes.
On ne savait pas assimiler la chaleur a ’agitation microscopique des molécules, et 'on croyait qu’elle était
transportée par un fluide spécial, appelé "calorique”. Il est d’autant plus impressionnant qu’une théorie aussi
profonde et efficace que la thermodynamique ait pu étre établie essentiellement & partir de considérations
macroscopiques sur efficacité des moteurs thermiques.

a) Définitions

De la méme fagon qu’un point matériel (un seul degré de liberté) est décrit par ses coordonnées
mécaniques (position et vitesse), un systéme thermodynamique (grand nombre de degrés de liberté) est
décrit par ses coordonnées thermodynamiques ou fonctions d’état. Les fonctions d’état ne sont définies que
pour un systeme d [’équilibre thermodynamique, i.e., dont les propriétés ne changent pas significativement a
I’échelle du temps d’observation. Une équation d’état est une relation entre coordonnées thermodynamiques.

> Exemples de fonctions d’état : Pression, volume, température, énergie, entropie, enthalpie...

Le sens de certaines fonctions d’état est clair & partir de la mécanique. Par exemple, le volume occupé
par un systeéme est objectivement mesurable, et la pression est la force par unité de surface exercée par le
systéme sur les parois de ce volume. Pour d’autres fonctions (température, énergie), le sens n’est pas évident
a priori, et la thermodynamique devra leur apporter une définition.

REMARQUE. Toutes les fonctions d’état que 'on peut définir ne sont pas indépendantes. Il en suffit en

général d’un petit nombre pour décrire complétement un systeme.

REMARQUE. On fait parfois la différence entre ”fonctions d’état” et “variables d’état”. Cette différence
est une question de point de vue (par exemple, I’énergie peut étre une fonction ou une variable d’état) — on
parlera donc uniquement de fonctions d’état ou coordonnées thermodynamiques dans ce cours.

b) Principe zéro : définition de la température

Il existe une coordonnée thermodynamique 7', appelée température, telle que lorsque
deux systémes S; et Sy sont a I’équilibre entre eux, T'[S1] = T[S2].

Aujourd’hui, I'idée que la matiére est constituée d’atomes est ancrée dans notre intuition, et on asso-
cie donc naturellement la température a l’agitation microscopique des atomes. Ce n’était pas le cas des
physiciens du XIX® siécle, qui ne connaissaient pas la structure microscopique de la matiére. A I’échelle
macroscopique, 1'idée intuitive de la température est plutét qu’il s’agit de la quantité qui s’égalise entre
deux systémes mis en contact (sans échange de matiére). Par exemple si I'on prépare une tasse de thé, on
I’oublie dans la cuisine et on revient au bout d’une heure, on dira que le thé est désormais a la température
de la piece. En fait, la transitivité de ’équilibre thermodynamique (si deux systémes A et B sont en équilibre
avec un systéme C, alors ils sont en équilibre entre eux) implique Pexistence d’une coordonnée thermody-
namique T' qui s’égalise lorsque deux systeme sont a ’équilibre. On définit cette coordonnée comme étant
la température.
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c¢) Premier principe : nature des échanges d’énergie

Il existe une coordonnée thermodynamique U, appelée énergie interne, telle que sa
variation lors de I’évolution d’un systéme isolé entre deux états d’équilibre est égale au
travail mécanique effectué sur le systéme. Si le systéme n’est pas isolé, la différence entre
sa variation d’énergie interne et le travail mécanique effectué est, par définition, la chaleur
Q) recue par le systéme :

AU = Wyt + Q (1)

La mécanique peut étre résumée a la conversion de travail en énergie. L’énergie mécanique d’un systeme
est clairement définie comme la somme de son énergie cinétique et de son énergie potentielle ; on fait varier
cette énergie en faisant un travail dessus a l'aide d’une force extérieure. Par exemple, I’énergie mécanique
d'un ressort de raideur k et de longueur & vide zy dépend de sa longueur x comme E = (1/2)k(x — x0)%.
Pour compresser le ressort de moitié, je dois fournir un travail W = AE = (1/2)k(z¢/2)?.

REMARQUE. En thermodynamique on utilise la convention du banquier : les quantités recues par le
systéme sont comptées positivement.

Le premier principe de la thermodynamique rend compte de I'observation que pour un systéme macrosco-
pique ce n’est pas toujours le cas : le travail a effectuer pour amener le systeme d’un état thermodynamique
a un autre dépend de la fagon dont il est couplé a son environnement. Supposons en effet que I'on veuille
comprimer un gaz, d’un volume V & un volume V/2, le cylindre contenant le gaz étant placé dans une piéce a
température T. On observe que le travail nécessaire pour y parvenir est plus faible si le cylindre a une paroi
fine que s’il a une paroi épaisse. Il est alors manifeste qu'un systéme thermodynamique peut échanger de
I’énergie avec son environnement par un autre moyen que le travail mécanique. Intuitivement, cet échange
devrait étre possible & travers une paroi fine (paroi isotherme), mais pas a travers une paroi suffisamment
épaisse (paroi adiabatique).

REMARQUE. Le sac isotherme du supermarché est en fait tout le contraire d’un sac isotherme — c¢’est un
sac adiabatique!

Le premier principe définit la variation d’énergie interne comme le travail recu par le systéme lors de
la compression adiabatique. Concretement, en faisant des expériences de compression adiabatique, on peut
déterminer ’énergie interne du gaz en fonction des autres coordonnées thermodynamiques & une constante
additive prés. Dés lors, on peut effectuer une expérience de compression non-adiabatique, et définir la chaleur
regue par le systeme comme la part de variation d’énergie qui n’est pas due au travail mécanique regu.

REMARQUE. Attention! Le travail qui intervient dans le premier principe est le travail effectué sur le
systeme par les forces extérieures. Cela sera important dans la suite du cours.

En résumé, le premier principe dit qu’un systéme thermodynamique peut échanger de
I’énergie sous deux formes : le travail mécanique et la chaleur. On sait calculer le travail mécanique
a partir des lois de la mécanique. Par contre on n’a aucun moyen de calculer la chaleur avant d’introduire
le second principe.

REMARQUE. Le mécanique classique emploie une description idéalisée du ressort. En réalité, le ressort est
un systeme thermodynamique constitué d’un grand nombre d’atomes. La raison pour laquelle il se comporte
comme un systeme mécanique est que, dans les conditions typiques d’utilisation, la température influence
trés peu ses propriétés mécaniques (a la différence du gaz parfait dont la pression est proportionnelle a la
température, par exemple). Mais on verra dans le cours des modeles de ressorts pour lesquels ce n’est pas
le cas.

2

d) Second principe : principe d’évolution

Il existe une coordonnée thermodynamique extensive S, appelée entropie, qui augmente
toujours lors de 1’évolution spontanée d’un systéme isolé. La variation d’entropie lors d’une
transformation infinitésimale réversible est liée a la chaleur recue par le systéme selon

ds = 6Q/T.
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REMARQUE. Une transformation est réversible est une transformation ou I’équilibre mécanique et ther-
mique entre le systeme et son environnement est maintenu a tout instant.

Le second principe rend compte de I'observation que la dynamique d’un systéme macroscopique est
irréversible : un gaz va occuper tout le volume qui lui est disponible, et jamais il n’ira se concentrer dans
une moitié du volume. Les échanges de chaleur ont un sens privilégié : une soupe chaude ne va jamais
refroidir une assiette froide. Le premier principe spécifie la nature des échanges d’énergie, mais il n’apporte
aucune information sur le sens dans lequel ils vont se faire. Postuler I’existence d’une fonction entropie, c’est
la facon la plus simple de rendre compte du fait qu’il existe une fleche du temps.

En fait, I’énoncé le plus élémentaire du second principe est le suivant (formulation de Clausius) : Il n’existe
pas de processus dont le seul résultat est le transfert de chaleur d’un corps froid vers un corps chaud. Par un
raisonnement thermodynamique que vous avez vu ’année dernieére, il est possible d’en déduire 'existence
d’une fonction entropie et son lien avec I’échange de chaleur. Je ne rentre pas ici dans les détails de ce
raisonnement car nous obtiendrons tout cela de fagon beaucoup plus directe dans le cadre de la mécanique
statistique.

Pour une transformation infinitésimale, le premier principe s’écrit AU = Wy + 0Q ; si le systéme n’est
soumis qu’a des forces de pression, 6W = — Pey;dV. Si la transformation est réversible, Poyt = P (pression
a lintérieur du systeme) et 6Q) = T'dS, ce qui donne

dU = TdS — PdV. (2)

Ceci est maintenant une relation entre coordonnées thermodynamiques, qui est donc vraie pour une trans-
formation quelconque (en effet, les variations de coordonnées thermodynamiques ne dépendent que de I'état
initial et final et pas du chemin suivi pour y arriver).

Cette relation est tres utile en thermodynamique. Par exemple, elle permet de déterminer ’entropie d’un
systéme a partir de I’énergie interne U(P,T) et d’appliquer ainsi la condition d’évolution spontanée. Mais
c’est aussi la que 'on touche a une limitation inhérente au caractere phénoménologique de la thermodyna-
mique : nous n’avons aucun moyen de calculer U(P,T) & partir de la composition microscopique de notre
systeme. Nous devons la mesurer expérimentalement, ou ’obtenir & partir d’une théorie plus fondamentale :
il s’agit justement de la mécanique statistique.

Pour prendre un exemple tres concret, vous avez étudié au semestre dernier la condition de spontanéité
d’une réaction chimique en termes de ’enthalpie libre de réaction A,G < 0. Pour calculer A,.G, vous aviez
besoin des enthalpies et entropies standard de formation des réactifs et des produits. Grace a la mécanique
statistique, nous pourrons calculer ces quantités a partir de la structure des especes chimiques impliquées.

3) Approche statistique et ergodicité

Comment la mécanique statistique va-t-elle remplir toutes ses promesses ? Je donne ici schématiquement
I'idée générale de I’approche statistique, que nous développerons dans la suite du cours. La premiere étape
est de se rendre compte que les coordonnées thermodynamiques correspondent & des valeurs moyennes de
quantités qui fluctuent au cours du temps. Dans un gaz de particules classiques, par exemple, on peut
définir a tout instant 1’énergie totale Ei,; comme la somme de ’énergie cinétique et de 1’énergie potentielle
de chacune des N particules. Si le gaz n’est pas isolé, cette énergie totale fluctue au cours du temps, et sa
moyenne temporelle correspond a I’énergie interne du systeme :

U:@mm:iélu%ﬁﬁ%“m@mﬁy“mmm, (3)

ou 7 est un temps long devant I’échelle de temps des fluctuations d’énergie. L’écriture ci-dessus met en
valeur le fait que pour calculer cette moyenne temporelle, il faut résoudre les équations du mouvement pour
N ~ 10?3 particules afin de déterminer leurs trajectoires r;(t) et leurs impulsions (produit de la masse et
de la vitesse) p;(t). Nous avons vu que c¢’est impossible.

Devant cette impossibilité, la mécanique statistique adopte I’approche suivante. Imaginons qu’au lieu
d’étudier une seule enceinte contentant le gaz, nous puissions étudier un grand nombre d’enceintes identiques
contenant le méme gaz. Si j'arréte le temps a un instant ¢ et je choisis une de ces enceintes au hasard, je

peux définir la probabilité P(ry,...,ry,p1,-..,Pn) de trouver les particules aux positions rq,...,ry avec
les impulsions py,...,py. Je peux alors définir une moyenne statistique de ’énergie
(E)stat = Z Eiot({ri, piH)P({ri, pi})- (4)
{ri,p:i}
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Le postulat central de la mécanique statistique consiste a dire que les deux moyennes sont égales :
<E>temp = <E>stat' (5)

Ce postulat résout de fait notre probléme : il est infiniment plus simple de déterminer la probabilité pour
qu'un systéme occupe une configuration au cours de sa dynamique que de déterminer I'entiereté de sa
dynamique. Dans ce cours, nous apprendrons a calculer ces probabilités.

Un systeme qui respecte 1’égalité est dit ergodique. L’ergodicité ne peut étre démontrée rigoureu-
sement que pour des systémes trés simples (par exemple le billard de Sinai — un systéme de deux particules
circulaires dans une boite carrée), mais elle est en pratique vérifiée pour la tres grande majorité des systémes.
Certains systémes sont non-ergodiques car ils ont une dynamique tres lente : par exemple, les systeémes vi-
treux. On peut toujours y faire de la mécanique statistique (par exemple grace a la méthode des répliques
de Parisi), mais avec grande précaution.

4) Structure de ce cours

Apres avoir rappelé les outils mathématiques nécessaires, nous allons construire I’appareil théorique
de la mécanique statistique. Cela consiste essentiellement & déterminer comment calculer les probabilités
introduites ci-dessus. Nous verrons que ces probabilités dépendent de la facon dont le systeme d’étude
est couplé a son environnement : c’est ce qui définit les différents ensembles statistiques. Nous passerons
ensuite la majeure partie du cours a appliquer cet appareil théorique, et voir quelles informations il peut nous
apporter sur différents systeémes de complexité croissante : du gaz parfait aux membranes semi-perméables en
passant par la catalyse hétérogene. Au chapitre VIII, nous étudierons notamment les systémes de particules
en interaction, qui sont le coeur de la mécanique statistique car ils sont le lieu des véritables phénomenes
émergeants — des comportements intrinsequement collectifs tels que les transitions de phase. Si le temps le
permet, nous toucherons a quelques applications interdisciplinaires de la mécanique statistique, notamment
les premiers modeles de réseaux de neurones.

5) Bibliographie

Divers aspects de ce cours sont inspirés des ouvrages ci-dessous :

o KARDAR, Statistical Physics of Particles. C’est le cours donné au MIT — le livre est compact et
accessible ; son exposition des fondamentaux est la plus proche de celle faite dans ce cours.

e Diu, GUTHMAN, LEDERER, ROULET, Physique Statistique. Ce livre a longtemps servi de base au
cours donné a 'ENS. Il est trés rigoureux sur les fondamentaux et permet d’aller dans les détails
grace a deux nombreux compléments.

o CALLEN, Thermodynamics and an Introduction to Thermostatistics. Intéressant pour sa construction
"moderne” de la thermodynamique.

Je mentionne également MCQUARRIE, Statistical Thermodynamics, qui présente des applications a la chimie
— notamment le calcul des constantes d’équilibre. Attention cependant : la construction des fondamentaux
y est tres différente de celle faite dans ce cours.

Ce cours est également inspiré des cours que j’ai moi-méme suivis sur divers aspects de la mécanique
statistique. J’adresse donc ici de chaleureux remerciements & mes professeurs : Jean-Frangois Allemand,
Bernard Derrida, Werner Krauth, Lydéric Bocquet, Denis Bernard, Jesper Jacobsen, Henk Hilhorst, Rémi
Monasson, Giulio Biroli et Guilhem Semerjian.

II. Outils mathématiques

Ce chapitre compile les techniques et résultats mathématiques qui seront utiles dans la suite du cours.
Certains sont des rappels, mais d’autres seront probablement nouveaux.

1) Dérivées et intégrales
a) Dérivée partielle et totale

Je pars du principe que vous avez ’habitude dériver et d’intégrer des fonctions d’une seule variable. Je
rappelle ici sur un exemple les spécificités des fonctions a plusieurs variables.
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Pour (z,y) € R et 8 € R, on pose
2 2
fla,y) = PH0), (6)
Le but d’une dérivée partielle est de voir comment varie une fonction en réponse a une petite variation

d’une de ses variables, les autres étant fixes. En pratique, pour calculer la dérivée partielle de f par rapport
a x, on imagine que la seule variable est = et que les autres sont des constantes :

of

o = 2Pae ), (7)

NOTATION. On précise parfois les variables qui sont maintenues fixes dans une dérivée partielle. On met
aussi parfois la variable par rapport a laquelle on dérive en indice :

of _ of
On peut dériver encore, cette fois par rapport a y :
62f 2 2
— 4832 pyeBE YT 9
I Brxye (9)
On aurait pu aussi commencer par dériver f par rapport a y :
af 2,2
— 928yl +y7) 10
9y Bye ; (10)
puis dériver par rapport a x :
0% f 5 2,2
=4 Ala"+y7), 11
S = A ye (1)

On retrouve ici le théoréme de Schwarz : pour une fonction f(z,y) suffisamment ”gentille” (comme la
tres grande majorité de celles rencontrées en sciences naturelles)

0% f B 0% f
0xdy  Oydx’

Il nous appartient de spécifier quelle quantité est une constante et quelle quantité est une variable. Nous
pouvons par exemple considérer que [ est une variable, et calculer

of
B
La différentielle de la fonction f est sa variation infinitésimale en réponse a une variation infinitésimale
de chacune de ses variables :
f 9f 4

Jy dy.

Le but d'une dérivée totale est de voir comment varie une fonction en réponse a une petite variation
de I'une de ses variables, les autres variables n’étant pas maintenues fixes. En pratique, la dérivée totale de
f par rapport a x, par exemple, s’obtient en divisant 'expression de la différentielle par dz :

df _of L of of dy
dz ~ oz Oy dx’
Nous ne pouvons pas calculer cette dérivée totale dans le cas général car nous ne savons pas comment varie

y quand on varie x : cela dépend du chemin suivi sur la surface définie par la fonction f. Si 'on spécifie un
chemin (z(t),y(t)), alors

(12)

= (22 + y2)eP "), (13)

df—6(1+ (14)

(15)

dy _dydt  dy/dt _ y(t)

dr _ dtde  dejdt ()’ (16)
“ af _of  of i)
& _9) 9T
de 0z Oy a(t) (17)
Nous pouvons également calculer la dérivée totale par rapport a ¢ :
df _ of of. of
U= ot T i+ ayy() (18)
<~

=0
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b) Intégrale d’une fonction & plusieurs variables

On peut intégrer une fonction de plusieurs variables par rapport a I'une de ses variables. Physiquement,
cela correspond a calculer aire sous la courbe f(x) & y fixé. y se comporte alors comme une constante et
peut étre sorti de 'intégrale :

b b
/ dmeﬁ(:”%ry?):eﬁy?/ dz e (19)

NOTATION. Il ne faut surtout pas oublier I’élément différentiel dx, qui spécifie la variable d’intégration !

On peut également intégrer f par rapport a ses deux variables a la fois. Physiquement cela correspond
a calculer le volume sous la surface définie par f(z,y). Si f peut étre factorisée comme f(z,y) = g(z)h(y),
I'intégrale double se rameéne au calcul du produit de deux intégrales simples :

bopb . b s ,
// dady e?@ ﬂl):/dxeﬁz/ dyePv. (20)

C’est un cas auquel on cherchera souvent a se ramener en mécanique statistique.

c) Intégrale d’une différentielle

La différentielle df d’une fonction f(x,y) donne sa variation infinitésimale entre deux points (xo,yo)
et (xg + da,yo + dy) trés proches. Pour obtenir la variation de f entre deux points arbitraires (zg,yo) et
(z1,¥y1), on somme les variations infinitésimales — on integre la différentielle :

flz1,91)
[ = renn) - foom) (21)
f(zo,y0)
En pratique, on a souvent ’expression de la différentielle sous la forme
of of
df = —d —dy. 22
f=5 T+ 5, (22)

Cette expression décompose la variation infinitésimale de f en celle due a la variation de x et celle due a la
variation de y. On peut sommer chacune de ces variations infinitésimales :
1 0 Y1 0
f of |

f(x1,y1) = f(wo,90) = —-dz + 3y Y.

- (23)

Yo

En pratique, on se retrouve donc a calculer une intégrale par rapport a = et une intégrale par rapport a y.
Attention cependant : les deux intégrandes dépendent a la fois de = et de y, et il faudra exprimer I'un en
fonction de l'autre pour pouvoir calculer les intégrales : cela correspond a définir un chemin d’intégration
dans le plan (z,y) (cf. Série 1 d’exercices).

d) Intégrales gaussiennes

On rencontrera souvent en mécanique statistique différentes versions de I'intégrale de Gauss : pour a > 0,

oo 2 ™
dee ® =4/—. 24
[y 2

On peut généraliser ce résultat en présence d’un terme linéaire :

+oo “+o0
/ Qo o=@ br _ / A o~ (@ —2(b/2a)a+(b/2a)> ~ (b/2)?) (25)
—+o0
z/ dx 6%67(1@7})/2&)2 = Ee%. (26)
e a

Dans la derniére égalité, on implicitement utilisé le changement de variable u = x — b/2a, qui nous rameéne
au cas de 'Eq. (24)). Ce résultat se généralise également au cas d’'une intégrale multidimensionnelle. Si A
est une matrice de taille N x IV, inversible et de déterminant positif, et B un vecteur de dimension N, alors

~-XTAX+BTX _ ™ Lor
/RNdXe ”detAeXp 4B A™'B|. (27)
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NOTATION. On note ici X le vecteur colonne (z1,...,zy) des variables d’intégration. X7 désigne la
transposée de X, donc le vecteur ligne (z1,...,2zn).

2) Développements limités

Nous utiliserons beaucoup les développements limités dans ce cours, surtout pour simplifier les expres-
sions et ne garder que les termes dominants dans la limite des grand nombres.

a) Développement limité autour d’un point

Si une fonction f est suffisamment dérivable autour d’un point a, alors on peut écrire (formule de
Taylor-Young) :
" (z—a)k drf ,
fa) = fla)+ 3 E LI (- ap) (25)
k=1 ’ a

Cette formule donne une approximation de f(z) autour du point a par un polynéme de degré n. Le o(z —a)™
est une fonction qui n’est pas connue explicitement, mais dont on sait que
o(x —a)”
tim 2= (20)
z—a (x—a)®
C’est une correction qui est négligeable devant (x — a)™ au voisinage de a. En pratique, on omettra souvent
le o, et on utilisera le signe ~ pour indiquer que l'on fait une approximation.

b) Développement asymptotique

On parle de développement asymptotique lorsque 1’'on approxime une fonction autour d’un point a €
R U +o0 tel que lim,_,, f(x) = too. Le développement asymptotique n’est pas forcément un polyndéme en
z. Il a la forme générale

f(x) = g(x) +n(x), (30)

o n(x) est négligeable devant g(x) au voisinage de a, i.e., lim,_, n(x)/g(x) = 0. Il n’y a pas de formule
générale pour le développement asymptotique. Souvent, il s’obtient en faisant le développement limité d’une
fonction auxiliaire, comme on verra dans des exemples par la suite. Pour les développements asymptotiques,
il est utile de connaitre I'ordre de ”puissance” des fonctions usuelles quand x — oo :

logx = o(x™) et z™ = o(e”). (31)

3) Probabilités

Malgré ce que peut laisser présager ’'intitulé du cours, nous n’aurons besoin que de notions trés basiques
de probabilités.

a) Variable aléatoire discréte

Une variable aléatoire discréte « peut prendre des valeurs dans un ensemble discret d’issues {1, ..., z,} =
S. La probabilité de Iissue z; est définie par
Ni(N)
P(x;) = lim ———=, 2
ot N;(N) est le nombre de fois ot ’on a obtenu x; sur N échantillons de la variable z. On a donc Vi, P; > 0
et

n
ZP(I‘Z) =1 (condition de normalisation). (33)
i=1
Un événement £ est un sous-ensemble de S. La probabilité d’un événement est donnée par la somme des
probabilités des issues donnant lieu a cet événement :

P(E) = P(x). (34)
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Si toutes les issues sont équiprobables, Vi,P; = 1/n = 1/Card(S), et on a

Card(€)
P€) = ——=. 35
() Card(S) (35)
Intuitivement,
nombre d’issues favorables
P& = . 36
(€) nombre d’issues possibles (36)
La moyenne de z est définie par
. (1) +x2(2)+---+2x(N

ou les x(k) sont les valeurs de x obtenues par échantillonnage successif. En utilisant, la définition des
probabilités, cela revient a

(x) = inﬂ‘)(xi). (38)
La variance de x est
Var(z) = (22) — (z)2. (39)

Var(z) est I'écart quadratique typique d’un échantillon de x & sa valeur moyenne. On définit également

Pécart-type o(z) = 1/ Var(z).

b) Variable aléatoire continue

Une variable aléatoire continue X peut prendre des valeurs dans un intervalle S de R, fini ou non. La
densité de probabilité ou distribution de probabilité de X est définie par
1 0N(x)

Px(w) = 512210 J\;E)noo N oz

; (40)

ot 6N (x) est le nombre de fois oti I'on a obtenu une valeur entre = et 2+ dz sur N échantillons de la variable
X. On a donc Vz, Px(z) >0 et

/ dzPx(x) =1 (condition de normalisation). (41)
s

Intuitivement P(z)dx est la probabilité quun échantillon de X soit égal & x & dz preés. Un événement £ est
un sous-ensemble de S. La probabilité d’un événement est donnée par la somme des probabilités des issues
donnant lieu & cet événement :

P(E) = /g dz Py (z). (42)

La moyenne de X est définie par

(X = fim XX+t X(N)

ou les X (k) sont les valeurs de X obtenues par échantillonnage successif. En utilisant, la définition des
probabilités, cela revient a

(X) = / dz aPx (z). (44)
s
On définit la variance et ’écart-type de la méme facon que pour une variable continue.
REMARQUE. Il existe des distributions de probabilités continues, bien normalisées, qui ont pourtant une
variance infinie, voire une moyenne infinie !
> Exemple : distribution gaussienne ou normale.

C’est une distribution que I'on rencontrera trés souvent. Pour une variable aléatoire X qui prend des
valeurs dans R, elle est de la forme

Py (z) = ﬂi? exp (-W) . (45)
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Par la formule de I'intégrale gaussienne, on vérifie que la distribution est bien normalisée : fR dzP(z) = 1.
La moyenne de X est donnée par

(X) = Mzi? [ J:de:z:exp <_(“:2072”)2> (46)

1 Heo x?

= W[m dz (x + m) exp (_W> (47)
1 Feo x? m oo x?

= W[m dx z exp (—02) —&-W [m dx exp (_W) =m. (48)

=0

On vérifie également que la variance de X est o2.

4) Lois des grands nombres
a) Limite thermodynamique

En mécanique statistique, nous serons souvent amenés a considérer des systéemes dont le nombre N
de particules tend vers l'infini : c’est ce que l'on appelle la limite thermodynamique. On peut classer les
quantités physiques selon leur comportement dans cette limite.

e Les quantités intensives ne dépendent pas de N. Exemples : température, pression.

e Les quantités extensives sont proportionnelles a N. Exemples : volume, énergie, entropie.

e Les quantités exponentielles sont proportionnelles & eV? avec ¢ > 0. C’est typiquement le cas du
nombre de configurations possibles de N particules.

NOTATION. Une quantité proportionnelle & f(IN) quand N — oo est notée O(f(N)).

Je mentionne ci-dessous quelques méthodes d’approximation tres utiles dans la limite thermodynamique.

b) Méthode du col
On considere une somme de quantités exponentielles en N et positives :
P
S=)"Q, 0<Q=0(@""). (49)
i=M

Dans la limite thermodynamique, cette somme peut-étre approchée par son terme le plus grand.
En effet, si max; ; = Qmax ~ eV %max alors

i imax 0
=1 ! 50
ook DR e (50)
i=1,....,M
R
On note maintenant max;-;__ . € = 4 ~ eN®ii . Alors on a
0 <R <OMe N imax—9)) 5 0, (51)
N—oc0
méme si M = O(NP). Ce résultat peut se généraliser pour une intégrale du type
b
I= / dz exp (No(z)). (52)
a

Supposons que ¢ atteint son maximum sur [a, b] en Zmax. Alors nous pouvons faire un développement limité
de ¢ autour de xyax, en notant bien que la dérivée premiere de ¢ en xpyax est nulle car il s’agit d'un
maximum :

7= [ ey I (s~ 316 Gz~ rma? 5 ). (53)
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En négligeant les termes au-dela de 'ordre 2,

b
N
T ~ eNVo(@max) / dz exp [—2|¢"(xmax)|(x - xmax)g} (54)
a
A eNO(@max) /+oo dx exp *EW'(I (@ = Tmax)? | = 2 Ntema) (55)
- 2 max max N|¢”($max)| .
On peut vérifier que les corrections dues & lextension du domaine d’intégration & | — 0o, +0o[ sont sous-

dominantes dans la limite thermodynamique. Comme pour le cas de la somme, il peut également y avoir
des corrections exponentiellement négligeables dues a des maxima secondaires de ¢.
c¢) Formule de Stirling

La formule de Stirling donne un approximation de N! pour N grand. On peut la démontrer par un calcul
d’intégrale utilisant la méthode du col. On trouve d’abord une représentation intégrale de N! en partant du

fait que
+o0 1
/ dee " = —. (56)
0 «
En dérivant par rapport a «, on obtient
+oo 1
/ drze™ ™ = —, (57)
0 Q@
et, en répétant I'opération N fois,
+oo N N!
/0 dza™e " = oNTT (58)
En posant o = 1,
+oo 400 T
N!= / deaNe™™ = / dx exp [N (logw - —)} . (59)
0 0 N

On retrouve une intégrale de la forme ci-dessus avec ¢(x) = logz — 2/N. Cette fonction est maximale en
Tmax = N, ¢(Tmax) =1og N — 1 et ¢ (2max) = —1/N2. Donc, par la méthode du col, on trouve

N!'~ NNe=Ny2rN. (60)

En prenant le logarithme des deux c6tés, on trouve la formule de Stirling :

log N! = Nlog N — N + O(log N) (61)

d) Théoréme central limite

Le théoréme central limite est un résultat tres général qui concerne la somme d’un grand nombre de
variables aléatoires. Soient x1,...,zy des variables aléatoires indépendantes, discrétes ou continues, de
distribution quelconque. Soit X = Zf\il x;. Alors la distribution de X est une gaussienne, de moyenne égale
a la somme des moyennes de x; et de variance égale a la somme des variances des x; :

N

T —my)? al
Px(x) ;exp ((N)> , avec my = Z<LE1> et o = Z\/ar(xi). (62)

~
N—o00 2 20’2
2moyy N i=1 i=1

Ce résultat explique pourquoi trés souvent les observables naturelles (taille des étre humains, prix dans un
supermarché, durée des trajets en voiture, etc) ont une distribution gaussienne : elles sont déterminées par
la somme d’un grand nombre de facteurs. En mécanique statistique, il s’appliquera aux fluctuations autour
de I’équilibre thermodynamique.
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5) Entropie statistique

Le dernier paragraphe de ce chapitre concerne un concept de théorie des probabilités qui sera crucial
pour la suite du cours : 'entropie statistique. Je 'introduis ici sur un exemple.

Alice joue a pile ou face avec le démon de Maxwell. Le démon lance la piéce un grand nombre N de fois
a la suite et note le résultat (0 pour pile et 1 pour face) sans le montrer & Alice. Alice gagne si elle parvient
a deviner la séquence exacte de 0 et 1. Alice s’est préparée a affronter le démon : elle a précédemment étudié
la piece et elle sait que pile tombe avec une probabilité p et face tombe avec une probabilité 1 —p. Si N est
tres grand, elle peut donc étre quasi-certaine que la séquence contiendra Np fois 0 et N(1 — p) fois 1. Le
nombre de telles séquences est

N N!

Ah))::(Amﬂ(NAmﬂ’ (63)

Nb[séquences] = (

Bob, qui connait également les séquences possibles, est parvenu a jeter un coup d’oeil par-dessus I’épaule
du démon et & voir la séquence & deviner. Mais il ne peut communiquer avec Alice que par code binaire. Le
nombre de bits que Bob doit envoyer & Alice pour lui indiquer la bonne séquence est donné par

oNPIPIts] — Nb[séquences], (64)
donc
. 1 N!
Nb[bits] = Tog 2 log ((Np)!(N — Np)!) (65)
= @ [log N1 —log(Np)! —log(N — Np)!| (66)
:bgzWﬁgN?JV*A%bﬁA%%+Np*NO*pﬂ%UWI—M)+Nu4pn (67)
— o [Plogp+ (1= p)log(1 ~ )], (65)

ou l'on a utilisé la formule de Stirling dans la limite N grand. Malgré le fait qu’elle connait la distribution
de probabilité P = (p,1 — p) de la piéce, il manque toujours a Alice Nb[bits] bits d’information pour gagner
a coup sir. La manque d’information relatif Nb[bits] /N est ce que lappelle I'entropie statistique S de la
distribution de probabilité P. Pour une distribution binaire (p,1 — p), nous venons donc de trouver que
I’entropie est

1
S=———Ipl 1—p)log(l —p)]. 69
1%2@ww+( p)log(1 — p)] (69)
Ce résultat se généralise & une distribution sur M valeurs (p1,...,py) : il suffit de reproduire 'expérience

de pensée ci-dessus avec un dé a M faces au lieu d’une piéce. On trouve

1 M
S bwz;9%p (70)

En résumé, ’entropie statistique quantifie I’information que 1’on acquiert sur I’issue d’une
expérience aléatoire en apprenant la distribution de probabilité de ses issues. Plus précisément,
I’entropie représente le manque d’information par rapport a la situation o1 nous connaitrions
parfaitement 1’issue de 1’expérience.

Si nous connaissons parfaitement ’issue de ’expérience, I'un des p; vaut 1 et tous les autres valent 0.
On vérifie bien dans ce cas que S = 0. A l'inverse, l'entropie est maximale lorsque 'on ne sait rien sur
lissue de lexpérience : p; = 1/M et S = log M/log2. En revenant au jeu de pile ou face ci-dessus M = 2
donc S =1 : Alice ne gagne rien a avoir étudié la piece et Bob doit lui transmettre l'intégralité des N bits
d’information a deviner pour qu’elle puisse gagner.
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III. Systemes isolés : ensemble microcanonique

1) Micro-états et énergies

Nous avons maintenant tous les outils pour construire la mécanique statistique. Notre point de départ est
un systeéme ayant un grand nombre M de coordonnées microscopiques. On appelle micro-état du systeme
une configuration C = (uq,...,ups) de ses coordonnées microscopiques.

REMARQUE. On parlera en fait de micro-états ou de configurations de facon interchangeable selon le
contexte.

On suppose qu’il existe une fonction E(C) qui associe une énergie & chacun des micro-états.

e Pour un systeme classique, les u; correspondent aux positions et aux vitesses des particules. Plus
précisément, pour un systeme classique de N particules ponctuelles évoluant en 3 dimensions, M =
6N vu que pour chaque particule il y a trois coordonnées de position r; = (x;,y;, ;) et trois coor-
données de vitesse v; = (v¥,v?,v7). En mécanique statistique, on préferera utiliser les impulsions
pi; = m;v; (masse multipliée par la vitessse), la configuration est alors C = (ry,...,rN,P1,---,PN)-
L’énergie associée est la somme de 1’énergie cinétique et de ’énergie potentielle :

2
p;

+ V({r;}). (71)

HMz

e En mécanique quantique, un systéme (& une ou plusieurs particules) est décrit par une fonction
d’onde ¥(¢), dont la dynamique est régie par un opérateur hamiltonien H. Pour des raisons que
I'on donnera plus tard dans le cours, les micro-états d’un systéme quantique correspondent
aux états propres du hamiltonien. La configuration est donc donnée par ’ensemble des nombres
quantiques qui définissent cet état propre, et son énergie est la valeur propre du hamiltonien associée.
Par exemple, une configuration de 1’électron de I'atome d’hydrogene est spécifiée par la donnée de
trois nombres C = (n, ¢, m).

e On peut également faire de la mécanique statistique sur un systéme dont on ne spécifie pas la
dynamique microscopique, mais dont on donne seulement les micro-états et les énergies associées.
C’est ce qu’on fera pour les systémes de spin notamment. C’est 1a une grande force de la mécanique
statistique : on peut prédire les conséquences d’une dynamique microscopique sans méme la connaitre !

2) Equilibre thermodynamique et macro-états

On cherche a décrire un systeme a 1’équilibre thermodynamique. Cela signifie que ses coordonnées ther-
modynamiques ne varient pas dans le temps. Par opposition aux coordonnées microscopiques, les coor-
données thermodynamiques caractérisent la facon dont le systéme dans son ensemble interagit avec son
environnement. Elles comprennent toujours ’énergie interne U, que 'on identifie & I’énergie moyennée sur
la dynamique microscopique (E) (voir 1.3). Les autres coordonnées thermodynamiques sont liées aux fagons
dont le systéme peut recevoir du travail mécanique ou chimique et viennent par paires : une ”coordonnée”
X et une "force” J.

> Par exemple, un gaz recevoir du travail mécanique par les forces de pression : §W = —PdV. Ici la
“coordonnée” est V et la "force” est —P.

> Le travail chimique correspond a I’ajout de particules dans le systéeme : 6W = pudN. Maintenant, la
“coordonnée” est N et la "force” est u.

> On fait du travail mécanique sur une ressort en tirant dessus. Le travail mécanique élémentaire s’écrit
OW = FopdL, ou Fy, est la force exercée par I'opérateur, comptée positivement dans le méme sens que L.
Fop, est la "force” et la longueur L est la ”"coordonnée”.

REMARQUE. On remarquera la différence de signe : W = —PdV mais 6W = F,,dL. La raison est que
la force de pression exercée est comptée positivement dans le sens ou elle pousse, alors qu’il est plus naturel
de compter positivement la force exercée par un ressort dans le sens ou elle tire.

On peut par ailleurs introduire d’autres coordonnées thermodynamiques (la température T', Uentropie S,
Pénergie libre F, I'enthalpie libre G, etc) qui sont fonctions des précédentes. On appelle macro-état d’un
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systéme I’ensemble de ses coordonnées thermodynamiques. Comme on peut introduire un nombre
arbitraire de coordonnées thermodynamiques, elles ne sont pas toutes indépendantes. Si un systeme a n
fagons de recevoir du travail mécanique ou chimique, il faut spécifier (n+ 1) coordonnées thermodynamiques
(par exemples les n coordonnées z et I’énergie U). Elles correspondent aux contraintes imposées au systéme
par son environnement.

Notre démarche sera la suivante. A partir d’un jeu de contraintes spécifiant un macro-état, nous allons
déterminer I’ensemble des micro-états compatibles avec ces contraintes, puis nous allons calculer toutes les
coordonnées thermodynamiques du macro-état en faisant des moyennes statistiques sur cet ensemble.

3) Ensembles statistiques

On appelle ensemble statistique 'ensemble des configurations d’un systéme. On distingue différents types
d’ensembles selon les contraintes imposées aux configurations.

e Un ensemble microcanonique contient des configurations C & énergie E(C) fixée. Ce sont les confi-
gurations d’un systéme isolé. Les coordonnées thermodynamiques fixées sont (F,X).

e Un ensemble canonique contient toutes les configurations (d’énergie arbitraire) qui peuvent étre
atteintes en faisant varier les coordonnées microscopiques (ui,...up), M étant fixé. Ce sont les
configurations d’'un systeme fermé, qui peut échanger de I’énergie mais pas de particules avec son
environnement. On montrera que les coordonnées thermodynamiques fixées sont alors (7, X).

e Un ensemble grand-canonique contient toutes le configurations qui peuvent étre atteintes en faisant
varier les valeurs (uq,...,ups) et les nombre M de coordonnées microscopiques. Ce sont les configu-
rations d’un systeme ouvert, qui peut échanger des particules et de I’énergie avec son environnement.
On montrera que les coordonnées thermodynamiques fixées sont alors (7', i, X).

e Nous verrons d’autres types d’ensembles qui sont obtenus en imposant d’autres contraintes aux
coordonnées microscopiques.

4) Postulats fondamentaux et distribution microcanonique

Nous avons vu que les coordonnées thermodynamiques sont obtenues en moyennant des observables
O(uyq,...,up) sur la dynamique microscopique (u1(t),. .., ua(t)). Nous avons également anticipé le premier
postulat fondamental de la mécanique statistique, qui nous permet de nous affranchir de cette dynamique :

Postulat 1 (ergodicité) : la moyenne temporelle d’une observable sur la dynamique
microscopique est égale a sa moyenne statistique sur ’ensemble des configurations.

Pour calculer une moyenne statistique, nous avons besoin de connaitre les probabilités P(C) associées
aux configurations. C’est 1a qu’intervient le second postulat fondamental.

Postulat 2 (équiprobabilité) : dans un ensemble microcanonique, toutes les configura-
tions sont équiprobables.

REMARQUE. Ce postulat peut étre démontré pour une dynamique microscopique classique (cf. Kardar,
chapitre 3). Pour une dynamique quantique, la situation est plus subtile. Si un systéme isolé est préparé
dans un état propre de son hamiltonien, il y reste indéfiniment, méme s’il existe d’autres états propres a la
méme énergie. Mais, en pratique, méme s’il n’effectue pas d’échanges macroscopiques d’énergie, un systeme
quantique ne peut pas étre parfaitement isolé et il effectue donc des sauts stochastiques entre états propres
dégénérés, qui sont de ce fait rendus équiprobables. Si ’on ne spécifie pas de dynamique microscopique, on
suppose en fait qu’il en existe une, et qu’elle vérifie les deux postulats fondamentaux.

On note 1

P(C) = ——=, 72
ou Q(U,X) est le nombre de configurations C vérifiant F(C) = U, et compatibles avec les contraintes X
(par exemple nombre de particules et volume). On dit également que Q(U, X) est la fonction de partition
microcanonique.
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5) Entropie et formule de Boltzmann

Etant donnée une distribution de probabilités P(C) sur un ensemble statistique {C}, on peut définir son
entropie statistique au sens du chapitre précédent :

1

S:-1%22;Pwn%Pwy (73)

Dans cette définition, le facteur 1/log 2 vient du fait que 'on a choisi de compter l'information en bits. En
mécanique statistique, on choisit comme unité d’information la constante de Boltzmann kg =~ 1.38 x
10723 J.K~!. Ce choix permet par la suite de retrouver le Kelvin comme unité de température. On retiendra
donc :

Pour une distribution P(C) quelconque :

S=—kg Y P(C)logP(C) (74)
C

Dans le cas d’un distribution microcanonique, on retiendra la fameuse

Formule de Boltzmann. Pour une distribution microcanonique sur 2 micro-états, I’entropie est
donnée par
S = kplog Q2. (75)

Cette formule incarne le lien entre microscopique et macroscopique établi par la mécanique statistique.
Quand Boltzmann écrit cette formule, autour de 1870, I’entropie n’est connue que de fagon phénoménologique,
dans le cadre du second principe. La relier & une quantité microscopique (le nombre de micro-états du
systéme) — c’est un véritable éclair de génie, qui donne de fait naissance & la mécanique statistique.

6) De l’entropie statistique a ’entropie thermodynamique

Nous allons montrer que ’entropie statistique que nous avons introduite s’identifie & I’entropie thermo-
dynamique. Pour cela, nous devons vérifier que ’entropie statistique vérifie les postulats du second principe.

a) Extensivité de I’entropie

Considérons deux systemes isolés 1 et 2 ayant respectivement 21 et 25 micro-états. Le systeme combiné
1U2 possede 21 - Q5 micro-états. En effet, les systémes étant indépendants, pour chacun des micro-états de
1, 2 peut étre dans n’importe lequel de ses 25 micro-états. Alors, par la formule de Boltzmann

Siuz = kplog(Q - Q) (76)
= kplog Q1 + kplog Qs = 51 + S5. (77)

b) Condition d’évolution spontanée

Un systeme évolue spontanément lorsqu’on reldche une contrainte extérieure. Le nombre de micro-états
accessible au systeme augmente et donc, par construction, I’entropie d’un systéme isolé augmente
toujours lors d’une évolution spontanée.

c) Identité thermodynamique

Il nous reste en principe a établir le lien entre 'entropie et la chaleur. Comme les transferts thermiques
n’ont pas de sens pour un systéme isolé, on établira ce lien plus tard dans le cours. Pour finir d’identi-
fier 'entropie thermodynamique avec l’entropie statistique, nous allons montrer que cette derniére vérifie
I'identité thermodynamique fondamentale.
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Considérons pour cela de nouveau deux systémes 1 et 2, d’énergies initiales U et US. Supposons qu’ils
sont mis en contact par une paroi diathermale, de facon a ce qu’il puissent échanger de ’énergie mais pas de
la matiere. Une fois le nouvel état d’équilibre atteint, on isole de nouveau la paroi entre les deux systemes
et on note U;? et Us? leurs énergies respectives. Le systéme combiné étant isolé, son énergie totale reste
constante : Uy + Us® = UY + UY = U. Par ailleurs, L I'entropie étant extensive,

S1uz2 = S1(Ur) + S2(Uz) = S1(Ur) + S2(U — Uh) (78)

En vertu de la condition d’évolution spontanée, Sy 2(Ur%) > S102(UY). On peut méme dire que Sy (Ur)
est maximale par rapport a Uy en Uy = U;? : sinon, I’évolution ne se serait pas arrétée. On a donc

0S1(UY) _ _ 9S1(UFY)|  _ 9Sx(U —UFY)

o, i el (79)

Nous avons donc identifié une quantité qui s’équilibre entre deux systemes lorsqu’ils sont mis en contact :
cela correspond & notre intuition de la température, mais il faut I’inverser pour avoir la bonne unité. Dans
le cadre de la mécanique statistique, on définit donc la température d’un systeme isolé a I’énergie U comme
la l'inverse de la dérivée de son entropie par rapport a son énergie, les autres contraintes étant maintenues
constantes :

1 9S(U,X)
T(U,X)  oU |x (80)

On peut maintenant reproduire ce raisonnement pour identifier les forces thermodynamiques a des
dérivées partielles de I'entropie. Considérons par exemple un gaz isolé : les contraintes qui lui sont imposées
sont X = (V, N). Imaginons mettre en contact deux gaz de fagon & ce qu’ils puissent échanger du volume,
mais pas d’énergie ni de particules. Par exemple, on place entre les deux gaz une paroi adiabatique, mais
qui peut coulisser. Les volumes respectifs des gaz sont Vi et Vo, le volume total étant fixé Vi3 + Vo = V.
L’entropie totale est

Siuz2 = S1(U1, Vi, N1) + S2(Ua, V — V1, No), (81)

et donc a I'équilibre 051 /0Vi|u, N, = 052/0Va|u,, N,. On sait que la quantité qui doit s’équilibrer dans cette
configuration est la pression, et pour l'avoir dans la bonne unité, on identifie

P  0SWUV,N
i ( k) ) ) (82)
T oV UN
De la méme facon,
oS(U,V,N
_n_ 95UV, N) (83)
T ON UV
De maniere générale, si J; est la force conjuguée a la coordonnée X; (pour rappel, dW = J;dX;),
J; 0S(U, X
2= ¥ ) (84)
T oXi |y, Xy

Maintenant que nous connaissons toutes ses dérivées partielles, nous pouvons différentier ’entropie :

08

08
dS = —| dU+ T dX; 85
aU’X 21: 3X'L' U, Xj2; ( )
dU Ji
=— - —dX;.
- (56)
On obtient donc :
dU =TdS + ) JdX;. (87)
En particularisant & X = (V, N), on trouve bien
dU =TdS — PdV + pdN. (88)
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On conclut donc que l'entropie statistique, définie & partir des micro-états, s’identifie a ’entropie ther-
modynamique, définie phénoménologiquement. En faisant cette identification, nous avons en fait rempli
lintégralité de notre programme : étant données des contraintes (U, X), nous savons calculer I’entropie en
énumérant les micro-états correspondants, et ensuite calculer toutes les autres coordonnées thermodyna-
miques en prenant des dérivées partielles de ’entropie.

7) Exemples

Nous avons maintenant assez d’outils théoriques pour étudier des vrais systémes. Malheureusement, la
plupart des vrais systémes ne sont pas isolés, et il nous faudra construire la théorie pour les systemes en
contact avec un thermostat (ensemble canonique) pour traiter la plupart des exemples. Mais les quelques
exemples qui peuvent étre traités dans I’ensemble microcanonique nous permettront de tirer des conséquences
physiques importantes.

a) Systémes 4 deux niveaux

On considéres N spins 1/2 placés dans un champ magnétique externe B. Chaque spin est un systéme
quantique avec deux états propres, que 'on notera | et 1, d’énergies respectives 0 et e. Physiquement,
€ = hyB, ou 7 est le facteur gyromagnétique du spin en question. Ce genre de systéme est typiquement
I’objet d’étude de la spectroscopie RMN : les spins sont alors des spins nucléaires, appartenant par exemple
aux protons contenus dans un échantillon. Il existe un protocole relativement standardisé pour ’étude d’un
systeme en mécanique statistique.

(1) Identification des micro-états et de leurs énergies. Un micro-état correspond & un choix donné des
Ny spins qui sont dans I'état 1. Ny est fixé car nous sommes dans ’ensemble microcanonique et tous les
mciro-états doivent avoir la méme énergie U = eNjy.

(2) Calcul de la fonction de partition. La fonction de partition microcanonique est le nombre de micro-
états accessibles étant données les contraintes (U, N). Ici, cela correspond au nombre de fagons de choisir
les N4 spins 1 parmi les IV spins :

N N!
W= (3, )= w "

(3) Calcul du potentiel thermodynamique. C’est Uentropie dans le cas de ’ensemble microcanonique ; en
général, ce sera la fonction d’état qui donne la condition d’évolution spontanée. On applique la formule de
Boltzmann :

S(U,N) = kg [log N! — log Ny! — log(N — Ny)!] (90)
~ kp [NlogN—N—NﬂogNT—&—NT — (N—N¢) log(N—NT) +N—NT] (91)
- Ny Ny N -—-N; N — Ny
= —Nkp [N log N + N log N (92)
U U U U
=-N — log — 1—— 1 1——1.
kp [Ne OgNe+< Ne) og( Ne)] (93)

On a appliqué 'approximation de Stirling pour simplifier les factorielles dans la limite de grand N.
(4) Calcul des coordonnées thermodynamiques d’intérét. Pour cela, on dérive le potentiel thermodyna-
mique. Par exemple, on peut obtenir la température :

1 0S kg U
7" 8UN__elOg(NeU>' (94)

Ce qui nous intéresse, en fait, c’est d’inverser cette expression pour obtenir Ny et N) = N — N; en fonction
de la température :

Ny et N

N 1+ e Pe N 1+ e B¢’
ou l'on a posé f = 1/(kgT). On trouve un (familier ?) facteur de Boltzmann : la probabilité de trouver
un spin dans un état d’énergie € est proportionnelle & e~#¢. Notons bien que 1’on a obtenu ce résultat en
supposant 1’énergie totale fixée, et non la température. Cependant, on aurait obtenu le méme résultat en
faisant la calcul & température fixée (avec un ensemble canonique de micro-états, cf. chapitre suivant). Ceci

(95)
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est en fait une manifestation de I’équivalence des ensembles statistiques dans la limite thermodynamique,
que 'on établira plus tard de fagon formelle.
Pour interpréter quantitativement nos résultats, nous pouvons calculer la polarisation

_Ni—NT_l—e_ﬂe

P = .
N 14 e Be

(96)

Pour un proton, le facteur gyromagnétique vaut v = 2.7x10% s~1-T~!. Pour un champ magnétique de 1 T, on
a donc €/h ~ 270 MHz. Aux échelles atomiques, on aime exprimer les énergies en eV (1 eV = 1.6 x 1071 J).
En termes de fréquences, on peut retenir 1 eV ~ 240 THz, donc ¢ = 1.1 peV. En conditions ambiantes
(T =298 K), kgT = 26 meV. On trouve alors P ~ 2 x 107°. En RMN, les signaux se compensent entre les
spins 1 et |. La polarisation représente donc la fraction de spins nucléaires qui vont effectivement contribuer
au signal RMN : moins que 1 sur 10°. Les techniques d’hyperpolarisation, qui permettent d’excéder cette
polarisation thermique, sont un sujet de recherche actuel.

REMARQUE. Revenons a ’expression de la température en fonction de 1’énergie. Si U > N¢/2, la
température devient négative. De maniére générale, on peut obtenir ce genre de résultat pour des systemes
isolés dont 1’énergie ne peut pas excéder un maximum. Il est alors possible que ’on diminue ’entropie en
augmentant ’énergie, ce qui donne lieu a une température négative. Cependant, ces états ne sont pas des
vrais états d’équilibre car aucun systéeme n’est parfaitement isolé. Si un systeme a température négative est
mis en contact avec le reste de 'univers, il va lui rendre son exces d’énergie et s’équilibrer dans une région de
température positive. Mais de tels états métastables ayant formellement une température négative peuvent
étre créés dans des systemes de spin.

b) Entropie de mélange et paradoxe de Gibbs

L’étude du gaz parfait réaliste dans I’ensemble microcanonique implique des difficultés techniques qui
n’ont pas grand intérét. Nous ferons cette étude dans l'’ensemble canonique. Ici, nous prenons un modeéle
simplifié qui évite ces difficultés, tout en donnant en fait les bons résultats. La simplification consiste a :

e Discrétiser les positions. On supposera que les N particules de gaz se distribuent parmi les M sites
d’un réseau, et qu’il peut éventuellement y avoir plusieurs particules par site. En termes du volume
occupé par le gaz, on peut écrire M = V/Vj, out Vj est un volume élémentaire.

e "Qublier” les vitesses des particules. Cette simplification a du sens car le nombre de configurations
possibles des vitesses pour un arrangement donné des particules sur le réseau apparait comme un
facteur multiplicatif dans le nombre de micro-états : 2 = Qconfig - Qvitesses- 11 donne donc un terme
additif dans I'entropie : S = Sconfig + Svitesses- 1 oubliant la contribution des vitesses on se restreint
a calculer I'entropie configurationnelle du gaz. Pour le processus de mélange que nous allons étudier,
Syitesses Teste constante, et nous allons obtenir la bonne variation d’entropie malgré cette restriction.

Pour chacune des N particules on peut choisir n’importe lequel des M sites, et donc a priori

Qeonsig(N, M) = MY, (97)

ce qui donne une entropie
v
Sconfig(N, M =V/Vy) = Nkglog M = Nkglog 7 (98)
0

Mais cette entropie a le mauvais gotit de ne pas étre extensive! En effet,
Seconfig( AN, AV) = ASconfig (N, V) + ANEp log A # ASconfig (N, V) (99)

Ceci a des conséquences désastreuses. Supposons par exemple que 1'on laisse se mélanger deux gaz identiques
caractérisés par (Ny,M; = Vi/Vo) et (Na, My = Vo/Vp). Ils n’ont pas forcément le méme nombre de
particules ou le méme volume, mais ils ont la méme densité : N1 /M; = No/M,. L'entropie avant mélange
est alors

Si = N1k log M1 + Nokg log M. (100)
L’entropie apres mélange est
St = (N1 + No)kg log(M; + Ms), (101)
d’on
AShix =S¢ — S; = Nikp log ‘/1%1‘/2 + Nokp log ‘/1%2‘/2 >0 (102)
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Or le systeme est macroscopiquement identique avant et apres mélange. Ses coordonnées thermodynamiques
ne devraient pas changer! Cette contradiction porte le nom de paradoxe de Gibbs.

Pour éviter le paradoxe de Gibbs, nous devons préciser notre définition d’'une configuration. Nous devons
tenir compte du fait que les particules sont indiscernables. On ne peut alors distinguer deux configurations
qui ne difféerent que par une permutation des particules entre les sites : on doit les compter pour une seule
configuration. Pour N particules, il y a N! permutations possibles, et donc en fait

MN

Qconﬁg(N7 M) - W (103)
En utilisant la formule de Stirling,
S, (N,V) = Nkglo L+Nk (104)
config ) - B 10g N‘/O B>
qui est bien extensive. En reprenant le calcul de I'entropie de mélange pour deux gaz identiques,
M M.
S, = Nikglog — + Nykp + Nokp log —= + Nokp (105)
Ny No
“ My + M.
= (N1 + No)kplog ———2 4 (Ny + Na)k 1
Sg= (N1 + Q)BOgN1+N2+(1+ 2)ks, (106)
don M, + M M M.
ASmix = St — S = (Ny + No)kp log —————2 — Nykplog — — Nakp log —. 107
f (N1 2)BgN1+N2 1BgN1 2BgN2 (107)

OI', Nl/Ml = NQ/MQ = (Nl + N2)/(M1 +M2), et donc ASmix =0.

REMARQUE. Cet ajout du N! qui nous a permis d’éviter la contradiction dans la théorie n’a en fait rien
d’évident. La notion de particules indiscernables n’existe pas en mécanique classique, et il faut, en toute
rigueur, partir d’une description quantique et prendre sa limite classique pour "démontrer” le N!.

Si les gaz sont maintenant différents, alors on retrouve

Vi + V- Vi + Vi
ASumie = Nk log 222 4 Nokp log 2422

108
7 L@ (108)

On peut analyser les conséquences pratiques de ce résultat pour un mélange d’eau douce et d’eau salée.
Les variations d’entropie dans ce processus sont dues aux ions dissous, qui se comportent essentiellement
comme un gaz parfait. Considérons le mélange de deux verres d’eau de volume V', 'un contenant N ions et
l’autre n’en contenant pas. On trouve

ASnix = Nkplog2 (109)

Le énergie interne ne variant pas lors du mélange, le sel a di effectuer un travail sur son environnement
W = TASpix ~ 1 kWh - m™?, (110)

en supposant une eau de mer & 1 mol - L™! de sel et 7 = 300 K. Ce n’est pas un travail négligeable
— a comparer, par exemple a la consommation énergétique d’un suisse moyen : 83 kWh par jour. Notre
description du systeme est trop simpliste pour préciser la nature exacte de ce travail. En fait, le mouvement
des ions va induire des écoulements d’eau, qui vont étre dissipés par viscosité et produire en fin de compte
de la chaleur. Mais la récupération de ce travail sous forme d’électricité est un sujet de recherche actuel :
on parle d’énergie osmotique ou d’énergie bleue. On y reviendra plus tard dans le cours.

8) Réversibilité microscopique et irréversibilité macroscopique

Soit une enceinte séparée en deux volumes égaux (celui de droite et celui de gauche) par une paroi
amovible. On place une particule de gaz dans le compartiment de gauche puis on enleve la paroi. La
particule va alors évoluer dans toute I’enceinte, et on la verra aussi souvent aller de la gauche vers la droite
que de la droite vers la gauche. Ceci est une conséquence de la réversibilité des équations du mouvement
microscopiques. Dans le cas classique, si I’équation de Newton

d?z dE,(z)

mE T T (111)
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admet une solution xz(t), alors elle admet aussi comme solution z(—t) (car 'équation est invariante par
t — —t). Si une trajectoire est parcourue dans un sens, on peut toujours trouver un jeu de conditions
initiales pour qu’elle soit parcourue dans ’autre sens.

On place maintenant un grand nombre N de particules dans le compartiment de gauche, puis on enleve
la paroi. Le gaz va alors diffuser pour occuper les deux compartiments. Cette évolution est manifestement
irréversible : il n’y a aucune chance que le gaz revienne se placer dans le compartiment de gauche. Vous
verrez dans le cours Introduction auzx phénomeénes de transport que dans une telle situation, la densité de
gaz n(x,t) obéit a 'équation de diffusion :

on D 0%n

Cette équation n’est pas invariante par ¢ — —t, donc si n(z,t) est solution, le processus inverse n(xz, —t)
ne l'est pas. Mais les équations macroscopiques viennent des équations microscopiques. Ou a-t-on perdu la
réversibilité ?

La réversibilité est en fait une question d’échelle d’observation. A 1’échelle macroscopique, on est sensible
non pas a la dynamique microscopique, mais a la statistique des particules. Une fois I’équilibre atteint, on
a une chance sur deux de trouver une particule donnée dans le compartiment de gauche. Mais pour que les
N particules soient a gauche la probabilité est

R 1
P(N a gauche) = oN (113)
avec N ~ 1023 — cette probabilité est nulle & toutes fins utiles. L’irréversibilité est donc un phénoméne
émergeant, qui est dii au tres grand nombre de degrés de liberté d’un échantillon macroscopique.

IV. Systémes couplés a un environnement : autres ensembles sta-
tistiques

En partant du postulat d’équiprobabilité de ses micro-états, nous avons appris a faire de la mécanique
statistique sur un systéme isolé. Mais la plupart des systémes réels ne sont pas isolés. Nous devons généraliser
notre approche a de tels systemes.

1) Systéme couplé & un thermostat : ensemble canonique
a) Distribution canonique

On considére un systéme S placé en contact avec un réservoir R. Le systéme et le réservoir sont capables
d’échanger de 'énergie, mais aucune forme de travail mécanique ou chimique. Le réservoir est supposé
beaucoup plus gros que le systeme : 'effet des échanges avec S sur ses fonctions d’état est supposé négligeable.
Imaginez par exemple un verre d’eau en contact avec ’atmospheére. On dit alors que S est dans la situation
canonique.

Les micro-états de S peuvent avoir des énergies arbitraires, mais ils sont contraints par des valeurs
fixées des coordonnées X. On dit qu’ils forment un ensemble canonique. Pour déterminer les probabilités
canoniques, utilisons le fait que S U R est un systéme isolé, et notons Uio; son énergie. En utilisant la
distribution microcanonique sur les configurations de S U R, on obtient pour une configuration du systeme
Cs :

P(Cs) = e (Uior = B(Gs)) (114)

Qsur (Utot)
C’est le nombre de configurations du réservoir compatibles avec Cg, divisé par le nombre total de configura-
tions. Le réservoir étant beaucoup plus gros que le systéme, E(Cs) < Uiot et on peut faire un développement
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limité :
1 1

P(Cs) = m exp |:kBSR(Utot - E(CS))} (115)
_exp [ SR(Utot)] E(Cs) OSrR(U = Utot)
~ Qon Ueo) ex {— o BT ] (116)

exp [ SR(Utot)] E(Cs)
— Qs () exp {— kBTR:| (117)
z

On définit la température d’un systeme dans la situation canonique comme la température microcano-
nique du réservoir : Ty = T. Le réservoir impose sa température au systeme : on dit qu’il joue le role de
thermostat. On retiendra que dans un ensemble canonique

PC) = — E(C)] . (118)

Z2(T,X) P {_ kT

Z s’appelle la fonction de partition canonique. Elle est déterminée en pratique & partir de la condition
de normalisation des probabilités :

Zexp { kBT] (119)

NOTATION. On utilisera trés souvent 8 = 1/(kgT) .
NOTATION. Parfois, on utilise @) & la place de Z pour la fonction de partition canonique.

REMARQUE. On a identifié la température du systéme comme la température microcanonique du réservoir
a Dénergie Uiog. Mais est-ce vraiment la température "physique” du réservoir ? A priori oui, vu que l'on a
supposé les coordonnées thermodynamiques de R non-affectées par les échanges avec S. C’est aussi cohérent
avec notre intuition : en laissant un verre d’eau chaude refroidir dans une piece, on n’augmente pas la
température de la piece. Mais il est utile de justifier que si R contient beaucoup plus de particules que S
(Ngr > Ng), alors c’est bien le cas. En général, la température de R peut varier selon ’énergie Eg contenue
dans le systéme.

1 OSwr

= Uiot — E 120
Ta(Uor — Bs) U (Utor = Es) (120)

8SR 825R
=3U —7 (Usot) — S0z (Utot) + (121)
(122)

Pour que la température du réservoir soit de fait constante, il faut

0%Sr OSR

ESW(Umt) U —7 (Usot)- (123)

En ordre de grandeur de grandeur, dSg /OU? ~ 1/Ng et Es ~ Ng, donc cette condition est bien équivalente
Ng < Ng.

b) Evolution spontanée et énergie libre

Pour un systeme isolé, I’entropie fournit la condition d’évolution spontanée : elle est maximisée dans 1’état
d’équilibre thermodynamique. Qu’en est-il pour un systeme en contact avec un thermostat ? Considérons
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le systéeme combiné S U R, qui lui est isolé. On va chercher a isoler la contribution de S & son entropie. On

peut écrire

Qsur (Utot) ZQR Utot — E(Cs))

Zexp[ Sk (Utor — (cs>)]

et donc
SSUR :SR-l-kBlOgZESR—F/T

(124)

(125)

(126)

(127)

(128)

Maximiser ’entropie de S U R revient donc & minimiser F', quantité qui ne dépend que des micro-états de

S et de T'. On a défini ainsi ’énergie libre comme

F(T,X) = —kgTlog Z(T, X).

(129)

L’énergie libre est le potentiel thermodynamique adapté a un systéme en situation canonique. Elle ne peut
que diminuer lors d’une évolution spontanée et elle est minimisée dans 1’état d’équilibre thermodynamique.

c¢) Coordonnées thermodynamiques

L’énergie interne s’identifie a 1’énergie moyenne du systéme canonique :

1 Olog Z
U=(E)=~=Y E(C)e PO =_=—2°% 130
(B) = Y B(C)e o (130)
L’entropie satisfait toujours a sa définition statistique :
c—BE(C)
:—kBE:P )logP(C) = —kp Y (=log Z — BE(C)) (131)
C
~ plogZ + 222 Z E(C)e FO) (132)
U-F
= — 133
- (133)
L’énergie libre que nous avons définie satisfait donc bien a la définition thermodynamique :
F=U-TS (134)
Par ailleurs, en utilisant identité thermodynamique fondamentale,
dFf =dU —TdS — SdT (135)
= —SdT + ) J;dX;. (136)
On en déduit les forces thermodynamiques comme dérivées partielles de F' :
OF
Ji = . (137)
0Xi|r, X

En particulier, pour un gaz ou assimilé,
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(138)

REMARQUE. Les relations entre grandeurs thermodynamiques que nous avons établies sont vraies, peu
importe que 1'on soit parti d’un systéme en situation canonique ou en situation microcanonique. C’est une
manifestation de I’équivalence entre ensembles statistiques que nous formaliserons a la fin de ce chapitre.
Par exemple, pour un systéme en situation canonique, il est toujours vrai que —P/T = 9S/0V |y n. Le choix
entre cette expression et celle que nous venons d’établir en fonction de F' est une question de commodité.
Pour un systéme en situation canonique, nous aurons plus facilement acces a expression de F(T,V, N) que
de S(U,V, N), mais rien ne nous empéche en principe d’établir cette derniere.

d) Premier principe et sens statistique de la chaleur

Méme si nous avons pu établir toutes les relations entre fonctions d’état a partir de ’ensemble micro-
canonique, nous n’avons pas pu donner une définition microscopique de la chaleur, un systéme isolé étant
incapable de transferts thermiques. Nous pouvons le faire maintenant que nous savons décrire un systéme
en contact avec un thermostat.

Dans ce cas, I’énergie interne s’identifie microscopiquement a 1’énergie moyenne canonique,

U=> PC)E(C) (139)
C

Donc, pour une transformation infinitésimale,

dU =Y "dP(C)E(C) + Y P(C)dE(C). (140)
C C

Considérons d’abord une transformation ot le systéme ne recoit pas de travail mécanique (6Weyt = 0). Alors
aucune des coordonnées X ne varie et les micro-états restent inchangés : dE(C) = 0. On identifie donc

5Q =Y dP(C)E(C). (141)
C

La chaleur recue par un systéme apparait microscopiquement comme une variation d’occupa-
tion des micro-états.

Considérons maintenant une transformation impliquant un travail mécanique : les énergies des micro-
états peuvent varier. Plus précisément, supposons que la transformation consiste a changer 1’une des coor-
données X de dX. Alors

_ OE(C)
> PC)AEC) =) P(C) =5y dX (142)
c c
En explicitant la probabilité canonique, on a E(C) = —kpT'(logP(C) + log Z). On a donc
> P(C)dE(C) = —ksT Y I[D(C)i (logP(C) + log Z) dX (143)
- - 0X
B dlogP(C)
= 8—X(—kBT10g Z)dX — kBT;]P’(C)T dX (144)
OF 0
= 0%, AX — kT 5o XC:JP’(C) dx (145)
—_———
=1
OF
X |, d Jd (146)

ou J est la force conjuguée a X. JdX représente le travail des forces intérieures au systéme : par exemple,
pour un gaz —OF/0V donne la pression P dans le gaz. Dans le cas ou la transformation est réversible,
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le systeme est constamment en équilibre mécanique avec son environnement, donc P = Pey, et JdX
correspond bien au travail des forces extérieures qui apparait dans le premier principe. On conclut que pour
une transformation réversible

OWext = ZP(C)dE(C)
C

dU = 0Weyt +0Q  avec (147)
5Q =Y _dP(C)E(C).
c

La chaleur correspond a une variation de ’occupation des micro-états, alors que le travail correspond a une
modification des micro-états. On a par ailleurs

dU =TdS + Y JdX; (148)

=TdS + 0Wyy (pour une transformation réversible). (149)

On identifie donc dS = 6Q/T. En fait, pour une transformation réversible, les équations et
s'identifient terme a terme, mais ce n’est pas le cas pour une transformation irréversible, ou le travail et
la chaleur peuvent tous deux contribuer a faire varier la population et 1’énergie des micro-états, et ou la
variation d’entropie n’est pas simplement liée a la chaleur.

A ce stade, nous avons intégralement retrouvé la thermodynamique a partir de la mécanique statistique.
Nous avons d’abord construit la fonction entropie du second principe, puis nous avons montré que les
variations d’énergie peuvent bien se décomposer en travail et en chaleur, dont nous avons donné le sens
microscopique.

2) Systeme échangeant des particules : ensemble grand canonique

D’autres ensembles statistiques peuvent étre construits selon le type d’échanges autorisés entre le systéme
et le réservoir. Nous allons expliciter le cas important de I’échange de particules, puis nous généraliserons a
des échanges quelconques.

a) Distribution grand-canonique

On considere un systéme S placé en contact avec un réservoir R. Cette fois-ci, le systéme et le réservoir
peuvent échanger de 1’énergie ou des particules (on supposera un seul type de particules), mais aucune
forme de travail mécanique. Comme précédemment, R est supposé assez gros pour que les échanges avec S
n’affectent pas ses fonctions d’état. On dit alors que S est dans la situation grand-canonique.

On note Uiyt ’énergie de SU R et Niot son nombre de particules. Etant donné que les configurations du
systeme isolé S'U R sont équiprobables, la probabilité d’une configuration Cg de S est donnée par :

QR(Utot — E(CS)aNtot — N(CS))
QSUR(UtotaNtot) '

C’est le nombre de configurations de R compatibles avec Cg, divisé par le nombre total de configurations.
Comme FE(Cs) < Usor €t N(Cs) < Niot, on peut faire un développement limité :

P(Cs) = (150)

1 1
P = —5 ot — F , Niot — N 151
() Qsur (Usot, Niot) P [kB R (Uror (Cs), Mo (CS))} (151)
exP | 5 (U, Moot o | _E(Cs) 08w N(Cs) 05k (152)
=~ X — —_— - e
QSUR(Utota Ntot) p kB oU ][\J[z%tot kB ON %z][{[tot
1
_ exp [ESR(Utot; Ntot)} exp |:_E(Cs) — MRN(CS):l (153)
Qsur (Utot, Neot) kTR

On définit la température et le potentiel chimique d’un systeme dans la situation grand-canonique comme
la température et le potentiel chimique du réservoir : Tg = T et ug = p. Le réservoir impose sa température
et son potentiel chimique au systéme. On retiendra que dans ’ensemble grand-canonique
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(154)

=T, X) P {_ kT

= s’appelle la fonction de partition grand-canonique. Elle est déterminée en pratique a partir de
la condition de normalisation des probabilités :

=(T, 1, X j{:exp [ kngv(C)]. (155)

b) Evolution spontanée et grand potentiel

Pour déterminer la conditions d’évolution spontanée dans la situation grand-canonique, on consideére le
systeme isolé S U R et on cherche a isoler la contribution de S a son entropie. On a

Qsur (Utot, Niot) ZQR Usot — E(Cs), Niot — N(Cs)) (156)
= ZGXP { SR (Utot — E(Cs), Niot — N(CS))] (157)
E(Cs) 0Sr ~ Ns OSSR

~ N, =S POk 5 2OR 1

Z XP SR (Utor, Neot) = kg OU |U=U. kg ON |U=U (158)
N=N¢ot N=Not
= exp { Sﬁ(lhot>ﬁkot} D e AlECs)muNCs)), (159)
Cs
et donc

Ssur = Sr + kplog= = Sk — Y/T (160)

Maximiser ’entropie de S U R revient donc & minimiser Y, quantité qui ne dépend que des micro-états de
S et de T, u. On a défini ainsi le grand potentiel comme

Y(T7,U7X) = —kBTIOgE(T,,U,X) (161)

Le grand potentiel est le potentiel thermodynamique adapté a un systéme en situation grand-canonique.
Il ne peut qu’augmenter lors d’une évolution spontanée et il est maximisé dans ’état d’équilibre thermody-
namique.

REMARQUE. La notation Y n’est pas standard pout le grand potentiel. On trouve aussi G, J, €, ...

c) Coordonnées thermodynamiques

Dans l’ensemble grand-canonique, I’énergie et le nombre de particules moyens s’expriment facilement
comme des dérivées la fonction de partition par rapport a 5 et p. On a :

10logE=

1
N=(N)== N(C)e BEE)—uN(C)) — 162
(N) = 2> N(E) S (162)
Par ailleurs,
(B) = L3 B(o)et @) o OBS gy iy (163)
= BE] )
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et donc 91oeE  Hlog=
nOolog= og=
U=(F)=~= — . 164
R (164)
On établit maintenant I'identité thermodynamique pour le grand potentiel en partant de ’entropie :
e—B(E(C)—uN(C)) _
:-@}jp )ogP(C) = —kp »  —————=——(—logZ — BE(C) + BuN(C)) (165)
- =
~kglog= 4+ " i Z B(C)e—PE@-uN(©) _ @ S N(C)e HEE RN (ED) (166)
U—-uN-Y
= - 167
T ’ ( )
soit
Y=U-TS—uN (168)
Par ailleurs, en utilisant I'identité thermodynamique fondamentale,
dY =dU —TdS — SdT — pdN — Ndp (169)
= —SdT - Ndu + Y _ J;dX;. (170)
i
On en déduit les forces thermodynamiques comme dérivées partielles de Y :
aYy
Ji = . (171)
0X; Ty, Xy

3) Meéthode générale pour construire un ensemble statistique

Les méthodes utilisées pour construire les ensembles canonique et grand canonique se généralisent pour
construire un ensemble statistique quelconque, adapté au systeme rencontré.

a) Recette

1. On choisit si 'on veut étudier le systeme a énergie ou a température fixée. On prend alors respecti-
vement comme point de départ ’ensemble microcanonique ou I’ensemble canonique. On ne considere
dans le suite que le cas canonique car il est de loin le plus fréquent.

2. On considere toutes les facons dont le systéme peut fournir du travail mécanique ou chimique :
Wext = ZZ J;dX;. Attention au signe : on utilise la convention du banquier. Pour chaque i, on
choisit de fixer soit X, soit J;.

3. Supposons par exemple que I'on fixe Jy, et tous les X;q. Cela veut dire que le systéme est en contact
avec un réservoir de Xy (et d’énergie). En utilisant la distribution microcanonique de systéme+réservoir,
on obtient la probabilité d’une configuration du systeme :

1 —E(C) + JoXo(C)
P(C) = . 172
= 20 5 X0 { ke T (172)

On identifie alors 'expression de la fonction de partition :
+ JoXo (C)
Z(T, Jy, X; . 1
(T, Jo, Xi0) Zexp[ T (173)
4. On identifie le potentiel thermodynamique

S=U-TS— JygXy=—kgTlog Z. (174)
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5. On détermine les valeurs moyennes de X, et de E en dérivant la fonction de partition par rapport a
,8 et Jo.

6. On écrit la différentielle de ® pour déterminer les autres coordonnées thermodynamiques a partir de
ses dérivées partielles :
d® = —SdT — XodJy + Y _ Jid X;. (175)
i#£0

b) Exemple : ensemble de Gibbs

On cherche a déterminer les propriétés d’équilibre d’un mélange liquide d’espéces chimiques i. Le systeme
peut recevoir du travail chimique par changement du nombre N; de molécules i, et du travail mécanique
par l'action de forces de pression :

Wese = —PdV + > pidN;. (176)

Le systéme ayant atteint 1’équilibre chimique, on considérera les nombres de particules NV; fixés. Par contre,
c’est la pression (plutdt que le volume) qui est imposée par le contact avec I'air ambiant. Le systéme n’est
pas tout & fait dans un situation canonique. L’ensemble des microétats caractérisés par (N;, P,T) fixés

s’appelle ensemble isotherme-isobare ou ensemble de Gibbs. D’apres la recette, on identifie la probabilité
d’un microétat dans I’ensemble de Gibbs :

P(C) = (177)

—E(C) - PV(C)
s

Z(T, PN, P {

Le potentiel thermodynamique dans 'ensemble de Gibbs, noté G, s’appelle 'enthalpie libre (Gibbs free
energy en anglais) :

G=U-TS+ PV =—kpgTlog Z(N;, P,T). (178)
En différentiant,
dG = =SdT + VAP + ) ;dN;. (179)
i
c) Bilan
Ensemble Grandeurs fixées | Fonction de partition Potentiel thermodynamique
Microcanonique (N, V,U) N=>.1 -5 = —kglogQ
E(C)
Canonique (N,V,T) Z =73 ¢ *BT F=—kgTlogZ=U-TS
E(C)—iN(C)
Grand-canonique (1, V,T) E=5%.e  FBT Y =—kgTlog2=U—-TS5 — puN
ECITPVC)
Gibbs (N,P,T) Z=>.e  FeT G=—kgTlogZ=U-TS+ PV

4) Fluctuations et équivalence des ensembles
a) Ordre de grandeur des fluctuations

Nous avons étudié des systemes ayant différents types d’échanges possibles avec leur environnement.
Pour chaque type d’échange, nous avons appliqué la méthode statistique afin de déterminer les fonctions
d’état. Nous avons supposé implicitement que les fonctions d’état ne dépendent pas de la facon dont nous
les avons établies — c¢’est ce que 1'on attend d’une théorie cohérente! Cependant, cela n’est vrai que pour
des systemes contenant un grand nombre de particules : c’est que nous avons de fait supposé dans tout ce
qui précede.

Par exemple : pour un systéme isolé, I’énergie est fixée, alors que pour un systéme en situation canonique
I’énergie peut fluctuer. Pour que ’énergie ait un sens comme grandeur thermodynamique, il faut que ces
fluctuations soient petites devant I’énergie moyenne. On a vu que, dans ’ensemble canonique,

_OlogZ

(B) = -2

(180)
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En dérivant encore une fois,

PlogZ 9~ E(C)e PFO
o932 98 ZC: -z .
—BE(C) —BE©C) g7
_ 26 7 £ 92
_ zc:E(C) 7+ ) E(C)—; 35 (182)
—BE(C) —BE©) §log Z
_ 2677 S A
_ EC:E(C) ——+ ] E(C)— 55 (183)
— (B%) — (B)". (184)
Par ailleurs,
2
0% log Z _ o(E) _ k‘BT2@ = kBT20V7 (185)

o2 9B oT

ou l'on a identifié la capacité calorifique a volume constant Cy. On a donc exprimé la variance de ’énergie :
(E?) — (E)? = kgT?Cy. (186)

La capacité calorifique, comme ’énergie, est une grandeur extensive : Cy o< N. On en déduit 'ordre de
grandeur des fluctuations relatives d’énergie :

VI(E?) —(E)2  kgT2Cy VN 1 (187)
= X —— X —(.
(E) (E) N VN
Il faut donc NV > 1 pour que les fluctuations de E soient négligeables devant la valeur moyenne. Dans cette
limite, nous ne connaissons pas seulement la variance de E : nous connaissons en fait toute sa distribution
de probabilité. L’énergie est toujours une somme d’un grand nombre de variables aléatoires (les énergies des
particules individuelles, par exemple), et en vertu du théoréme central limite cette somme a une distribution

gaussienne :
1 E - (E))?
e o (- E Y. 1)
vV 2’/T/€BT2CV k‘BT CV
REMARQUE. Le théoréme central limite s’applique si les corrélations entre les variables aléatoires qui

constituent la somme ne sont "pas trop fortes”. Dans des systémes fortement corrélés, on peut avoir des
fluctuations non-gaussiennes.

P(E) =

Ces résultats ce généralisent a n’importe quelle coordonnée X pouvant fluctuer :

X)

(X%) = (X0 = knT

(189)
ou J est la force conjuguée a X. Ceci est une version simplifiée du théoréme de fluctuation-dissipation : la
réponse de X a une petite perturbation de J est liée aux fluctuations de X a I’équilibre. On retiendra que
les fluctuations d’une grandeur extensive X a I’équilibre sont gaussiennes, avec un écart type
de l'ordre de V'N.

En pratique, pour des systémes thermodynamiques ou N est grand, on pourra choisir dans quel ensemble
statistique les traiter. On fera souvent ce choix en fonction de la commodité calculatoire. Par exemple, on
verra que le gaz parfait classique se traite aisément dans I’ensemble canonique, alors que pour le gaz parfait
quantique une description grand-canonique est plus appropriée.

On discute maintenant de quelques points de thermodynamique qui font sens une fois que tous les
ensembles on été introduits.

b) Relation de Gibbs-Duhem

C’est une relation entre grandeurs thermodynamiques qui découle de l'extensivité de I’énergie. Nous
avons vu que s’il y a n facons de faire du travail mécanique ou chimique sur un systeme, il faut n + 1
coordonnées thermodynamiques pour décrire son état d’équilibre. Par exemple, si un systéme peut recevoir
du travail mécanique par des forces de pression et du travail chimique par ajout de particules, on peut
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décrire son état d’équilibre par les coordonnées (S, V, N). L’énergie interne peut alors s’exprimer comme
une fonction de ces coordonnées, U(S,V, N). L'extensivité de U, S, V et N implique que pour A > 0,

U(AS, AV, AN) = AU(S, V, N). (190)

On peut prendre la dérivée partielle de cette équation par rapport a \ :

ou o(AS) oU oAV)  oU 9(AN)
- Ve N). 191
05|,y 0N TV On T oN|g, on V&V (191)
En posant A = 1, on trouve
ou ou oU
= S+ ==| V+==| N=U(SV,N). (192)
IS |yn Vs N ON |y

En identifiant les dérivées partielles de ’énergie, on obtient la relation de Gibbs-Duhem :

U=TS— PV +uN (193)

Elle permet d’obtenir des expressions simples pour certains des potentiels thermodynamiques. Par
exemple, G = uN (ou G = ), 1;N; pour plusieurs especes chimiques) et Y = —PV. Sa forme différentielle
est également utile. On a :

AU = TdS — PdV + pdN = TdS + SAT — PdV — VAP + udN + Ndp, (194)

soit
0=S5dT — VdP + Ndu. (195)

c¢) Travail maximum récupérable

Nous avons identifié les potentiels thermodynamiques qui donnent la condition d’évolution spontanée
dans les différents ensembles statistiques. Il en existe une autre interprétation trés pratique en termes de
travail maximum récupérable : la différence de potentiel thermodynamique entre deux macro-états corres-
pond au travail maximal qu’il est possible de récupérer par une transformation du systéme entre ces deux
états.

Considérons par exemple une évolution monotherme (& température T fixée par un thermostat) d’un
systeme de volume V et nombre de particules NV fixés. Le travail fourni par le systéme est

—Wext = Q - AU (196)
d’apres le premier principe. Le second principe nous donne AS > @Q/T, et donc
—Wext <TAS — AU = —AF, (197)

I’égalité étant atteinte pour une transformation réversible. On trouve de la méme facon que le travail
maximum récupérable pour une évolution monotherme et monobare est donné par AG, etc. Ces résultats
nous serons notamment utiles pour ’étude de I’énergie osmotique.

5) Micro-états quantiques et décohérence

Au tout début du chapitre III, nous avons admis que les micro-états d’un systéme quantique corres-
pondent aux états propres de son hamiltonien. Il est temps désormais de comprendre pourquoi c’est le cas.
En effet, vous avez appris au semestre dernier qu'un systeme quantique est décrit par une fonction d’onde,
qui n’est pas toujours une fonction propre du hamiltonien : en général, c’est une combinaison linéaire de
fonctions propres. Pourquoi les micro-états ne correspondraient-ils pas a toutes les valeurs possibles de la
fonction d’onde? Cela est dit & un phénomene tres fondamental que 'on appelle la décohérence. Nous
allons ici le mettre en évidence sur un exemple.

Considérons le systéme quantique le plus simple qui soit : un systéme & deux niveaux ou spin 1/2
(imaginez par exemple le spin nucléaire d’un proton en solution). On choisit une direction privilégiée z et
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on note | 1) et | |) les deux états propres de lopérateur S,. La fonction d’onde décrivant le systeme peut
toujours se décomposer sous la forme

(W) = AD 1) + p®)] 1) (198)

C’est ce que 'on appelle une superposition cohérente des états | 1) et | |) : le systéme est d la fois dans
létat | 1) et dans D’état | |). Cela se traduit par des termes d’interférence dans les valeurs moyennes des
observables. En effet, la probabilité de trouver le spin dans 1’état 1 est Py = [(1 |¥)]? = |A]%, et de la méme
fagon P| = |u|?. La valeur moyenne d’une observable O est donnée par

(0) = (¥|O]¥) (199)
= AP OI ) + [P O] L) + N ult (O] ) + 1" AL O] 1) (200)
=P+(O)4 + P (O), + termes d’interférences. (201)

Par exemple

(S0) = (WS, |0) = (A g )( Oy ) ( b ) (202)
(Np+p') (203)
—_—

interférences

= |)‘|2<§:1:>T + ‘M|2<§m>i +

=0

DN =

L’évolution temporelle ce A(t) et u(t) est régie par le hamiltonien du systéme. Si notre spin est en contact
avec un environnement a température T' (les autres atomes de 'espéce chimique contenant le proton, les
molécules de solvant, etc) ce hamiltonien devient trés complexe, et la dynamique de A(¢) et p(t) apparait
aléatoire. Du fait de cette dynamique aléatoire, tout se passe comme si le spin était soit dans I’état | 1), soit
dans I'état | |), avec les probabilités Py et P données par I’ensemble canonique.

|T(t)) =|1) (proba. P4+) ou |]) (proba. P}). (204)

C’est ce que 'on appelle une superposition incohérente. Les valeurs moyennes des observables dans un tel
état ne font pas apparaitre de termes d’interférence :

(0) =P(0)1 + P {O),. (205)

Cette transition d’un systéme entre un état de superposition quantique (ou cohérente) et un
état de superposition classique (ou incohérente) sous l’effet de ’interaction avec I’environne-
ment est ce que ’on appelle la décohérence.

On peut comprendre dans les grandes lignes l'origine du phénomene en étudiant 1’évolution de notre
spin 1/2 sous l'effet d'un champ magnétique aléatoire. L’effet de ’environnement sur le spin peut en effet
étre partiellement représenté par un champ magnétique fluctuant (le champ magnétique est une coordonnée
thermodynamique, qui est sujette a des fluctuations comme discuté au paragraphe précédent). Pour sim-
phﬁer nous allons considérer une seule composante de ce champ : on note le hamiltonien correspondant
H= h’yBSI, B étant pour 'instant fixé, et on notera pour simplifier hiyB/2 = e. Supposons que le spin est
initialement dans I’état | 1). Son évolution est donnée par 1’équation de Schrodinger :

d|w)

th——— "

= H|D). (206)

En décomposant |¥(t)) = A(t)] 1) + u(t)] |
g ()= (1 o) () (07

dA € du €

En dérivant la premiere équation par rapport au temps, puis en y injectant le deuxieme,

), on obtient deux équations couplées pour \ et p :

soit

d2\ )
o7 = (/A (209)
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qui a pour solution _ _
A(t) = Noelt/M 4 Noe it/ (210)

On en déduit, en intégrant une fois,
u(t) = =Aoet/h 4 Npe~iet/h, (211)

Les conditions initiales sont A(0) = 1 et u(0) = 0. On en déduit Ag+ A = 1 et Ag = Ay, donc Ag = A = 1/2,
ce qui nous donne finalement

A(t) = cos(et/h) et u(t) = —sin(et/h). (212)

On introduit la phase ¢(t) = et/h. Alors

[W(2)) = cosp(t)] 1) —sin ()] 1), (213)
et la valeur moyenne d’une observable dans cet état |U(t)) s’écrit
(0) = cos? ${1|0] 1) + sin? $(1 0] 1) — cos dsin ¢((1 (0] 1) + (1 [O] 1). (214)

En mécanique statistique, on s’intéresse a 1’état d’équilibre thermodynamique, que 1’on observe sur des
échelles de temps longues devant les fluctuations microscopiques. Donc, ce que ’on va observer en pratique,
c’est la valeur de () moyennée sur la phase aléatoire ¢. On voit alors que le terme d’interférences (propor-
tionnel & cos ¢ sin ¢) se moyenne a 0. Tout se passe comme si le spin était soit dans l’état 1, soit dans I'état
1, en loccurence avec une probabilité (cos? @), = (sin? @), = 1/2.

REMARQUE. En modélisant ’environnement par un champ magnétique aléatoire, on ne retrouve pas les
probabilités canoniques. Pour les retrouver, nous aurions besoin d’'un modele plus complexe qui autorise
les échanges d’énergie avec I’environnement. Mais nous retrouvons tout de méme la disparition des termes
d’interférences.

En résumé, un systéme quantique a I’équilibre thermodynamique, est, par définition, en
interaction avec un réservoir. En mécanique statistique, on s’intéresse aux propriétés de ce
systéme quantique sur des échelles de temps longues devant les fluctuations microscopiques
du réservoir. Sous ces conditions, tout se passe comme si le systéme quantique était dans une
superposition classique de ses états propres, qui jouent alors le role de micro-états dans la
description statistique.

REMARQUE. Dans le cours de RMN, vous étudierez des ensembles statistiques de systemes quantiques
(spins) sur des temps courts (hors équilibre thermodynamique). Ils pourront alors garder un certain degré
de cohérence.

V. Gaz parfait classique et gaz parfait quantique

Nous avons maintenant tous les outils pour étudier le systeme ”de base” de la mécanique statistique :
le gaz parfait. C’est un systeme important car de nombreux systémes plus complexes se réduisent & un gaz
parfait effectif, moyennant des approximations bien choisies. Dans ce chapitre, nous allons établir la loi des
gaz parfaits, étudier ses limites dans le cas quantique, puis voir comment la théorie du gaz parfait s’applique
au phénomene d’osmose et a I’énergie osmotique.

1) Gaz parfait classique
a) Micro-états

Un gaz parfait est un ensemble de particules ponctuelles sans interaction. Nous allons considérer N
particules, dans une enceinte de volume V fixé. En vertu de I’équivalence des ensembles étudiée plus haut,
nous avons le choix de ’ensemble statistique dans lequel nous placer pour déterminer ses coordonnées
thermodynamiques. Pour un systéme classique, on choisira tres souvent I’ensemble canonique : ’enceinte
contentant le gaz est en contact avec un environnement qui lui impose une température 7. L’avantage de la
situation canonique est qu’il n’y a pas de contrainte sur I’énergie des micro-états. En effet, les micro-états du
systeme correspondent alors a toutes les valeurs possibles des positions et des impulsions des N particules :
C=(r1,-..,TN,P1,---,PN)-
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b) Fonction de partition et normalisation de ’espace des phases

L’énergie d’un micro-état correspond simplement a I’énergie cinétique des particules : par définition du
gaz parfait, les particules n’ont pas d’énergie potentielle d’interaction :

N o2
BC) =% 2 (215)

en supposant que toutes les particules ont la méme masse m. Alors, en appliquant naivement la définition
de la fonction de partition canonique, on a envie d’écrire

N N o
= /Hdri dp; exp [—,8 p’l ) (216)
i=1 i=1 2m
La somme discrete de la définition est devenue une intégrale, vu que les positions et les impulsions des
particules peuvent varier continument. Cependant, cette expression ne peut pas étre correcte vu qu’elle
n’est pas sans dimension. On doit en fait la normaliser par le "volume” d’un micro-état dans I’espace des
phases (I’espace des positions et des impulsions). Cela revient & quadriller ’espace des phases : de combien
doit-on changer les positions et les vitesses des particules pour passer dans un autre micro-état 7 On ne sait
pas déterminer ce volume de fagon univoque dans le cadre de la mécanique classique, mais il se trouve que
sa valeur n’a pas de conséquence sur les résultats obtenus pour des quantités observables. Le traitement
quantique du probleme, que nous verrons dans la suite, nous apprend que le volume d’un micro-état est en
fait donné par la constante de Planck : plus précisément, nous devons diviser I'expression ci-dessus par A3V .
Qualitativement, cela rend compte du principe d’incertitude d’Heisenberg : nous ne pouvons connaitre le
produit de la position et de I'impulsion d’une particule avec une précision plus grande que h :

AzAp 2 h. (217)

Nous devons également inclure un facteur 1/N! dans Pexpression de la fonction de partition pour rendre
compte du caractere indiscernable des particules. En fin de compte, I'expression correcte est

N
dridp; _ p;
/H NIhSN [_ﬁ Qm] : (218)
=1

L’intégrande ne comporte aucune quantité dépendant de la position. Les intégrales sur les r; sont donc
triviales et donnent chacune le volume V' de ’enceinte. L’intégrale sur les pj, elle, se factorise en IV intégrales

identiques :
N
—B 2m
Z = N'hSN (/dpe P/ ) : (219)

Il suffit maintenant d’appliquer la formule de U'intégrale gaussienne multidimensionnelle (trois dimensions
ici) :

VN N
On réarrange habituellement cette expression de la facon suivante :
1 v\Y h2
Z=—|—-—= Ap =4 ——. 221
N (Ai}) wee A A Sk T (221)

Ar s’appelle la longueur d’onde de de Broglie thermique. En mécanique quantique, on représente une
particule d’impulsion p par une onde de longueur A = h/p, la longueur d’onde de de Broglie associée a la
particule. La longueur d’onde de de Broglie thermique est obtenue en prenant pour p 'impulsion thermique
Vv2mmkgT : 'impulsion typique d’une particule dans un gaz a température 7.

> Ordre de grandeur : pour de I'hélium & T' = 300 K, A7 = 51 pm (de Uordre du diametre atomique).
On verra qu'un gaz parfait présente des effets quantiques si sa densité dépasse 1/A3..

REMARQUE. La fonction de partition Zy d’un gaz parfait classique de N particules (et plus généralement
la fonction de partition d’un systéme de N particules classiques sans interaction) s’exprime simplement en
termes de la fonction de partition Z; & une particule : Zy = Z¥ /N!. On verra que ce n’est pas le cas pour
des particules quantiques.
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c) Energie libre et loi des gaz parfaits

On calcule maintenant le potentiel thermodynamique pertinent, ici I’énergie libre.
= —kgT1 = kTl ! kgT'1 v
F = —kgTlogZ = kgTlog N! — NkgT ogA—;}. (222)
Dans la limite thermodynamique, on utilise I’approximation de Stirling :
F =—NkgT | lo L—Fl (223)
I G ’

On peut maintenant calculer la pression :

oF NEkgT
P=_ —— — . (224)
oVl N \%
On a donc démontré la loi des gaz parfaits!
PV = NkgT (225)

Dans le cadre de la thermodynamique, nous ne pouvions que le postuler sur la base d’observations.

REMARQUE. On peut raisonner en quantité de matiere plutét qu’en nombre de particules. Le nombre de
moles dans le systéme est alors n = N/AN4, et on a par définition kN4 = R, la constante des gaz parfaits.
On retrouve alors la loi des gaz parfaits sous la forme PV = nRT, souvent utilisée en chimie.

d) Energie, capacité thermique, théoréme d’équipartition
On calcule I’énergie moyenne du gaz parfait en dérivant la fonction de partition :

_OlogZ

U— 226
= (226)
Or en reprenant 1’expression (220]), on voit que
3N L,
log Z = 5 log 3 + termes indépendants de 3. (227)
On obtient alors 3
U= SNk (228)

Cette expression se généralise tres simplement a des systemes plus complexes que le gaz parfait — en fait, a
tout systeme dont I’énergie microscopique est une fonction quadratique de ses degrés de liberté. Imaginons
une particule ayant ¢ degrés de liberté ¢y, ..., qe, dont I'énergie s’écrit sous la forme

4

4,9,=1

Un gaz de N de ces particules aura une fonction de partition de la forme

N
7 x < / dquqTAq> , (230)

et donc, vue la formule de l'intégrale gaussienne,
l
log Z = —N§ log 8 + termes indépendants de 3. (231)

On en déduit U = NlkgT/2, et le
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Théoréme d’équipartition : un degré de liberté quadratique classique contribue kgT'/2 & Iénergie
moyenne par particule.

REMARQUE. Nous reviendrons sur ce résultat dans le cas quantique, dont nous verrons qu’il peut ne pas
étre vrai a basse température.

> Exemple : pour une molécule monoatomique (He par exemple), on compte trois degrés de liberté
de translation, et on retrouve U/N = 3kpT/2. Pour une molécule diatomique (Oz ou CO), il y a trois
degrés de liberté de translation, deux degrés de liberté de rotation, plus un degré de liberté vibrationnel qui
contribue deux termes quadratiques a 1’énergie, comme il y a une énergie potentielle élastique associée. Au
total, U/N = TkgT/2.

Le comptage des degrés de liberté sera abordé plus en détail dans le cours de spectroscopie. Le point
important a retenir est que, grace au théoreme d’équipartition, on peut déterminer sans calcul I’énergie
moyenne d’un systéme de particules sans interaction. Inversement, la capacité thermique Cy = dU/dT, qui
est souvent mesurée expérimentalement, nous renseigne sur la structure microscopique du systeme étudié.

e) Distribution de Maxwell-Boltzmann sur les états & une particule

Un micro-état du gaz parfait de N particules est défini par la donnée des positions et des impulsions de
chacune des particules : C = (r1,...,rN,P1,...,Pn). Les particules étant indépendantes, il est équivalent
de spécifier pour chacune des N particules le micro-état (r1, p1) qu’elle occupe. On va chercher & déterminer
le nombre moyen de particules dans un micro-état (r1, p1) donné. Le résultat va nous étre trés utile pour
comprendre le comportement du gaz parfait quantique.

dr;dp;
(Mpy.py) N/HN'h3(N P(ry,...,tN,P1,---,PN) - (232)

probabilité que la particule 1 soit dans (r1,p1)

On a N! au dénominateur car on doit prendre en compte le caractére indiscernable des N particules (et pas
seulement N — 1). En utilisant l'expression de la probabilité canonique, on trouve

Zn_
(Npy p,) = e PPi/2m ZNZL (233)
ZN

Or,
log(Zn-1/ZN) =log Zn—1 —log Zny = B(F(N) — F(N — 1)) (234)

En faisant le développement limité qui est parfaitement justifié dans la limite thermodynamique,

oF oF
log(Zn—1/Zn) = 8 (F(N) — |F(N) - 75 > =8| = (235)
T V,T
En faisant apparaitre le potentiel chimique, le résultat devient trés compact :
<n1‘1,p1> - e_ﬁ(p?/Qm_#)' (236)

Le nombre d’occupation moyen du micro-état (r1,pi1) a une particule ne dépend en fait que de son énergie
p?/2m = e. On retiendra donc :

Dans un gaz de particules classiques sans interaction, le nombre d’occupation moyen d’'un état a
une particule d’énergie € & température kgT = 1/ et sous un potentiel chimique p est donné par

(ne) = e Pe=#)  (distribution de Maxwell-Boltzmann). (237)
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On peut expliciter le potentiel chimique & partir de 'expression (223)) de I’énergie libre :
oF NA3
= kpT log < VT) : (238)

" 0N
Dans le régime ot la description classique est valide (densité trés inférieure a 1/A3.) le potentiel chimique
est toujours négatif. On peut réécrire

1
vV, T

NA3
(ne) = —Le P,

On vérifie bien que le nombre de particules dans un micro-état est proportionnel au nombre de particules
total.

(239)

2) Gaz parfait et statistiques quantiques
a) Micro-états 4 une particule

Considérons d’abord une seule particule quantique dans une boite de volume V = L3. Son hamiltonien
ne contient qu’'un terme d’énergie cinétique :

~2

A p

Hi = —. 24
! 2m ( 0)

L’équation de Schrodinger indépendante du temps s’écrit alors
h? ( 0? 0? 0?

= +55+ > V(z,y,2) = EV(z,y,2). (241)

2m \9z2 ' 9y ' 922

En imposant que la fonction d’onde s’annule sur les bords de la boite, les solutions s’écrivent

3/2 .
Uy (x,y,2) = <L) sin(kgyx) sin(kyy) sin(k,z), avec k; = n%,m €N, (242)
et les énergies correspondantes sont
h2k?
Ex = . 243
k 2m (243)

Ces solutions définissent les micro-états a une particule.

b) Fonction de partition 4 une particule

On peut calculer la fonction de partition canonique d’un ”gaz parfait” contenant une seule particule

quantique.
0 ﬁh2 2 3
2.2 m
7, = E :efﬁh k?/2m _ <§ exp {Tﬂ 2mL2D ) (244)
k n=0

Dans la limite thermodynamique L — oo, on peut assimiler la somme & une intégrale :

oo 3
7y = </ dn exp {nZ gizj}) . (245)
0

En revenant a k = nw/L, on trouve

L [ —BR%K%/2m ’ L * —Bh%K2/2m, ’
Z1: ; o dke = % dke (246)

dk 271.2
_ —Bh2K2 2m. 24
xfu/"(Zﬂ?S ¢ (247)

On retiendra pour la suite que, dans la limite thermodynamique, on peut remplacer >, — V [ %. En

posant maintenant p = fk, on trouve
d
7=V / %’e*ﬁp?/‘é’m. (248)

Cela correspond bien au résultat classique. En partant des micro-états quantiques, on a trouvé par le calcul
la normalisation de I’espace des phases par la constante de Planck, que ’on avait dii admettre dans le cas
classique.
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c) Micro-états a N particules

L’hamiltonien de N particules dans une boite est la somme des hamiltoniens & une particule :

2
%

N
Ay =) -t (249)
i=1

2m

o)

Les solutions de I’équation de Schrodinger stationnaire a N particules, HyU = ED, peuvent étre obtenues
par combinaison linéaire de produits de solutions a une particule :

\I’kh...,kN (I‘l7 e ,I’N) = \I/kl (I‘l) e \I’kN (I’N) (250)

vérifie I’équation a N particules avec
s,
B, ey = 5~ > k- (251)
i=1

Cependant, toutes les combinaisons linéaires des Wy, .k, ne sont pas des solutions physiques de I’équation
de Schrodinger. En effet, les particules étant indiscernables, leur densité de probabilité de présence doit
rester invariante par échange de deux particules :

|\I/(I'1,...,I‘i7...,1'j7...,I‘N)|2: |\I/(I‘1,...,I'j,...71'i,...,I'N)‘Z (252)

Les fonctions d’onde physiques sont donc soit symétriques,

Ml

\IJ+(I‘1,...,I’i,...,I‘j,...,I'N):\I/+(I‘1,.. I'j,...,I‘i,...,I'N), (253)

soit antisymétriques,
U7 (r1,..., ..y Ty, rn) = =0T (11, .., L5, T4, ... TN ), (254)

par échange de deux particules. Vous avez vu que les fonctions d’onde symétriques décrivent des bosons,
particules de spin entier, alors que les fonctions d’onde antisymétriques décrivent des fermions, particules
de spin demi-entier. En pratique, on construit les fonctions d’onde symétriques ou antisymétriques pour un
choix donné de ki, ...,ky en sommant sur toutes les permutations P possibles des IV indices. La fonction
antisymétriques est donnée par

Urrrkn = \/% ;(*1)7)7)[‘1’1{1 Uy ] (255)

Ici (—1)7 désigne le signe de la permutation P (1 si le nombre de transpositions effectué par P est pair, -1
sinon). La fonction symétrique s’obtient selon

1
g = E PlUk, ... iyl (256)
Kok TN emd 0T
ou ny désigne le nombre de fois ou k apparait dans la séquence ky, ..., ky. Le détail de ces expressions n’est

pas essentiel pour la suite du cours. Le point important a retenir est que cette nécessité de symmeétriser les
fonctions d’onde rend difficile le calcul de la fonction de partition a N particules dans le cas quantique, vu
que l'on ne peut plus la décomposer en un produit de fonctions de partition a une particule :

N
Zy= Y e PP o % (Z eﬁEk> : (257)
k

Par exemple, dans le cas fermionique, il est clair que 'on ne peut pas faire la somme sur les k de fagon
indépendante, car les états ayant deux fois le méme k sont interdits par le principe d’exclusion de Pauli. I
doit exister des conditions dans lesquelles le systéme quantique se comporte de facon classique, et les deux
expressions ci-dessus sont égales. Il faut en fait que la température soit suffisamment élevée, de facon a ce
que la distance moyenne inter-particule soit plus grande que la longueur d’onde de de Broglie thermique :
(V/N)Y/3 > Ap. Mais ce n’est pas évident a ce stade.
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d) Grande fonction de partition

Deux allons tout de méme pouvoir déterminer les propriétés du gaz parfait quantique griace a deux
astuces stratégiques.

1. Un bon choix de nombres quantiques. Nous allons passer en représentation par nombre d’occupation.
Au lieu de spécifier le k; correspondant & chacune des particules dans un micro-état, nous allons
spécifier, pour chacun des k possibles, le nombre de particules pour lesquelles k; = k. Nous pouvons
le faire car, avec la symmétrisation, 'ordre des k; n’est pas important. Nous allons aussi prendre
explicitement en compte que pour un méme k, une particule peut avoir différentes valeurs du spin
o =-5-5+1,...5 Un micro-état est alors désigné par {nk,}, et on notera ¢ = 25 + 1 la
multiplicité de spin.

2. L’utilisation de l’ensemble grand-canonique. Cela va nous permettre de sommer sur les ng , de fagon
indépendante. Grace a 1’équivalence des ensembles dans la limite thermodynamique on retrouvera les
mémes propriétés que si I'on était parti de ’ensemble canonique.

En effet, la grande fonction de partition s’écrit

=_ Z 67/3 Zkﬂ(nkﬁEkﬂmk,a) _ H <Z [eﬂ(EkH)}n>g (258)

{nx,o} k n

On peut tout de suite prendre le logarithme pour transformer le produit en somme :

logZ =g log <Z [e—mEk—*‘)}n) . (259)
k n

Il faut maintenant distinguer les cas selon si I’on a affaire a des bosons ou a des fermions. Pour des fermions,
n =0 ou 1, et donc

log=_ =g log (1 n e*mEk*#)) . (260)
k

Pour des bosons, n varie entre 0 et +00. On constate que la somme diverge si ;4 > 0 : on verra dans la suite
pourquoi c’est le cas. Pour l'instant, on suppose que p < 0, et on somme la série géométrique :

_ 1

On peut condenser les deux expressions en une si I’on introduit le parameétre 7 qui vaut 1 pour les bosons
et —1 pour les fermions :

log=, = —ngZIOg (1 — ne‘ﬁ(E“_”)) . (262)
Kk

On peut maintenant exprimer les coordonnées thermodynamiques. Grace a la relation de Gibbs-Duhem, on
sait que Y = —kgTlog= = — PV, et donc

8P = _lV? S log (1 - newk*w) . (263)
k
Par ailleurs,
1 0logE 1
=3 o, _gzkjieB(Ek—u) - (264)

Dans la limite thermodynamique, on peut remplacer les sommes par des intégrales (>, — V [ %), et

on introduit également le paramétre z = e*) :

dk _
BP = —779/ W log (1 —nze ﬂEk) (265)
N dk 1
V- g/ (2m)3 z=1ePBx —p’ (266)

Ces équations contiennent toute la thermodynamique du gaz parfait quantique. Elle contiennent notamment
de facon implicite 'équation d’état P = f(T,V, N).
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e) Statistiques quantiques

Une bonne fagon de comprendre qualitativement le comportement de ces gaz quantiques est de s’intéresser
au nombre d’occupation moyen d’un état k, . En observant ’expression de la fonction de partition,
on voit que

10log=E, e PEx—p) 1

(ne,r) = T 90(BE.)  1—ne BB BB _yg (267)

Ce résultat est assez important pour étre rendu plus explicite.

Dans un gaz de particules sans interaction, le nombre d’occupation moyen d’un état a une particule
d’énergie € a température kgT = 1/0 et sous un potentiel chimique p est donné par les formules
suivantes.

e Pour des bosons :

1

(ne) = B 1 (distribution de Bose-Einstein) (268)
e Pour des fermions :
1 . .
(ne) = e cm (distribution de Fermi-Dirac) (269)

A température suffisamment élevée, le potentiel chimique doit se réduire & son expression classique
p = kT log(nA%), donc Bu est grand et négatif quand T est grand (ce qui correspond a z = e?# < 1). On
retrouve alors le résultat classique de Maxwell-Boltzmann ((n.) = e=#(¢=#) que ce soit pour des bosons ou
pour des fermions.

f) Gaz quantique a haute température : interaction effective

En quoi est-ce que le gaz quantique differe du gaz classique ? A haute température, on doit retrouver le
comportement du gaz classique. Comme on vient de voir, la limite haute température correspond en fait
a z = eP* <« 1. On peut déterminer les corrections a la loi des gaz parfaits que I’on obtient en s’écartant
de cette limite. Pour cela, on fait un développement limité en z des deux équations et (266]), puis on
élimine z entre les deux développements pour trouver P en fonction de IN. Le calcul est détaillé dans le

KARDAR par exemple. On trouve :
n (A3 nA3\ >
- (38) o[22
25/2\ g g
avec n = N/V. Ce résultat nous dit que :
e Les effets quantiques apparaissent lorsque nA% /g > 1. Pour une densité donnée du gaz, cela corres-
pond a une température suffisamment basse.
e Le signe de la correction a la pression du gaz parfait dépend de la nature bosonique ou fermionique
des particules. Pour un gaz de fermions, la pression est plus élevée que pour un gaz parfait classique.
Cela rend compte d’une répulsion effective entre les fermions, conséquence du principe d’exclusion
de Pauli. Pour un gaz de bosons, la pression est plus faible que pour un gaz parfait classique. Cela
rend compte d’une attraction effective entre les bosons, qui traduit leur tendance a la condensation
de Bose.

Ces corrections quantiques rentrent-elles vraiment en jeu dans des systémes chimiques? Peut-on ren-
contrer des systémes "trés quantiques”, pour lesquels nA3. > 17 Pour un gaz moléculaire comme I’hélium,
nous avons estimé Ayp = 51 pm a température ambiante : pour une densité raisonnable, les corrections
quantiques sont négligeables. Il faut aller a tres basse température pour voir des effets quantiques appa-
raitre. Par exemple, & T' = 4 K, Ap = 440 pm. Or I'hélium est liquide & cette température : la distance
moyenne inter-particule est donc de l'ordre de la taille atomique (70 pm) et les effets quantiques sont donc
importants.

Pour des gaz moléculaires, les effets quantiques n’apparaissent donc que pour des températures cryogéniques.
En revanche, un gaz d’électrons se comporte de facon fortement quantique méme a température ambiante,

PV = NkpT , (270)
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car un électron est beaucoup plus léger qu'un atome. Les gaz d’électrons se trouvent dans les métaux. Le
cuivre métallique, par exemple, est formé par un réseau d’ions Cu?t qui baignent dans un gaz d’électrons :
chacun des atomes de cuivre y a contribué deux électrons. La distance moyenne entre deux électrons est de
lordre de la constante de réseau du cuivre, soit environ 0.4 nm. Or, & T = 300 K la longueur d’onde de de
Broglie associée a un électron est A7 = 4.4 nm. Le gaz d’électrons se trouve donc dans un régime fortement
quantique : on parle de gaz de Fermi dégénéré.

Les gaz de bosons dans un régime fortement quantique se rencontrent en fait aussi le plus souvent
dans des systemes électroniques. A température suffisamment basse, les électrons dans un métal peuvent
acquérir des interactions attractives : ils vont alors s’apparier pour former des paires de Cooper. Les paires de
Cooper sont des bosons, et ce sont les aspects quantiques du comportement collectif de ces paires de Cooper
qui donnent lieu a la supraconductivité — phénomene de grande importance technologique, qui permet le
fonctionnement des aimants de RMN/IRM, par exemple.

g) Gaz de Fermi dégénéré

On peut comprendre le comportement du gaz de fermions a basse température en étudiant graphique-
ment le comportement des équations et . L’équation nous donne le nombre de particules
en fonction du potentiel chimique a une température donnée. Pour chaque température, on peut trouver
numériquement trouver le potentiel chimique correspondant & un nombre de particules fixé pour obtenir le
potentiel chimique en fonction de la température. On voit que le potentiel chimique devient positif lorsque
la température décroit. A trés basse température (8 — 00),

B(Ex—u) —0 si Bx < p
€ { — 400  si Ex>p (271)

Le potentiel chimique d’un gaz d’électrons est souvent appelé énergie de Fermi. On définit le vecteur d’onde
de Fermi kr selon Fy, = u. Alors, quand § — oo,

N k
\

\% k|<kp (27T)3 67'['2 ¥
Donc 13
672 N
kF:<;:V> . (273)
L’énergie de Fermi a température nulle est alors
h2 k2
Er = u(B — o0) = %;. (274)

On peut maintenant observer le comportement du nombre d’occupation moyen (n.) en fonction de la
température. Lorsqu’on baisse la température, les particules essayent d’occuper des états d’énergie de plus
en plus basse. Mais elles ne peuvent pas toutes se mettre dans I’état fondamental a cause du principe
d’exclusion de Pauli. La distribution de Fermi acquiert alors une forme de marche : & basse température,
ce sont tous les états a une particule d’énergie inférieure a I’énergie de Fermi qui sont occupés. Le gaz de
Fermi a donc une énergie moyenne et une pression non nulles & température nulle, ce qui est radicalement
différent du gaz classique.

Avec cette image, on peut comprendre le changement de signe du potentiel chimique. On a u = 0F/ON,
avec F' = U — TS. Dans le gaz parfait classique, I'incrément d’énergie interne dii a ’ajout d’une particule
(3kpT/2), est plus que compensé par 'incrément d’entropie associé (un plus grand nombre de particules
a plus de configurations), donc F' diminue et le potentiel chimique est négatif. Dans un gaz de Fermi
dégénéré, la particule ajoutée doit occuper un niveau d’énergie situé au-dessus du niveau de Fermi. Au
bout d’un certain nombre de particules, le cotit énergétique associé excede le gain d’entropie, et le potentiel
chimique est alors positif.

Pour les électrons du cuivre ’énergie de Fermi vaut environ 7 eV ~ 28kpT a température ambiante.
Donc méme a T' = 300 K, les électrons du cuivre sont bien décrits comme un gaz de Fermi a température
nulle.
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h) Condensation de Bose-Einstein

Pour un gaz de bosons, on observe que le potentiel chimique augmente et tend vers 0 quand la température
tend vers 0 comme kg7 log(nA /g). Cela implique une divergence du nombre d’occupation de 1’état fonda-

mental a une particule :
1

(ne=o) = o =1 b (275)
En fait, le nombre d’occupation du fondamental devient macroscopique (d’ordre N) en-dessous d’une
température critique Tg. C’est ce que I'on appelle la condensation de Bose-Einstein. Pour le voir, il faut re-
partir de 'expression du nombre de particules avant le passage a la limite thermodynamique qui transforme
la somme en intégrale :

1
N=yg Zk: o (276)

Si le terme k = 0 est beaucoup plus grand que tous les autres, on n’a pas le droit de transformer la somme
en intégrale vu que la fonction a intégrer possede une singularité en 0. On peut cependant isoler le terme
k = 0 (qui donne le nombre Ny de particules dans ’état fondamental), et transformer le reste de la somme
en intégrale :

dk 1

N = N . 2
ot gV/ (2m)3 z—1ePBrx — 1 (277)
En faisant le changement de variable z = 8h?k?/(2m) dans l'intégrale, on peut réécrire
gV < dzzl/
N=No+—= . 278
0+ A%f(z), avec f(z \f/ o (278)

z = ePH peut varier entre 0 et 1. Sur cet intervalle, f est bornée par sa valeur en z = 1 : f(2) < f(1) =
(372 & 2.612. Donc si la température est suffisamment basse pour que gC3/2/A§1 < N/V, il n’existe pas de
z qui permette de vérifier ’équation ci-dessus avec Ny = 0, en on a donc Ny # 0. La température de Bose
est donnée par la condition g§3/2/A%B = N/V, soit

B2 ( n )2/3
Ts = . 279
B ormkg 9C3/2 (279)
Pour T' < Ty, on trouve
No=N [1 —(T/Tp)Y 2} . (280)

Le nombre d’occupation moyen (n.) devient singulier en ¢ = 0 pour T' < Tg. Thermodynamiquement, la
pression et 1’énergie moyenne du gaz de bosons tendent vers 0 a température nulle, mais selon des lois
particulicres et différentes du cas classique. Par exemple, la pression se comporte selon P o T°/2, avec
un préfacteur indépendant de la densité. La condensation de Bose-Einstein est une des manifestations les
plus spectaculaires de la mécanique quantique, et un phénomene d’importance technologique majeure. En
particulier, la supraconductivité résulte d’une condensation de Bose-Einstein de paires d’électrons (paires
de Cooper).

3) Solution diluée comme un gaz parfait : osmose

La gaz parfait est un modele tres utile en chimie, car il décrit bien les molécules en solution diluée.
En effet, dans une solution suffisamment diluée, les solutés ne se rencontrent que trés rarement : c’est
donc une bonne approximation de considérer qu’ils n’interagissent pas entre eux. Les solutés subissent des
collisions tres fréquentes avec les molécules de solvant. Cependant, la distribution de vitesses qui en résulte
est identiques a celle que l'on aurait dans un gaz parfait a la méme température. Plus précisément, la
dynamique de la vitesse des solutés est différente (elle change beaucoup plus souvent de direction que dans
un gaz), mais la distribution statistique reste la méme. Une conséquence importante du comportement ”gaz
parfait” des solutions est le phénomene d’osmose, que nous allons discuter dans ce paragraphe.
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a) Mise en évidence expérimentale

L’expérience canonique mettant en évidence le phénomene d’osmose est celle du tube en U. Le tube est
séparé en deux compartiments par une paroi. A gauche, on place un volume V' de solvant pur. A droite, on
place le méme volume de solvant, dans lequel on a dissous un soluté S a une concentration cs. On choisit le
matériau de la paroi pour que celle-ci se comporte de facon semi-perméable : elle laisse passer le solvant, mais
pas le soluté. Alors, on observe un écoulement de solvant du compartiment de gauche vers le compartiment
de droite : le systéme tente d’égaliser les concentrations des deux cotés de la paroi. C’est ce que 'on appelle
I’osmose. Si 'on veut stopper I’écoulement, il faut appliquer sur le compartiment de droite une certaine
pression, que ’on appelle pression osmotique, souvent notée II. Pour des concentrations cs suffisamment
faibles, elle s’exprime selon la

Loi de Van’t Hoff :
II = kpTes. (281)

Nous allons établir la loi de van’t Hoff a partir de la mécanique statistique. Il s’agit en fait de ’analogue
de la loi des gaz parfaits pour la solution diluée.

b) Importance des effets osmotiques

L’osmose est un phénomene trés important pour les systémes biologiques. En effet, les membranes de
cellules se comportent comme des parois semi-perméables : elles laissent passer 1'eau (et quelques ions)
mais pas les macromolécules (ADN, protéines). Il est donc crucial pour la stabilité d’une cellule que le
milieu extérieur contienne des solutés & une concentration similaire & celle a I'intérieur (milieu isotonique).
Si Pextérieur est plus concentré que Uintérieur (milieu hypertonique) 'osmose va vider les cellules de leur
eau : c’est pour cela que le sel conserve les aliments. Si ’extérieur est moins concentré que l'intérieur (milieu
hypotonique) 'osmose va remplir les cellules d’eau et les faire exploser.

La pression osmotique détermine le colit en énergie des processus de filtration. La filtration consiste
typiquement & pousser une solution a travers une membrane qui est perméable au solvant et pas au soluté :
on parle aussi d’osmose inverse. En effet, on cherche & induire un écoulement dans le sens inverse de
I’osmose : du plus concentré vers le moins concentré. Pour contrer le flux osmotique spontané et obtenir
I’osmose inverse, il faut appliquer au minimum une pression égale a la pression osmotique. Ces pressions
peuvent étre considérables : par exemple, pour dessaler 'eau de mer (concentration en sel ~ 0.6 mol/L), la
pression minimale & appliquer est de 'ordre de AIl = 30 bar.

Historiquement, ’'osmose a été découverte en 1748 par I’abbé Nollet, qui avait placé dans une bassine
d’eau une fiole d’éthanol fermée par une vessie de porc. Il se trouve que la vessie de porc est légérement
perméable a I'eau, mais pas a ’éthanol !

c) Loi de van’t Hoff : démonstration microscopique

On revient a la situation du tube en U. On note Ny le nombre de molécules de soluté, confinées au
compartiment de droite, et N le nombre total de molécules de solvant, libres de se répartir entre les deux
compartiments. On notera N’ le nombre de molécules de solvant dans le compartiment de droite (et N — N’
dans le compartiment de gauche). On applique sur le compartiment de droite une surpression II par rapport a
la pression atmosphérique Py, et on cherche a déterminer la concentration en soluté ¢, dans le compartiment
de droite & ’équilibre thermodynamique. II sera alors la pression osmotique correspondant a cs.

Condition d’équilibre. Dans une situation de pression imposée et température imposée, c’est I’enthal-
pie libre G qui est minimisée dans 1’état d’équilibre. L’enthalpie libre totale du systéme se somme entre les
deux compartiments

Giot = G<Nw :NfN/aNs :07P07T)+G(Nw = N/7N53P0+H7T)' (282)

Physiquement, le systéme va ajuster la variable interne N’ (le solvant va s’écouler & travers la membrane
semi-perméable) jusqu’a ce que Gyt soit minimale :

0Giot 0 _ / _
N =0= 7mG(Nw =N-N 7Ns *07P0aT)+

v —_ N/
N CNu = N', N, Py +TLT). (283)
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On identifie le potentiel chimique du solvant g, = OG/ON,, et la condition d’équilibre s’écrit donc

b (T Poycs = 0) = oy (T, Py + 11, ¢5). (284)

N

Le potentiel chimique du solvant doit s’égaliser entre les deux compartiments a 1’équilibre. On va donc
s’attacher a calculer ce potentiel chimique.

Fonction de partition. Il sera plus aisé de partir d’un systéme en situation canonique : Ny molécules de
soluté mélangées a N, molécules de solvant a volume fixé V' et température 7. On considere des molécules
sans degrés de liberté internes, mais le raisonnement serait le méme en présence de tels degrés de liberté.
Un micro-état est alors défini par les positions et les impulsions de chacune des particules, et son énergie
s’écrit de fagon générale

Nw 2 Ns 2
E(C) = P; + P;
i=1 2may i=1 2ms

—|—Uw(r§“,...,r§€,w) + Us(ri,...,r}“\,s) —|—Usw(r§”,...,r%w,rf,...,rfvs). (285)

Nous ne considérons a priori pas un gaz parfait, mais une solution ot les molécules interagissent entre elles :
il y a donc une énergie potentielle associée. Il y a une énergie d’interaction entre molécules de solvant U,,,
une énergie d’interaction entre molécules de soluté U, et une énergie d’interaction solvant-soluté Us,,. Nous
allons maintenant utiliser 'hypothése de solution diluée pour faire deux approximations :
e On néglige I'énergie d’interaction entre molécules de soluté, qui sont en moyenne toujours assez
éloignées pour que cette énergie soit faible.
e De la méme fagon, I’énergie d’interaction entre une molécule de soluté et le solvant ne dépend pas
des positions des autres molécules de soluté, ces interactions étant de portée beaucoup plus courte
que la distance moyenne entre solutés. On peut alors écrire :

N
Usw(ry,...,TxN, 1, ..., TN.) = Zusw(rf,rqf’,...7r%w). (286)
i=1

La fonction de partition s’exprime alors comme

— ]' ]' _ﬂ Uw(rwv"vrw )+2Nj usw(rf,r“’,...,r“’ )
? 7 NIGH NG / B

ot 'on a noté [dr] =[], dr;. On cherche maintenant & séparer les contributions du solvant et du soluté :

w w NS S w w
Z ! E L TIC A p— Jldr, J[drJe P [Tn )T v (et o, )
= = ryle w(Fise TNy, _

Ny (AR)3Nw N I(A3)3N: f[drw]e_ﬁU“’(rl T

(288)
On voit apparaitre la fonction de partition du solvant pur Z,,, ainsi qu'une moyenne sur les configurations
du solvant :

1 s s
_ . —Busw(ry) —Busw(r g)
2= Zu ey /[drs] <e Doe ~. >w . (289)
Mais comme les particules de soluté sont considérées indépendantes,
<e_ﬂusw(ri) L. e—ﬁusw(l‘}s\,s)> — <e_ﬂusw(ri)> . <€—/8usw(1’7v3)> . (290)

Par ailleurs, dans un systeme homogene, les quantités moyennées sont indépendantes des rj. On peut alors
écrire
(ePun®) = e=PRWNuVT), (201)
w

est une fonction qui ne dépend que du solvant, et donc de ses coordonnées thermodynamiques N,,,V,T.
Elle représente I’énergie libre d’interaction d’une particule de soluté avec le solvant. Comme les interactions
solvant-soluté sont de portée tres courte devant la taille du systéme, ¢ doit étre une quantité intensive, ne
dépendant que de la densité du solvant. La dépendance en température de ¢ n’a pas d’importance pour la
suite, et on écrira pour simplifier ¢(Ny,, V,T) = ¢(Ny/V). On trouve finalement

Z = Zy - 20 PNs¢WNuw/V) (292)

ot Z? est la fonction de partition de N, particules de gaz parfait.
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Potentiel chimique. L’énergie libre s’écrit

F(NwaN&VyT) = Fw(vava) +F0(N87V7T) +Ns¢(Nw/V) . (293)

solvant pur gaz parfait mélange

¢ représente en fait ’énergie libre de solvatation d’un soluté. On peut maintenant calculer les potentiels
chimiques du solvant et du soluté :

OF N,
Ny, Ng, V,T) = ——| = T) + —2¢'(N, 294
,Uw( w; Ns, V, ) ON,, v Hw(V7 )+ V¢( w/v) (9)
OF 3
ts(Ng, Ny, V,T) = O = kT logcs A + ¢(Ny /V). (295)
slv

On a noté u, (V,T) le potentiel chimique du solvant pur.

Introduction de la pression. On voit que le soluté se comporte comme un gaz parfait, placé dans un
potentiel constant déterminé par le solvant. Pour le solvant, 'interprétation est moins claire. Par ailleurs,
on voudrait en fin de compte exprimer le potentiel chimique en fonction de la pression. Pour cela, il faudrait
exprimer le volume en fonction de la pression, mais ce n’est pas facile. L’astuce consiste a calculer ’enthalpie
libre G = F 4 PV, puis calculer le potentiel chimique du solvant comme p,, = 0G/ONy|p. On commence
par exprimer la pression en fonction du volume :

8F NskBT NsN'w /
P(N,,No,V,T) = —— = P,(V,T N, /V). 296
( ) = — 50 = PolViT) + =52 + G (N, V) (296)

Ici P, (V,T) est la pression du solvant pur. On trouve alors pour I'enthalpie :
Ny
G = Gw(Nwa ‘/a T) + GO(Nsa V7 T) +Ns |:¢(Nw/v) + V¢I(Nw/v):| (297)
solvant pur gaz parfait
Y(pw=Nw/V)

On dérive maintenant par rapport a N,, d pression P constante. Attention, maintenant le volume dépend
de Ny, :

oG 0Gy OV
— = T,P)+ — —| 4+ N (pw) =
Ny |, ~ P TP T o | TN ) B
11 faut se rappeler qu’on est dans la limite Ny petit. Jusqu’a maintenant, on n’a gardé que les termes d’ordre
1 en Ny, et on va faire de méme dans cette expression. Tout d’abord, on explicite I’enthalpie libre du gaz
parfait :

0
pias (N, No, T, P) = Pu

(298)

N A3 0Gy NgkpT

Go(Ne V.T) = Nopto(No V. T) = NoknTlog ==L = S22 — — =B

Le volume et la densité du solvant dépendent a priori de N,. Mais ils interviennent déja avec un facteur Ny,

donc on va pouvoir les approcher par leurs valeurs & Ny = 0. On considére V' = V,,(P), le volume du solvant

pur a la pression P, et py, = N, /Vi(P). Alors, on a simplement 0V/ON,|p = V/Ny, et 0py/ONy|p =0:

a une pression donnée, la densité d’un liquide ne dépend pas de la quantité qu’on en a dans le récipient. On
obtient alors

(299)

o (Noy, N, Ty P) = o (T, P) — kBTgS = (T, P) — kpTxs. (300)
w
On note x5 = Ng/N,, la fraction moléculaire de soluté. Il est frappant que cette expression ne dépend
plus de la nature des interactions entre solvant et soluté, mais seulement de la quantité de
soluté. C’est le signe d’un effet entropique. Le potentiel chimique du solvant représente la
variation d’enthalpie libre de la solution lorsqu’on y ajoute une molécule de solvant (a pression
constante). Le terme —kgTxz; correspond & ’augmentation d’entropie du soluté qui a un plus
grand volume accessible quand on ajoute du solvant.
Loi de van’t Hoff. On peut maintenant enfin établir la loi de van’t Hoff ! On avait dans I’état d’équilibre
du tube en U

t (T, Poycs = 0) = py (T, Py + 11, ¢5) = po (T, Po) = pon (T, Py + II) — kpTxss. (301)

On peut écrire
fortt - ou(T, P)

1T Po + TI) = 1 (T, o) + / ap 2MLF) (302)
Py oP P
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On se souvient maintenant de la relation de Gibbs-Duhem. En prenant sa forme différentielle, on a

ou v
Sd VAP + Ndpy=0= oP|, ~ N (303)
Donc Pl
0 V(P
ol P+ 1) = (0 P+ [ ap B (304)
Py w

En supposant que la densité du solvant ne dépend pas de la pression dans le domaine de pression considéré,

v

T, Py 4 T1) = i (T, o) + 50 (305)
Finalement, la condition d’équilibre s’écrit
nv
t (T, Po) = p (T Po) + N kgT'xs, (306)
soit
N,
II = kBT7 = k’BTCS. (307)

VI. Meécanique statistique des réactions chimiques

Nous avons vu que les systemes chimiques en phase gazeuse ou en solution diluée peuvent étre bien
décrits comme des mélanges de gaz parfaits. Dans ce chapitre, nous allons étendre les résultats du chapitre
précédent pour prédire un état d’équilibre chimique a partir de la structure microscopique des molécules en
réaction.

1) Gaz parfait et degrés de liberté internes

Nous avons étudié jusqu’a maintenant des gaz parfaits de particules ponctuelles, qui ont pour seuls degrés
de liberté leur position et leur vitesse. Mais tous les résultats précédents se généralisent & des entités plus
complexes que des particules ponctuelles (typiquement, des molécules), qui, en plus des degrés de liberté de
translation, possedent des degrés de liberté internes. On adoptera souvent une description classique pour
les premiers et une description quantique pour les seconds. Le micro-état d’une molécule dans I’ensemble
canonique est alors spécifié par la position r et 'impulsion p de son centre de masse et par un ensemble de
nombres quantiques associés aux degrés de liberté internes, que 'on peut "emballer” dans un seul nombre
quantique £ pour ne pas perdre en généralité : C; = (r, p,£). Pour spécifier le micro-état d’un systéme de N
molécules, il faut donner le micro-état de chacune d’entre-elles : Cy = (r1,...,rN,P1,---s PN, f1, -, €N).

Le modele du gaz parfait suppose l’absence d’interaction entre particules. Cela équivaut a dire que
I’énergie totale peut s’écrire comme une somme des énergies des particules individuelles :

N N 2
E(Cn) = ZE(rhpz’,éi) = Z [;n - E(éi):| : (308)

Alors, la fonction de partition canonique du systeme a N particules peut s’écrire comme le produit de
fonctions de partition & une particule :

N
P Z —BE(CN) _ L Z —BE(Cy) _ E = ﬁ (309)
NT S AR TN NU
N 1

Le facteur 1/N! vient de P'indiscernabilité des N particules. L’énergie libre s’écrit alors

F = —kgTlog Zy (310)
= —NkpTlogz + kT (Nlog N — N) (311)
= NkpT(log(N/z) — 1), (312)
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ot on a utilisé la formule de Stirling & la deuxiéme ligne. On en déduit le potentiel chimique (quantité

cruciale pour la suite) :
OF

ON |y

On peut maintenant détailler ’expression de z pour séparer la contribution des degrés de liberté de trans-
lation (que 'on connait déja) et celle des degrés de liberté internes :

_ / drdpz —B(P?/(2m)+E(0)) (314)

drdp7 2 /(2m) _
- [ ] 5 oo, @19

\—v—’

Zint

N
= kgT log ~ (313)

M:

V/AT

La fonction de partition & une particule se factorise donc en une contribution translationnelle pure (z¢rans =
V/A3., calculée au chapitre précédent) et une contribution des degrés de liberté internes que I'on note zipt.
Dans le cas d’une solution diluée, zi,; contient également une contribution due aux interactions avec le
solvant (voir calcul de la pression osmotique). On peut alors écrire le potentiel chimique en fonction de la

concentration ¢ = N/V :
Zint

A3

= kgT log (%) avec ¢° = (316)
c

2) Constante d’équilibre chimique

Considérons un mélange de n espéces chimiques A;, en équilibre par rapport a la réaction

> il =0, (317)
=1

ou les coefficients stoechiométriques v; sont négatifs pour les réactifs et positifs pour les produits. Dans le
cadre de la mécanique statistique, nous étudions ce systéme dans I’ensemble de Gibbs, ou la température,
la pression et les nombres de particules IV; sont fixés. Lorsqu’on met les réactifs en contact, on relache un
contrainte sur les N; : ils peuvent varier selon N; = N? + 1;&, ot £ est I'avancement de la réaction et les
N? sont les nombres de particules initiaux. On cherche a déterminer ¢ (et donc les N;) dans le nouvel état
d’équilibre. A T et P constantes, on obtient I’état d’équilibre en minimisant I’enthalpie libre :

oG =0. (318)
€ |, p

REMARQUE. En réalité, les N; ne sont pas fixés dans I’état d’équilibre chimique : ils peuvent fluctuer
autour de leur valeur moyenne. On choisit cependant de faire les calculs dans I’ensemble de Gibbs ou les N;
sont fixés. On obtiendra a la fin une relation entre coordonnées thermodynamiques qui est toujours vraie
en vertu de ’équivalence des ensembles.

En partant de la définition thermodynamique G = U + PV — TS, on trouve

dG = —SdT = VAP + Y 1;dN; = —=SdT — VAP + Y " vip;de. (319)
=1 =1
Donc n
0G| _ > vipi =0 a léquilibre. (320)
9¢ TP =1

En utilisant I'expression (316)) pour le potentiel chimique d’un systéme de type gaz parfait,

vitt; = 0 & vikgT log 0 (321)
> > (%)-

< kT log <1_}_%> =0 (322)
& H = ﬁ )i = K°(T). (323)

=1
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On a démontré ainsi la loi d’action des masses, qui stipule qu’a I’équilibre chimique [, ¢;* est égal & une
constante (la constante d’équilibre K°(T')) qui ne dépend que de la température. On a également obtenu
une expression de la constante d’équilibre en termes des fonctions de partition a une molécule des especes
en réaction :

e -T1E) 15 =

REMARQUE. La loi d’action des masses n’est valide que pour des systemes chimiques pouvant étre décrits
comme un mélange de gaz parfaits. Si ce n’est pas le cas, on introduit les activités des especes chimiques,
qui viennent remplacer les concentrations dans 'Eq. (323)).

Pour exploiter cette expression, on doit s’intéresser a la fonction de partition zj,; associée aux degrés de
liberté internes d’une molécule.

3) Fonction de partition interne

Les degrés de liberté internes des molécules sont étudiés en détail dans le cours de Spectroscopie. Ici, on se
limitera a des considérations tres simples sur les degrés de liberté électroniques, rotationnels et vibrationnels.
On négligera les couplages entre vibration et rotation, les rotations internes, ainsi que les effets de spin
nucléaire. Dans ce cas, les degrés de liberté se traitent de fagon indépendante :

Zint = Zelec * Zrot * Zvib- (325)

a) Cas limites en température

On a vu que, de facon générale, la fonction de partition interne s’écrit
Zine =y e P (326)
¢

Ce somme pourra se simplifier dans deux cas limites :
e Si I’écart typique en énergie entre les états £ est tres grand devant kg7, la somme est dominée par
I’état £ de plus basse énergie :
Zint A2 90@_/3%7 (327)
ou go est la dégénérescence de 1’état fondamental.
e Sil’écart en énergie typique entre les états £ est trés petit devant kgT', on peut approcher la somme
par une intégrale :

zim::z/ de p(e)e=Pe, (328)
0

ol p(e) est la densité d’états a 1'énergie e.

b) Fonction de partition électronique

Les écarts entre niveaux d’énergie électroniques dans une molécule est de 'ordre de plusieurs dizaines
de fois kT a température ambiante : nous sommes donc dans le premier cas limite. Par ailleurs, 1’état
fondamental électronique n’est en général pas dégénéré. Alors,

Zelec = eiﬁE0~ (329)

REMARQUE. Il y aura une dégénérescence de 1’état fondamental pour des molécules ayant des électrons
non-appariés : NO,NOo, O,, etc.

50,74



Mécanique Statistique pour la Chimie

c) Fonction de partition rotationnelle

On étudiera seulement le cas d’une molécule linéaire pouvant étre décrite comme un rotateur rigide,
dont les niveaux d’énergie sont donnés par
h2
Er=0l+1)—=, 330
avec I le moment d’inertie de la molécule et ¢ € N. Chacun des niveaux est 2¢ + 1 fois dégénéré. La fonction
de partition correspondante s’écrit

o _ _a?
trot = Y (204 D)e 5T (331)
=0

Pour simplifier cette expression, on définit la température rotationnelle O, = h%/(872Ikg). Alors

oo

Zrot = 3 (20 4 1) EFDO/T, (332)
£=0

Pour la plupart des molécules, ©,o; ~ 0.1 —1 K. Méme pour des molécules ayant un petit moment d’inertie,
elle reste inférieure & la température ambiante (pour Hs, ©, = 87.6 K). Vu que kO, représente 1’écart
en énergie typique entre deux niveaux rotationnels, nous sommes dans le deuxiéme cas limite et la somme
peut étre approchée par une intégrale :

ot = / A6 (26 + 1)e DO/ T (333)
0
::/wda%+¢p4”“ﬂﬂﬂﬂmm“’ (334)
0
:@mMﬂ/ A0 (26 + 1)e=(+1/2 /T (335)
0
T [~ d N
— Orot/(4T) Al = | —e=(t+1/2)%6r0t /T 336
e o / < e ] (336)
2 0
_ Owr/tar) L {e—um/z) emt/T} (337)
rot +oo
T
rot = . 338
Frot G)rot ( )

Pour une molécule linéaire possédant un plan de symétrie (comme Ho, CO2, CoHs) cette expression doit étre
corrigée par un facteur de symétrie o = 2 :
1T
Zrot = ———.
rot o @rot

Ce résultat ce généralise a une molécule non-linéaire ayant trois axes principaux de rotation A, B et C. On
trouve

(339)

L VAT T T 1Y
rot (o) @rot,A @rot,A erot,A

) (340)
ou le facteur de symétrie o dépend du groupe de symétrie ponctuelle de la molécule.

d) Fonction de partition vibrationnelle

Les degrés de liberté vibrationnels d’une molécule se décrivent comme M oscillateurs harmoniques
indépendants, chacun ayant sa pulsation propre w;. Les niveaux d’énergie correspondants sont

. 1
E;:mw<n+2>, n€N. (341)

Pour une molécule constituée de N atomes, le nombre de modes vibrationnels est M = 3N — 5 si elle est
linéaire et M = 3NN — 6 si elle n’est pas linéaire. La fonction de partition vibrationnelle s’écrit alors

M o
Zuib = H Z efﬁhwj(anrl/Q). (342)

j:l nj:O

51/74



Mécanique Statistique pour la Chimie

Comme pour les rotations, on définit une température caractéristique pour chaque mode j : ©; vi, = fiw;/kp.
Ces températures vibrationnelles peuvent étre de 'ordre de la température ambiante, donc on est dans
aucun des cas limites. Cependant, les sommes peuvent se calculer directement en reconnaissant une série
géométrique :

Zoip = H@ ©;viv/(27) Z ( j,vib/T) ’ (343)

n;j=0

M —0;.vin/(2T)
11 pp—rr (344)

4) Exemple : substitution isotopique

Les résultats ci-dessus permettent en principe de calculer la constante d’équilibre d’une réaction chimique
arbitraire a partir de données spectroscopiques. Ils sont particulierement intéressants dans les cas spéciaux
ou ’on peut tirer des conclusions qualitatives avec peu de données, comme les réactions d’échange isotopique.
Considérons par exemple la réaction en phase gazeuse

Hy + Dy = 2HD. (345)
A TDéquilibre, les concentrations des gaz vérifient

[HDJ?

ﬁi;ﬂiii'zzl(o(Jv' (346)

On peut également exprimer la loi d’action des masses en fonction des pressions partielles, obtenues par un
gaz parfait A comme Py = kgT[A] :
Pip
Pu,Pp,
En vertu de 'approximation de Born-Oppenheimer, I’énergie de 1’état fondamental électronique est la méme

pour Hs, Dy et HD. Les constantes de force associées aux degrés de liberté vibrationnels sont également
inchangées. La formule (324) nous donne donc

= K°(T). (347)

3 2 2

K°(T) = (AH2 Ap, ) ZHD,rot “HD, vib (348)

- 2 ,
Aip ZHy,r0tZDa rot #Ha,vibZDa,vib

On va pouvoir faire un grand nombre de simplifications grace aux relations simples entre les masses des
réactifs et des produits :
my, = QmH, mp, = 4777,[{7 myp = 3mH. (349)

Par ailleurs, pour les masses réduites

1 2

HHp = 5TH,  pD, = MH, [HD = SMH. (350)
On en déduit ; 4/ 4/ 2o
An,Ap, \" _ mip / _ 3*mi; / _(? / (351)
AI2{D my,mp, 2mH . 4mH 8 '
Pour la contribution rotationnelle,
Z12{D,rot _ T/@HD,rot —4 @Hg,rotGDQ,rot (352)
ZHg,rot 2Dy, rot (T/(2@H2,rot))(T/(QeDg,rot)) ®HD,rot ’

en prenant bien en compte les facteurs de symétrie. Or la température rotationnelle est inversement pro-
portionnelle au moment d’inertie I = pr2, ol r est la distance inter-atomique. Donc

2
FHDrot  _, Mhap  _, 1/2 32 (353)
ZH,,rotZDgy,rot HH, UMDy (2/3)2 9
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Pour la contribution vibrationnelle,

9 e~ ©HD,vib/ (2T) 2
ZHD,vib 1—e ©HD,vib/T

= 7 (354)
ZH,,vibZDy,vib e~ ©Hy vib/(2T) ,—Opy, vib/(2T)
1—e ©Ha,vib/T | ,=ODg vib/T
_ »—Ou, vin/T _ »—Opy vin/T
_ (1 € 2 )(1 € 2 )e(—@HD,vib"F@HQ‘vib/2+eD2,vib/2)/T. (355)

(1 — e_GHD,vib/T)Q

Or Oy, = hw/kp ;fl/2, donc Oyibup = (3/4)1/2@\,11)71{2 et Oyibp, = (1/2)1/2@Vib7H2. Par ailleurs,
Oyib, 1, = 6215 K, donc on peut considérer 1 — e=Omnzvin/T oy 1, Finalement,

1/2
K°(T) =4 (Z) e 0013 Oy viv/T — 4 94 5 ¢~ T8/T(K), (356)

On trouve que la réaction est exothermique (la constante d’équilibre décroit avec la température) du fait de
la différence d’énergies de point zéro vibrationnelles entre les réactifs et les produits. La constante d’équilibre
est augmentée (facteur 4) du fait de la diminution de symétrie rotationnelle entre les réactifs et les produits.

VII. Meécanique statistique aux interfaces

1) Isothermes d’absorption
a) Définitions

L’adsorption désigne ’accumulation d’une espece chimique
a une interface. Souvent, il s’agit d’une interface solide-liquide

et solide-gaz. Dans ce cas, le solide est appelé adsorbant et
une molécule adsorbée est appelée adsorbat. On distingue deux o
types de phénomenes d’adsorption selon la force de l'interac- ® o o
tion adsorbant-adsorbat : ® [ ) o
e Si I'adsorbat forme une liaison covalente avec 1’adsor- O [ )

bant, I’énergie d’interaction est de ’ordre de plusieurs
eV et on parle de chimisorption.

o ® o
. ©
e Si I’adsorbat ne forme pas de liaison covalente avec I’ad-
sorbant, I’énergie d’interaction (due principalement aux /
forces de van der Waals) est de lordre de quelques di-
LIT P TPTTPTTT

zaines de meV et on parle de physisorption.
Une molécule physisorbée peut en général diffuser sur la sur-
face, alors qu’une molécule chimisorbée reste fixe. Les modeles
étudiés dans ce chapitre peuvent s’appliquer a la fois & la chi- FIGURE 1 — Tllustration du processus d’ad-
misroption et & la physisorption. soprtion : un adsorbant solide peut piéger

On caractérise un processus d’adsorption par le nombre des molécules de gaz a sa surface. Adapté de

) proct phion b ) [DGLR].
Nags de molécules adsorbées pour des valeurs données de
température et de pression. La courbe N,qs(P) a T fixée s’ap-
pelle une isotherme d’adsorption. 1l existe trois méthodes principales pour la mesure d’une isotherme d’ad-
sorption :
e Méthode gravimétrique : 'adsorbant est placé sur une balance. On mesure sa variation de masse en
fonction de la pression de gaz appliquée.
e Méthode volumétrique : 'adsorbant est placé dans une enceinte hermétique. On mesure le volume de
gaz qu'il faut y introduire pour obtenir une pression donnée.
e Microbalance a cristal de quartz (ou QCM, pour Quartz Crystal Microbalance) : ’'adsorbant est placé
sur un cristal de quartz piezoélectrique. On mesure la fréquence de résonance du cristal, trés sensible
a la masse qu'’il supporte, en fonction de la pression de gaz appliquée.

La comparaison d’une isotherme d’adsorption expérimentale & un modele théorique permet de déduire
des informations sur la structure de ’adsorbant et les interactions en jeu dans le processus d’adsorption.
Une de ces informations est la surface spécifique de 1'adsorbant, exprimée en m?/kg : c’est la surface
effectivement disponible & 1’adsorption par unité de masse de 1'adsorbant (qui se présente souvent sous
forme de poudre). C’est une caractéristique trés importante pour la catalyse hétérogeéne : on souhaite en
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général qu’'un catalyseur ait la plus grande surface spécifique possible. Nous allons étudier ci-dessous deux
modeles d’adsorption, et voir comment ils peuvent étre utilisés pour déterminer une surface spécifique.

b) Modéle de Langmuir

On considere un adsorbant solide en équilibre avec une gaz moléculaire & pression P et température 7.
On suppose que le solide possede M sites, considérés comme indépendants, chacun susceptible d’adsorber
une molécule du gaz. Les molécules adsorbées constituent un systéme en situation grand-canonique : leur
nombre N, peut fluctuer, mais le gaz avec lequel elles sont en équilibre impose leur impose la température T'
et le potentiel chimique p. On cherche a déterminer le nombre moyen de molécules adsorbées, qui s’exprime
en fonction de la fonction de partition grand-canonique :

2= 3 e AEQ-INO) 5 (N,) = 19log= (357)
> B Ou

Les sites étant indépendants et discernables, un micro-état du systéme est déterminé par la donnée des
micro-états de chacun des sites : C = (n1,Cy,...,nar,Car), ot n; = 0 ou 1 selon si une molécule est adsorbée
ou non sur le site ¢ et C; est le micro-état de la molécule sur le site i, si celle-ci est présente. Les énergies
sont également additives entre les sites : E(C) = Zﬁ1 n;E(C;). La grande fonction de partition se factorise

donc selon

_ Z Z e_ﬂzl-]\:1 ni(E(Ci)—p) _ Z e~ B (E(C)—p) . . Z e Bnm(E(Cwm)—n) = fM, (358)

ny,C1 nar,Cu ny,C1 nar,Cu

(1]

ou 'on a noté £ la grande fonction de partition d’un site. Sans perte de généralité, on peut adopter une
description quantique pour les degrés de liberté de la molécule adsorbée : son micro-état est représenté par
une nombre quantique ¢ et 'énergie correspondante est E,. La fonction de partition d’un site s’écrit alors

£E= Z Ze‘ﬁ”(&_”) =14 efr Z e PE =1 4 Pro (T), (359)
n=0,1 ¢ ¢

ot I'on a défini la fonction de partition canonique d’un adsorbat, z,(T). Nous pouvons ainsi calculer la
fraction adsrobée 6 = (N,)/M :

_ 1 OlogE  109logg ez (T) (360)
TBM on B op  1+elrz(T)
On se souvient maintenant que le potentiel chimique d’un gaz parfait moléculaire s’écrit
c NA3 P A3
— kgl (f):le AT ) ppTlog | 2T ) 361
p=rBlog\ o) = Bl 08 (Vzim(T) BL 8\ kT zim(T) (361)
ou zins est la fonction de partition interne d’une molécule. On obtient alors I’isotherme de Langmuir :
PKy, A3 z,(T)
O(P) = ———— K, =-—-L . 62
(P) =1 pr, & Ko= 1 mo ) (362)

On observe que :

e A basse pression, on a une relation linéaire entre fraction adsrobée et pression : 6 ~ PK . C’est en
fait le résultat donné par un modele plus simple — celui de Henry.

e Il y a une saturation a haute pression (6 & 1), car tous les sites sont alors occupés.

e La constante de Langmuir K, peut-étre approximativement reliée a la chaleur d’adsorption @, c’est-
a-dire la différence entre I’énergie moyenne €, d’'une molécule de gaz et I’énergie €, d’une molécule
adsorbée, qui est une quantité accessible expérimentalement. On suppose pour cela que les degrés
de liberté internes (vibrations, rotations) d’une molécule ne sont pas affectés par le processus d’ad-
sorption, ou alors qu’ils contribuent suffisamment peu & la fonction de partition pour pouvoir écrire
2a(T) = 2ine(T)27P% ol ¢, est I'énergie d’interaction entre la molécule et I’adsrobant. Dans ce cas,
on a

K = K P% (363)
avec K9 = BA%eﬁeg. Plus la chaleur d’adsorption est élevée (’adsorption est énergétiquement favo-
rable), plus la constante de Langmuir est grande et plus la fraction adsorbée est grande & une pression
donnée.
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FIGURE 2 — Isothermes d’adsorption de Langmuir pour différentes valeurs de K. Ici K, est normalisée par P(;1 =
K?. Adapté de [BCGK].

c) Modéle BET et surface spécifique

Le modele de Langmuir est attrayant par sa simplicité, mais il est souvent insuffisant pour décrire les
expériences. En effet, il ne prend pas en compte la possibilité pour les molécules de former plusieurs couches
a la surface de I'adsorbant. Une telle possibilité est introduite dans le modele développé par Brunauer,
Emmett et Teller en 1938 : ils ont donné leurs noms a l’isotherme BET dont nous établissons maintenant
I’expression.

OO0

A

NN

OO0

Y
~ N

00
=2
0

FIGURE 3 — Schéma du modele BET, autorisant la formation de plusieurs couches adsorbées. Source : Wikipédia.

Le modele BET est en fait une extension directe du modele de Langmuir. La grande fonction de partition

de la phase adsorbée s’écrit toujours
2=¢Y, (364)

ou £ est la fonction de partition d’un site. Cependant, un site peut désormais accueillir un nombre arbitraire
de molécules :

o0
=1+ e’mz,(1), (365)
n=1
ou Z,(T) est la fonction de partition canonique d’une ”chaine” de n molécules adsorbées. BET supposent
que ces n molécules sont indépendantes :

2,(1) = [[ 24(7), (366)

oil 2% (T) est la fonction de partition d’un molécule dans la i®™¢ couche adsrobée. Ils supposent par ailleurs
que les fonctions de partition moléculaires sont identiques a partir de la deuxiéme couche adsorbée : en effet,

a partir de la deuxiéme couche, un adsorbat n’est en contact qu’avec d’autres adsorbats. Alors

Zn(T) = 2, (T) 2z (D))" (367)
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Ainsi, on peut calculer la grande fonction de partition en sommant la série géométrique, supposant qu’elle
converge :

5:1+§if”%ﬂﬂkﬂTW“l (368)
:1+em%ﬂT)§idW“’”pﬂTﬂ”” (369)
= 1+-eﬂ“zgﬁr)§§f(eﬁﬂzg(zv)" (370)

n=0
_ 1 ) (371)

1—efrz2(T)

On en déduit 8 = (N,)/M, qui correspond ici au nombre de molécules adsorbées normalisé par le nombre
maximal de molécules pouvant étre contenu dans une monocouche :

101 LePn
g LOlogl _ Za® . (372)
Boop  (L—ePrad)(L+efr(z — 23))
On reprend maintenant ’expression (361)) du potentiel chimique du gaz parfait :
P A P A3
=kpTlog | —=—=% o= — T 373
S (kBT zmt(T)) k5T 2 (T) (373)
Il fait alors sens de poser
Zint (T) ]fBT Zl(T)
Py = — et C=-—% 374
VT A YTz BTy
et on obtient ainsi I’expression de I'isotherme BET :
C P
O(P) = (375)

(1—P/P)(1+(C-1)P/Py) Ry’

On voit que 6(P) diverge quand P = Py : c’est cohérent avec la condition de convergence de la série
géométrique qui peut s’exprimer comme P/Py < 1. Physiquement, quand P = Py, le gaz se condense sous
forme d’un liquide a la surface du solide : Py correspond donc a la pression de vapeur saturante du liquide
adsorbé. Sous les mémes hypotheéses que dans le paragraphe précédent, la constante C' peut s’exprimer
en fonction de quantités thermodynamiques : la chaleur d’adsoprtion @), et la chaleur de condensation de
I’adsorbat Q. :

C = PRa—Qc) (376)

La chaleur de condensation correspond a la différence d’énergie moyenne entre une molécule de gaz et
une molécule du liquide adsorbé (molécule adsorbée dans la deuxiéme couche ou au-dela). Pour C' > 1,
I'isotherme BET est concave : la premiere couche s’adsorbe facilement mais les couches suivantes s’adsorbent
difficilement. Pour C' < 1, 'isotherme BET est convexe, car ’adsorption des couches de liquide est alors
plus facile que I’adsorption de la premiére couche.

En ajustant une isotherme d’adsorption expérimentale avec le modele BET, on obtient donc de nom-
breuses informations sur les interactions microscopiques des molécules avec I’adsorbant et entre elles. L’une
de ces informations est la surface spécifique de ’adsorbant — tres utile en pratique — nous explicitons donc ici
comment I'obtenir. Avec nos notations, la surface spécifique est ¥ = Ma?/m, ot 02 est la surface occupée
par une molécule adsorbée et m est la masse d’adsorbant. La donnée obtenue dans une expérience n’est pas
directement 6, mais plutot le volume V,, de gaz adsorbé en fonction de la pression. On a 6 = V,,/V,,,, ou V,,
est le volume d’une monocouche de gaz adsorbé. On peut alors réarranger 1’équation BET pour obtenir

P/P, c-1P 1

Va(l—P/By) ~ Vil By T Vil (877)

La courbe représentant la quantité dans le membre de gauche en fonction de P/Py est une droite dont le
pente est (C'—1)/(V;;,C) et 'ordonnée a Porigine est 1/(V;,,C) — on peut donc 'ajuster pour déterminer V,,
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FIGURE 4 — Isothermes BET pour différentes valeurs de C, et comparaison & des données expérimentales d’adsorption
de leau sur l'alumine et la silice. Source : [BGK].

et C. On détermine ensuite le nombre de molécules dans une monocouche d’adsrobat par M =V, /v, ot v
est le volume moléculaire du gaz, et enfin la surface spécifique selon

Vino?
YBET = o (378)

2) Tension de surface

La tension de surface est une coordonnée thermodynamique que 'on peut définir pour tout systéeme
possédant une interface. C’est une notion cruciale pour I’étude des émulsions, poudres, milieux poreux,
ainsi que de tous les systemes impliquant des gouttes : surfaces déperlantes, impression, etc.

a) Définition et origine

Pour un systéme possédant une interface (comme ceux étudiés au paragraphe précédent), laire A de
cette interface est une coordonnée thermodynamique. On définit la force conjuguée de A selon

_9F

== . (379)
0A T,V,N

v

v est la tension de surface ou tension superficielle associée a l'interface considérée. La différentielle de
I’énergie libre s’écrit alors
dF = —SdT — PdV + pdN + ~dA. (380)

~vdA représente donc le coiit en énergie (libre) pour augmenter laire de l'interface de dA a volume fixé. ~
est une énergie par unité de surface. Dans tous les cas pratiques, il y a bien un coiit énergétique a créer
une interface. En effet, une interface sépare en général une phase gazeuse d’une phase condensée (solide
ou liquide), ou alors deux phases condensées. Les particules d’une phase condensée ont des interactions
attractives avec leurs plus proches voisines. En créant de I'interface, on améne des particules qui étaient dans
le volume en surface, ou elles ont moins de voisines de la méme phase — on déstabilise donc énergétiquement
le systéme. Si la création d’une interface entre deux phases abaisse ’énergie libre du systéme, les deux phases
sont miscibles et il ne peut y avoir d’interface.

Pour formaliser cet argument, considérons deux verres de volume V/2 remplis de liquide, dont les surfaces
libres, chacune d’aire A, sont exposées & lair, alors qu’une surface d’aire A’ est en contact avec le verre.
Leur énergie libre totale vaut

Fy = 2(F(N/2,V/2,T) + yuaA +ys.4'), (381)
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ou F' est ’énergie libre du liquide sans interface, et y,a et sy, sont respectivement les tensions de surface
liquide-air et verre-liquide. Si maintenant on "fusionne” les deux verres pour former une enceinte fermée de
volume V/, ’énergie libre vaut

Fy = F(N,V,T) + 2ys A’ = 2F(N/2,V/2,T) + 2ysLA’, (382)

par extensivité de I’énergie libre ; on en déduit que Fo — F} = 21,5 A.

Par ailleurs, on peut écrire qu’en fusionnant les deux verres,
on a gagné ’énergie d’interaction entre les molécules de liquide
qui étaient auparavant en contact avec ’air :

A
FQ—FlﬁUQ—UlRifQE (383)
g

ou o est une taille moléculaire et € ’énergie d’interaction ty-
pique entre deux molécules : A/c? représente alors le nombre
de molécules a l'interface. On en déduit, en ordre de grandeur,

€
A~ 55 (384)
FIGURE 5 — "Fusion” de deux verres d’eau.

> La taille d’'une molécule d’eau est o ~ 0.3 nm et I’énergie de cohésion moléculaire peut étre estimée
comme € ~ kpTyap avec Tyap = 100°C. On estime alors la tension de surface eau-air & v ~ 100 mN/m, ce
qui est trés proche de la valeur mesurée v = 72 mN/m.

> Le raisonnement en ordre de grandeur est toujours valide pour une interface solide-air. L’estimation
quantitative dépend alors fortement du type de solide. Pour des solides dont la cohésion est assurée par des
liaisons ioniques, covalentes ou métalliques, € ~ 1 eV et v ~ 500 — 5000 mN/m : on parle de surfaces de
haute énergie. Pour des solides dont la cohésion est assurée par des interactions de van der Waals (tels que
les matériaux polymeres), € ~ kgT et v ~ 10 — 50 mN/m. On parle de surfaces de basse énergie.

Pourquoi parle-t-on de tension de surface ? On peut en fait
interpréter v comme une force par unité de longueur (ce qui
explique aussi le choix des N/m plutot que J/m? comme unité
conventionnelle). Pour le voir, on peut imaginer une expérience
ou 'on maintient en équilibre un film liquide de accroché a un
barreau cylindrique de longueur L (Fig. m), et on suppose qu’il
faut lui appliquer pour cela une force K = Ke,. Lorsqu’on
augment la longueur du film de dz, on incrémente les aires de
chacune des interfaces par Ldz, et donc ’énergie libre varie FIGURE 6 — Etirement d’un film liquide.
de dF = 2yLdx. Or, a température constante, on a aussi que
dF =dU — TdS (comme F = U — TS). Par ailleurs, le premier principe donne

dU = 0W +6Q = Kdx +TdS (385)
si I'on suppose la transformation réversible. En regroupant, on obtient la force appliquée par 'opérateur :
K =2+L. (386)

Une interface tire donc sur ses frontieres latérales avec une force par unité de longueur ~y : U'interface se
comporte véritablement comme une membrane élastique sous tension. Une premiere conséquence est que
des objets suffisamment légers (comme les araignées d’eau) peuvent flotter sur I’eau sans percer la surface.
Considérons en effet pour simplifier une boule de rayon R et de masse m posée sur une surface d’eau. Son
poids mg lui fait déformer la surface, qui résiste avec une force qui est au maximum de 'ordre de 27 R7y. Il

y a donc flottaison tant que
mg

R

Pour une araignée d’eau, R ~ 0.1 mm et m ~ 5 mg, ce qui donne mg/R ~ 500 mN/m — pile & la limite de
flottaison.

< 2my. (387)

b) Mouillage et capillarité
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On parle de mouillage pour désigner la fagon dont se com-
porte une goutte de liquide L. déposée a la surface d’un solide
S. On distingue deux situations :

e Mouillage total : le liquide s’étale completement jusqu’a
former un film d’épaisseur moléculaire.
e Mouillage partiel : la goutte se stabilise avec un angle
de contact 6 non nul.
La transition entre ces deux comportements est déterminée par
le coefficient d’étalement

S =vsa — (ysr, +vLA), (388)

qui correspond a la différence d’énergie libre par unité de sur-
face entre un solide sec et un solide recouvert d’un film li-
quide. Il y a mouillage total pour S > 0 et mouillage par-
tiel pour S < 0. Souvent, il y a mouillage total pour les sur-
faces de "haute énergie” définies plus haut (comme les surfaces
métalliques) et mouillage partiel pour les surfaces de "basse
énergie”.

Dans le cas de mouillage partiel, I'angle de contact est
déterminé par I’équilibre des forces agissant sur la ligne de
contact. Ces forces sont les trois tensions de surface qui tirent

¢ )
. .
s<0,’ tS>0
¢ .
’ .
’ .
» )
13
Partial wetting Total wetting
- L
yLA
0
+ + + + + +
— —
Yoa Vs s

FI1GURE 7 — Mouillage total, partiel et angle de
contact.

sur leurs interfaces respectives. En projetant le long de l'interface, on obtient la loi de Young-Dupré :

VLA cosf = ysA — YsL-

(389)

On peut la réécrire en fonction du coefficient d’étalement

S =~pa(cosd — 1),

(390)

et on voit alors que 'angle de contact ne peut étre défini que si S < 0 (S = 0 correspond a 6 = 0).

On caractérise les solides selon I'angle de contact adopté
par une goutte d’eau a leur surface :

e Sif < 7/2, on parle d’un solide hydrophile. Cela corres-
pond en effet & yga > 7sr, : le solide abaisse son énergie
de surface dans la région couverte par le liquide.

e Si 6 > /2, on parle d’un solide hydrophobe. Cela cor-
respond en effet a yga < sy, : le solide paye un cotit en
énergie de surface dans la région couverte par le liquide.

Par abus de langage, on utilise souvent les termes hydrophile
et hydrophobe méme si le liquide n’est pas I’eau.

Les gouttes ont des formes de calottes sphériques si elles
sont suffisamment petites pour que leur poids soit négligeable
devant les forces de tension de surface (aussi appelées forces
capillaires). Au-dela d’une certaine taille /., les gouttes sont
aplaties sous l'effet de leur poids. Pour une goutte de rayon
R d’un liquide de masse volumique p, ’énergie potentielle de

Hydrophilic 0~

w2

Hydrophobic

FIGURE 8 — Surfaces hydrophiles et hydro-
phobes.

pesanteur est de l'ordre de pR3gR, alors que I'énergie de surface est de I'ordre de yR? (y = 7pa). Si les
énergies de pesanteur et de surface sont du méme ordre de grandeur pour R ~ /., on trouve

(391)

L. s’appelle la longueur capillaire. Pour I’eau a température ambiante, £, = 2.7 mm.
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Au contact d’une paroi solide verticale, un liquide forme un
ménisque : le ménisque monte si la paroi est hydrophile et des-
cend si la paroi est hydrophobe. On peut montrer que la taille i
typique du ménisque est donnée par la longueur capillaire. W ____________
Lorsqu’on plonge dans un liquide un tube fait en matériau hy- \ :
drophile, le liquide remonte dans le tube. C’est le phénomene i
d’ascension capillaire, qui permet notamment la montée de i
la seve jusqu'au feuillage des arbres. On peut déterminer la !
hauteur de montée h dans un tube de rayon R en minimisant _ :
I’énergie libre du systéme par rapport a h. On a

h . s
F(h) — F(0) = A(h)- (st —sa) + m(h) - g- 3 (392) (I;IGURE 9 — Ascension capillaire d’un liquide
ans un tube de rayon R.

énergie de pesanteur

gain d’énergie de surface

ou A(h) est laire de linterface solide-liquide et m(h) la masse de liquide dans le tube (dont le centre de
gravité se trouve en h/2). On a A(h) = 27 Rh et m(h) = pnR?h, ol p est la masse volumique du liquide.
Finalement,

1
F(h) = F(0) = 2w Rh - (ys1, = Ysa) + 5pm RN, (393)
et la condition 0F/0h = 0 a 'équilibre nous donne
2 — 2
b (9sA —7s1) _ 271A cos (394)
pRg pRg

Ce résultat s’appelle la loi de Jurin de I’ascension capillaire. Elle dit que la hauteur de montée est d’autant
plus importante que le tube est fin et que sa paroi est hydrophile. A noter, cependant, que méme si la paroi
est complétement mouillante, le liquide ne monte pas & U'infini : on a alors § =0 et h = 2y /(pR).

c) Tensioactifs et micelles

La tension de surface est donc une propriété treés importante pour un liquide, qui controle les effets de

mouillage et de capillarité. Comment peut-on la contréler 7 Nous avons deux principaux leviers a disposition :

e La température. En général, une tension de surface liquide-air diminue quand la température aug-
mente.

e La composition chimique. Lorsqu’on ajoute un soluté a un solvant, la solution résultante peut avoir
une tension de surface plus ou moins élevée que le solvant pur, selon le soluté. Par exemple, un
mélange eau-éthanol a une tension de surface plus faible que 1’eau pure.

Les tensioactifs ou surfactants (surfactants en anglais) sont des molécules trés efficaces pour réduire la
tension de surface d’une solution aqueuse. Ce sont des molécules amphiphiles, c’est-a-dire qu’elles une téte
hydrophile et une queue (chaine carbonée) hydrophobe (Fig.[13]). Ces molécules ont un avantage énergétique
considérable a se placer a l'interface eau-air (par rapport a une dissolution compléte dans l'eau) : en effet,
elles peuvent alors avoir leur téte qui pointe dans ’eau et leur queue qui pointe dans 'air.

CH,

b
CH, 3% E5Y
o 9 A ean 4 e 2
os d
% :
co; N+ OH
o 1 e,
Hy
Soap CTAB non ionic
(anionic) (cationic)

F1GURE 10 — Quelques structures moléculaires de tensioactifs et quelques formes possibles de micelles.
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Nous allons déterminer 1’évolution de la tension de surface
en fonction de la concentration de tensioactif en solution. On <
lobtient simplement & partir de la relation de Gibbs-Duhem
pour la surface, mais encore faut-il savoir ce que 'on entend
par "surface”. Microscopiquement, a une interface liquide-gaz,
la densité ne change pas de facon abrupte : on passe de la den-
sité du liquide a sa vapeur sur une échelle de quelques tailles
moléculaires. Cependant, on peut placer une séparation ima-
ginaire a une cOte arbitraire z = zg. Cette surface s’appelle

la séparatrice de Gibbs (Gibbs dividing surface). On définit le Py
nombre de molécules en surface pour une espece chimique ¢ s z
comme
s __ L L g
Ni =N; = N; = N}, (395) FIGURE 11 — Séparatrice de Gibbs.

ott N} (N7) est le nombre de molécules qu’aurait un liquide

(gaz) homogene s’étendant jusqu’a z = zg. Plus simplement, c’est le nombre de molécules de ¢ ”en trop” a
droite de zg moins le nombre de molécules "manquantes” a gauche de zg. Selon le choix de zg, ce nombre
peut étre positif ou négatif. On définit également ’excés de surface T'; = N; /A. Avec ces définitions, on peut
traiter I'interface comme tout autre systéme thermodynamique et écrire sa relation de Gibbs-Duhem :

U=TS+~vA+ usNs + py Ny, (396)

ou s et Ly, sont les potentiels chimiques du tensioactif et du solvant et Ny, N, sont les nombres de
molécules en surface respectifs. Par rapport a la version en volume, le terme — PV est remplacé par vA (le
signe change car la pression "pousse”, alors que la tension de surface "tire”). On sait par ailleurs (identité
thermodynamique fondamentale), que

dU = TdS + vdA + psdNg + oy dNy,. (397)
Donc, en différentiant I’'Eq. , on obtient
0 = Ady + Nydps + Nypdpte, (398)
soit, en introduisant les exces de surface I'; = N; /A,
—dy =Tsdps + Tpd ity (399)

Ce résultat est vrai peu importe la position zg de la séparatrice de Gibbs. On peut donc fixer zg de fagon
a ce que l'exces de surface du solvant soit nul : 'y, = 0. On a alors dy = —I'sdus. Or, le potentiel chimique
du tensioactif en surface doit étre égal a son potentiel chimique en solution. Pour une solution suffisamment
diluée, ce potentiel chimique a une expression du type gaz parfait :

Hs = kBTIOg(Cs/CO)' (400)
On en déduit 5
y
= —kgTT,. 401
dlogcs |7 p B (401)

Cette équation, qui donne la variation de la tension de surface en fonction de la concentration de tensioactif,
s’appelle l'isotherme de Gibbs. Elle dit bien que, si le tensioactif a un exces de surface positif (il a une
affinité pour la surface), on diminue la tension de surface en augmentant sa concentration.

REMARQUE. Il ne faut pas oublier que ce résultat repose sur une position particuliere de zg, donc sur
une définition bien précise de I';.

Il nous reste a déterminer I'exces de surface Iy : il s’agit en fait d’étudier ’adsorption du tensioactif a la
surface, pour laquelle on pourrait adopter un modele de type Langmuir, par exemple. En fait, si affinité
du tensioactif pour la surface est suffisamment forte, celle-ci est rapidement saturée en tensioactif et I'y est
une constante. C’est ce que I'on observe expérimentalement dans des mesures de tension de surface d’une
solution aqueuse en fonction de la concentration de phospholipides (Fig. : v est une fonction affine de
log cs. Mais on observe aussi une rupture de pente a une concentration particuliere ¢* : pour ¢ > c¢*, la
tension de surface ne dépend quasiment plus de la concentration de tensioactif. Que se passe-t-il 7
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Les tensioactifs ont une affinité particuliere pour la surface, 60 . : : . :
mais ils ont aussi une affinité entre eux. Ils vont donc avoir ten- }
dance a former des agrégats appelés micelles. La micellisation ¥ \
est associée a un gain énergétique, vu que les que dans une I .
micelles les tétes polaires sont en contact avec I’eau, alors que r
les queues apolaires ne sont en contact qu’entre elles. Selon la |

H 0’ \.‘
tifs, les micelles peuvent étre soit sphériques, soit cylindriques, 1 o i
soit avoir des formes plus complexes. On va voir que la rup- . 4
ture de pente correspond a la concentration micellaire critique ot .
(CMC) ot les micelles commencent & se former. En présence e PP TS S R
de micelles, la tension de surface est toujours déterminée par (LYS0 Q) (M)

P

o
S
-

1

L

chimie (et surtout, en fait, la forme géométrique) des tensioac-

L

SURFACE TENSION (dyne cm' 1)

dy = —Tsdps = —Tsdp, (402)
FI1GURE 12 — Tension de surface d’une solution
ol pis = i1 est le potentiel chimique du tensioactif monomere 4, phospholipides en fonction de sa concen-
en solution (les micelles ne peuvent pas s’adsorber en surface). tration. Les différents symboles correspondent
La solution de monomere peut toujours étre considérée diluée : 3 des longueurs différentes des chaines car-
bonées. Repris de Stafford et al., Biochemistry
p1 = ksTlog(c1/c°). (403) 28 5113 (1989).

Notre probleme est donc de déterminer ¢; en fonction de la
concentration totale de tensioactif introduit c¢s. On considére pour cela ’équilibre chimique entre une micelle

de taille a et le tensioactif monomere :

aM = M,. (404)
A Téquilibre,

Na 2o

(No)* (21)

ou N; est le nombre de monomeres, z; est la fonction de partition moléculaire d’un monomere, n, est le
nombre de micelles de taille a et z, est la fonction de partition moléculaire d’une micelle de taille a. On
note N, le nombre de monomeres contenus dans une micelle de taille o (N, = an,) et on introduit les
fractions moléculaires N, /Niot, ol Niot est le nombre total de molécules (solvant et soluté). On peut alors
écrire

(405)

1z, z
e ya-l_fo 406
a 3?% tot (21>a ( )
On sépare maintenant les parties translationnelles des fonctions de partition moléculaires :
14 VB0 imt

Zo = 3 Zajint = ~7€ (407)
(63 Ai (o3 Ag
ou 'on a défini I’énergie libre interne par particule dans une micelles de taille «, f,. Enfin, on réarrange ces

expressions pour obtenir
To = aw?e“(el_EQ)/kBT = Kz, (408)

avec

kgT
€a = fa,int + BT log(pAi)v (409)

ol p = Niot/V est la densité moyenne de la solution. Dans le cas de tensioactifs de forme "conique” qui
forment des micelles sphériques, une taille de micelle est souvent beaucoup plus favorable que tous les autres
(un des €, est beaucoup plus négatif que les autres). Alors la conservation de la matiére s’écrit

Ts =T1 + Tq, (410)

ol zs est la fraction moléculaire totale de tensioactif (sous forme de micelles ou non). En remplacant

dans (408)), on obtient
s =21 + Kozt (411)

On définit la concentration micellaire critique ¢* comme la concentration totale pour laquelle le nombre de
monomeres libres est égal au nombre de monomeres dans les micelles. La fraction moléculaire correspondante
est 2" = (Kq)"/(1=%) et donc

¢ = p(Kq) (=), (412)
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On voit que pour z1 < 1, on a x4 = 1 : tout le tensioactif est présent sous forme de monomeres. Mais pour
x> x* le terme en K,z devient dominant et on a z; ~ (z,/K,)"*. Comme « est de 'ordre de 10 — 100,
x1 croit tres lentement en fonction de z; : la concentration de monomere augmente tres peu par rapport a
la CMC.

Finalement, on a les expressions approchées suivantes pour le potentiel chimique du monomere en fonc-
tion de la concentration totale introduite :

cs <cx: py =~ kpTlog(cs/c?)

2(2)"]

cs >c*: up ~ kpTlog

Vu que dy = —I'sdp1, on en déduit

. 9y _

cg < Cc* = —kgITl

’ loges | p S (414)
. 9 _

cs > C* alogcs = —kpTTs/a

Au dela de la CMC, on s’attend a ce que y en fonction de log ¢, soit toujours une droite, mais dont la pente
est divisée par a.

La formation de micelles limite le pouvoir nettoyant d’un savon. Le pouvoir nettoyant est déterminé par
la concentration de tensioactif libre (qui peut servir & solubiliser des particules hydrophobes de saleté). Il
ne sert donc a rien d’ajouter du savon a une concentration plus grande que la CMC — il ne nettoiera pas
mieux ! Les CMC sont plutdt faibles pour les tensioactifs usuels (10 pM — 10 mM).

d) Ecoulements de Marangoni

La possibilité de moduler la tension de surface implique l'existence de systémes avec une tension de
surface non-homogene. On peut créer un gradient de tension de surface a une interface eau-air par exemple
en la chauffant localement, ou en créant un gradient de concentration de tensioactif. S’il y a un gradient de
tension de surface, 'interface "tire” plus fort d’un c6té que de 'autre, ce qui induit un écoulement de liquide,
des tensions de surface faibles vers les tensions de surface élevées. Cet écoulement s’appelle un écoulement
de Marangoni.

Lowest alcohol
concentration

/

‘y is high

gravity

\

Alcohol

evaporation
yis low

Time

FIGURE 13 — Processus de formation des larmes de vin.

L’effet Marangoni est connu pour étre responsable de la formation des larmes de vin. Le verre contenant
le vin étant hydrophile, il y a formation d’un ménisque ascendant au niveau de la paroi. L’alcool du vin
s’évapore plus vite que l'eau, et sa concentration dans le vin diminue plus vite en haut du ménisque (ot il
y a moins de volume disponible pour repeupler l'interface en alcool). Or le vin moins concentré en alcool a
une tension de surface plus élevée : il y a donc un gradient de tension de surface, qui induit un écoulement
de Marangoni qui remonte le long de la paroi du verre. L’écoulement résulte en une accumulation de vin en
haut du ménisque, qui retombe sous 'effet de la gravité en formant des gouttes.
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Dans l'industrie, I'effet Marangoni est utilisé dans le processus de séchage des wafers en silicium. Il est
également utilisé pour controler l'effet ”tache de café”, important a éviter dans 'impression a jet d’encre,
par exemple.

VIII. Systemes en interaction

Nous avons étudié jusqu’a maintenant des systémes de particules indépendantes. Or, les interactions
entre particules sont & 'origine des véritables comportements collectifs tels que les transitions de phase,
dont les changements d’état de la matiére. Cependant, le calcul de la fonction de partition est bien plus
difficile pour des particules en interaction. Nous allons voir dans ce chapitre des méthodes permettant de
lever cette difficulté, ainsi que des exemples de comportements collectifs diis aux interactions.

1) Nature des interactions

Pour N particules sans interaction, I’énergie d’un micro-état est la somme des énergies cinétiques des NV
particules :
2
i

E(C) = XN: . (415)

On dit qu’il y a interaction entre les particules si I’énergie d’un micro-état comprend également un terme
d’énergie potentielle, qui dépend des positions des particules :

EC) = —Tﬁ—FL{(rl,...,rN). (416)

Dans la plupart des cas, cette énergie potentielle s’écrit comme la somme des énergies d’interaction de toutes
les paires de particules :
U(ry,...,tn) =D V(ri—r)). (417)
i<j
A quoi ressemble le potentiel d’interaction V 7 Pour des par-
ticules non chargées, il est attractif a longue distance du fait
des forces de van der Waals. A courte distance, il est répulsif
a cause du principe de Pauli : deux particules (molécules)
ne peuvent pas s’interpénétrer. Une modélisation souvent uti-
lisée pour le potentiel d’interaction intermoléculaire est celle
de Lennard-Jones :

it =1 (9)"- ()] (a13)

r r

Vi, /e

A longue distance, il varie en —1/75, qui est la loi de puissance ric
attendue pour une interaction de van der Waals. Le choix du
comportement en 1/r12 & courte distance est arbitraire : il rend
compte d’une répulsion tres forte pour des distances r < o.

On peut également considérer des interactions entre d’autres types de degrés de liberté, par exemple
des spins, qui occupent des positions fixes sur un réseau. Un micro-état d’un systéme de N spins 1/2 est
spécifié par la donnée du nombre quantique mg = £1/2 pour chacun des spins. De fagon équivalente, on
peut spécifier une variable binaire S; = 2mg, = +1 pour chacun des spins : C = (S1,...Sy) = {S;}. Les
interactions magnétiques entre les spins ont tendance a les aligner, et elles sont a relativement courte portée.
On modélise cela par une énergie du type

E({Si})=~J ) 5i8;. (419)

<i,j>

FIGURE 14 — Potentiel de Lennard-Jones.

Ici J est ce que 'on appelle une constante de couplage, et la notation < i,j > signifie que I’on somme sur
toutes les paires de proches voisins sur le réseau. La présence d’'un champ magnétique externe h peut étre
modélisée par

E({Si})=~J ) SiSj—h) 5 (420)

<ij> i
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Les variables binaires S; peuvent étre utilisés pour décrire autres chose que des spins : elles peuvent cor-
respondre par exemple a la présence ou 'absence d’une particule. Cette versatilité fait que les modeles de
spins sur réseau sont utilisés dans de nombreux domaines.

2) Méthodes de calcul de la fonction de partition

La fonction de partition canonique d’un systéme de N particules en interaction est donnée par une
intégrale multiple de la forme

N
Z(N,V,T) /Hz L dridpi —ﬁZQPi ~BY V(i —1))| . (421)
=1

NIRp3N
1<J

En I’absence d’interactions on pouvait calculer cette intégrale en la factorisant en IV intégrales indépendantes :
Z = 2N /N, avec
drdp _4.2/(9
Z:/ i (422)

Avec le terme d’interaction, une telle factorisation est impossible, et on devra employer des méthodes
spécifiques pour calculer ne serait-ce qu’une approximation de la fonction de partition.

1. Développement perturbatif. Il s’agit de traiter 'interaction comme un petit parameétre, par rap-
port auquel on peut faire un développement limité de la fonction de partition :

dr,dp; N, p2
Z(N,V,T) = /H“r L p[—/ﬁi_l;’%} 1-B83 " V(r;—1j) +... (423)

N3N
i<j

Les termes ce développement ne sont toujours pas factorisables, mais ils peuvent étre plus faciles a
calculer que la fonction de partition en entier. On n’abordera pas en détails les calculs perturbatifs
de fonctions de partition dans ce cours.

2. Approximation de champ moyen. Il s’agit de remplacer I'interaction par une interaction moyenne
de fagon autocohérente : on verra ce que cela signifie précisément dans la suite. L’approximation de
champ moyen est un outil spécifique au probléme a N corps, et utilisé dans de nombreux domaines.
Par exemple, la méthode Hartree-Fock en chimie quantique et la théorie de Poisson-Boltzmann en
électrochimie reposent sur cette approximation. On en étudiera plusieurs exemples dans ce cours.

3. Solution exacte. Dans certains cas particuliers, il est possible d’évaluer exactement la fonction de
partition, malgré le terme d’interaction. On en verra un exemple avec le modele d’Ising 1D.

4. Simulation numériques. On peut bien siir calculer numériquement la fonction de partition. Ce-
pendant, celle-ci contient un nombre de termes qui est de l'ordre de eV, avec N ~ 10?% pour un
échantillon macroscopique. On ne peut donc résoudre numériquement que des systemes de taille li-
mitée, qui ne vont pas toujours donner une idée du comportement dans la limite thermodynamique.
Les simulations sont donc un outil précieux, mais qui ne remplace pas les méthodes analytiques.

3) Condensation en champ moyen

Nous étudions dans ce paragraphe un premier exemple de systéme en interaction résolu en champ
moyen. Nous verrons comment les interactions entre particules d’un gaz font qu’en-dessous d’une certaine
température, celui-ci se condense pour former un liquide.

a) Approximation du potentiel d’interaction

Nous étudions donc un systéme de N particules en interaction dans ’ensemble canonique, et la fonction
de partition a calculer est

1Y, dr,dp; Y p?
Z(N,V,T) = 2h=l 2% exp —522 B> Vv 1)) . (424)
i=1

N3N
vy 1<J

La notation V¥ signifie que I'intégrale sur chacune des positions a pour domaine le volume du systéme. Nous
allons commencer par décomposer le potentiel d’interaction V en deux parties. La répulsion a courte distance

65,74



Mécanique Statistique pour la Chimie

étant tres forte, on peut considérer que le potentiel est infini lorsque la séparation entre les particules est
inférieure a rq, le diametre d’une particule. On approche en fait le potentiel de Lennard-Jones par

5 | 4 pour 7 <Tg
Vii(r) = { —ug(ro/r)® = v(r) pour 1 >rg 12

oll ug est une énergie bien choisie. Les régions ot le potentiel d’interaction est infini imposent des contraintes
sur les positions (ry,...,ry) : les configurations ot deux particules sont distantes de moins que ry donnent
une contribution nulle a l'intégrale. On peut donc définir un domaine d’intégration contraint V(N ) qui
exclut ces configurations, et écrire

[ |N dridpi p
Z(N,V,T) = EE V3 S — —r)] . 426
i)

V(N) NIR3N i<j

L’intégrale sur les impulsions peut, par ailleurs, étre calculée de fagon indépendante pour donner

Z(N,V,T) I, dr B> u(r; —x (427)
s Vo = exp — .

vv) NAF < /)
b) Approximation de champ moyen

On fait maintenant 'approximation de champ moyen a proprement parler : on remplace le terme d’in-
teraction par sa valeur moyenne. On peut le réécrire en introduisant la densité p(r) du systeme :

<; v(r; — rj)> = %/drldm(p(rl)p(rg)m(rl —r3). (428)

Si 'on néglige les corrélations de densité et que 'on suppose le systéme homogéne, alors

(p(r1)p(r2)) = (p(r1)){p(r2)) = (p(r))* = (N/V)? (429)

<Zv(ri — rj)> = % (g)z /drldrgv(rl —r) (430)

On en déduit

i<j
N2 UV N2
=57 dro(r) = — Y (431)
—_——
=—uvm

On n’a pas cherché & calculer cette derniére intégrale et on 1’a simplement noté —uw,,, ot u ~ r3 est le
volume moléculaire et u o< ug est une énergie moléculaire. Nous avons finalement a calculer

1 Buv,, N? N
Z(N,V,T) = NIATY exp[ Ve }/‘7(N)i1:[1drz (432)

c¢) Volume exclu

Il nous reste & calculer I'intégrale sur les positions, qui ne donne pas simplement V', comme il y a une
contrainte de "volume exclu” sur le domaine d’intégration. En fait, on peut calculer les N intégrales 'une
apres 'autre. On peut toujours choisir la position de la particule 1 sans contrainte. Une fois la particule 1
placée, la particule 2 est contrainte a un volume V — v,,. Une fois la particule 2 placée, la particule 3 est
contrainte a un volume V — 2v,,, etc. Mathématiquement,

/ Hdrl —/ drN-~-/ drg/ dry (433)
V(N) ;- V—(N=1)vm V—tm 1%

=V —(N=1vm)...(V—=v)V = (V- Nuv,/2)N (434)
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La derniere égalité est vraie dans la limite de faible densité Nv,, < V. En effet

g N1 N-1
NV,
N2% v,

Finalement, on obtient la fonction de partition dans I’approximation de champ moyen :

(V — Novy,/2)N Buv,, N?
NN P Ty |-

Z(N,V,T) ~ (437)

d) Energie libre et stabilité

En faisant, comme d’habitude, I’approximation de Stirling, on obtient ’énergie libre en fonction de la

densité p = N/V :
3
f g = —% log Z = kgT [p log ff;p — p} —ap?, (438)

avec a4 = UV, /2 et b = vy /2. Sia = 0 et b = 0 (pas d’interactions et pas de volume exclu) on retrouve
I’énergie libre du gaz parfait. Mais nous devons encore vérifier 'autocohérence de notre approximation de
champ moyen.

Nous avons supposé une densité uniforme pour faire le cal-
cul. L’énergie libre obtenue correspond-elle bien a une densité fp)
uniforme? A haute température, f est une fonction convexe
de p. Mais en-dessous d’une température T, (on peut trou-
ver T, = (8/27)u/kg), f(p) présente une portion concave :
f"(p) <0 (Fig. [15). Le systéme est alors instable : en effet,

() = oL
P =Ty ey
Si f"(p) < 0, alors 9P/OV > 0. Un systéme dont la pression
augmente quand on augmente son volume est instable. Cela
veut dire que, si un systéme a une densité moyenne dans la
portion concave, celle-ci ne peut étre uniforme. Une fagon pour
le systéme de redevenir stable est de se séparer en une phase de
haute densité (p;, liquide) et une phase de basse densité (pg,
gazeuse). Si elles sont en équilibre, les deux phases doivent
avoir le méme potentiel chimique. Comme p = OF/ON|yr =
f'(p), cela implique f'(p;) = f'(pg). Par ailleurs, si 'on note =
la fraction volumique de gaz, par extensivité de 1’énergie libre
on a

Pg 4
(439)

FIGURE 15 — Courbes f(p) pour différentes

- températures. Pour 'une des courbes, la por-
flo) = xf(pg) + @ =) f (o), (440) tion instable est indiquée en rouge et la double
avec tangente en bleu. Par rapport a I’Eq. , on
p=aps+(1—2x)p (441) a soustrait une fonction affine pour mieux voir
la forme des courbes.

On trouve alors

10) = $(pg) + 2—LE (o) = 1 (pa): (442)
g

C’est I’équation de la droite qui passe par les points (py, f(o1)) et (pg, f(pg)). Le systéme est bien stable sur
cette droite car f(p) = 0. Le potentiel chimique du systéme diphasé doit étre égal au potentiel chimique
de chacune des phases, donc la pente de la droite que I'on vient de trouver doit étre égale & f'(p;) = f'(pg)-
Les densités des deux phases peuvent donc étre déterminées graphiquement en tracant la double tangente
a la courbe f(p) (une tangente qui touche la courbe en deux points). L’énergie libre du systéme diphasé
est donnée par cette double tangente : en se séparant en deux phases, le systeme a ”convexifié” son énergie
libre.
Dans le systéme diphasé, la pression est donnée par
oV f(p)]

s
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avec

Vfip) =V |f(pg) — (f(pr) = flpg))| +

PL — Pg pL— Py (f(pl) - f(ﬂg)), (444)

donc

P = fpg) = (f(pr) = f(pg))- (445)

PL— Pg
Lorsque le systeme est séparé en deux phases, la pression est indépendante du volume total. Cette pression
est appelée la pression de vapeur saturante.

e) Equation d’état de van der Waals et diagramme de phase

On visualise mieux le comportement du systéme que ’on
vient de résoudre en observant les isothermes P(V'). En calcu- P
lant P = —9F/0V a partir de I'expression de I’énergie
libre, on trouve

NkgT  aN?
V-Nb V2~
C’est ’équation d’état du gaz de van der Waals que vous avez
vue en cours de thermodynamique. Ses isothermes P(V') sont
décroissantes pour T' > T,, mais présentent une région crois-
sante (OP/OV > 0) pour T" < T,. Cette région correspond
aux densités moyennes instables identifiées a partir de I’énergie
libre. On peut montrer que la pression de vapeur saturante
peut étre identifiée a partir de la construction de Maxwell : les

P= (446)

aires de l'isotherme au-dessus et en-dessous de cette pression 0 v
sont égales.

Donc, quand on compresse un gaz de particules en interac- D Critical
tion, il n’y a pas de transition de phase si T > T, : le systéme 22000 NN — - - - ____ p°"2

reste dans un méme état dit ”supercritique”. Par contre pour
T < T, passé un certain volume le gaz commence a se conden-
ser en liquide (la pression est alors constante) jusqu’a devenir
complétement liquide (la pression peut alors continuer & aug-
menter).

L’approximation de champ moyen pour un systéeme de par- 06 7=====
ticules en interaction reproduit donc un grand nombre de
caractéristiques d’un corps pur réel, visualisées dans un dia- A !
gramme (P, T). Notre solution décrit : 0

e L’existence d’une phase liquide & basse température et Temperature (°C)
d’une phase gazeuse a haute température.
e [’absence de distinction entre ces phases au-dela d’une
température T, (T, = 374°C pour l'eau). FIGURE 16 — Isothermes P(V') du gaz de van
e Le fait que la pression est imposée & une température der Waals et diagramme de phase simplifié de
donnée s’il y a équilibre entre un liquide et sa vapeur. leau dans le plan (P, T).
Le modele que nous avons étudié ne décrit cependant pas la phase solide. Cela est dii au fait que nous avons
négligé les corrélations de densité, qui sont clairement présentes dans un solide ordonné.

Water

L2 (liquid)

(solid)

LR e A D

Pressure (kPa)

. — ===

N

.01 100

w

REMARQUE. Sur les isothermes de la figure 16, on voit que la pression est égale a la pression de vapeur
saturante méme en dehors de la région instable, de fagcon a ce que la pression soit continue en fonction du
volume. Le systeme pourrait en fait continuer a suivre ’isotherme initiale jusqu’a la région instable : il serait
dans ce cas dans un état métastable, qui se séparerait en deux phases sous ’effet de la moindre perturbation
extérieure. L’eau surfondue (liquide en-dessous de 0°C) est un exemple d’état métastable.

REMARQUE. A faible densité, ’équation d’état de van der Waals se réduit a la loi de gaz parfaits. On
peut développer la pression en puissances de la densité (développement du viriel) pour obtenir les premiéres
corrections a la loi des gaz parfaits comme on avait fait pour le gaz quantique :

fnzpkgr{1+‘f?l(1-k;T)-+cxp%] (447)
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Le signe de la premiere correction a la pression dépend de la force de la partie attractive du potentiel
intermoléculaire, comparée a kgT'.

4) Modéele d’Ising en champ moyen

Nous étudions maintenant un autre modele, dont la solution en champ moyen rend compte de la transition
ferromagnétique-paramagnétique dans un aimant : le fameux modele d’'Ising. Fameux, car il s’applique en
fait & bon nombre d’autres systemes.

Un aimant perd son aimantation au-dela d’une température T, appelée température de Curie. L’aiman-
tation d’un aimant vient du fait que tous ses spins électroniques pointent dans la méme direction (état
ferromagnétique), ce qui est énergétiquement favorable : les interactions magnétiques ont tendance a ali-
gner les spins entre eux. Mais au-dela de T, I'agitation thermique désaligne les spins, qui pointent dans des
directions aléatoires (état paramagnétique), et 'aimantation moyenne est alors perdue.

On peut rendre compte de cette transition par un modele élémentaire ou les IV spins sont des variables
binaires S; = £1 placées sur un réseau, que l'on ne spécifie pas pour l'instant. Comme vu plus haut, 'énergie
d’un micro-état du systemes est donnée par

E({Si}) =—J Z S35 (448)

ou J est une constante de couplage, positive car ’énergie est abaissée si deux spins voisins s’alignent. La
fonction de partition associée s’écrit :

Z=Y exp |BJ Y SiS;|, (449)

(5} <ij>

ol », (S:} signifie que 'on somme sur S; = +1 pour chacun des S;. Cette somme est a priori impossible
a calculer : nous allons donc procéder a une approximation de champ moyen. Pour cela, on écrit que
S; = (S;) + 45; et on suppose que les fluctuations 4.5; sont petites devant la valeur moyenne. Alors
SiS; = ((Si) +65:)((S;) + 65;) (450)

= (Si)(Sj) +05:(S;) + 05;(5:) + 05:65; (451)

~m?* +m(0S; + 65;) (452)

=m?+m(S; + S; — 2m) = —m? + m(S; + S;), (453)

ot 'on a défini 'aimantation moyenne m = (S;), indépendante du site considéré. On peut écrire alors

N N
N 9 BJIm BJIm
Z~Y exp —Nﬂmeﬂ2+47?f§:Si_ Z: _1+~7?f§:53_ 2: 1 (454)
{S:} i=1 j voisin de j=1 i voisin de j
N
= exp |-NBJImPq/2+ BIgm Y _Si|, (455)
{S:} i=1

ot 'on a définit la coordination ¢ du réseau, ie le nombre de voisins d’un site. Le facteur 1/2 vient du fait
qu’avec le réarrangement de la somme, on a compté chaque paire de voisins deux fois : il y a N¢/2 paires
de voisins. On voit ici pourquoi en supposant les fluctuations petites on a fait une approximation de champ
moyen : cela revient en fait a supposer que chaque spin subit le champ local moyen exercé par ses voisins
(hioc = qgJm).

Le calcul de la fonction de partition se réduit alors au calcul de la fonction de partition d’un seul spin :

N N
7 — Z 67Nﬁqu2/2 exp [ﬂquzsz‘| _ 6*Nﬁ]m2 [ Z eBJqWLS"| (456)

{8} i=1 S==+1

) N
= [2676‘](1"1 /QCOSh(ﬂqu)] ) (457)
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et on en déduit I’énergie libre
F = —kgTlog Z = NJgm?*/2 — NkgT log [2cosh(B.Jqm)] . (458)

On a donc I'énergie libre en fonction de m, mais on ne connait pas m. On détermine m en rendant I’approxi-
mation de champ moyen auto-cohérente — on calcule 'aimantation moyenne dans le cadre de ’approxima-
tion :

e—BEUSH 1 , N
m = (Sk) = {;} Si——p— =7 {;} Spexp | —NBJm?q/2 + 5qu; S; (459)

[Zszil eﬁquns] N—1

_ S BJgmSy, 4
[2cosh(ﬁqu)]N skzzﬂ * (160
_ sinh(BJgm)

La solution compleéte du probléme est donc donnée par :

(462)

F = NJgm?/2 — NkgT log [2cosh(BJqm)]
m = tanh(8Jgm)

L’équation pour m n’a pas de solution explicite, mais son comporte-
ment se comprend qualitativement griace a une construction graphique. f(m)
Elles sont en effet données par les abscisses m™* des intersections entre la
courbe y = m et y = tanh(8Jgm). On a tanh(z) — +1 quand x — Fo0 et
tanhx ~ x quand & — 0. Donc au voisinage de m = 0, y = tanh(3Jgm)
est une droite de pente SJq. Si fJq < 1,ie T > T, = Jq/kg, les deux
courbes ont une seule intersection en m = 0. Mais pour T < T, les
courbes ont trois intersections, en 0 et £m*(T'). La forme de I’énergie
libre nous indique que pour T' < T, la solution m = 0 est instable : elle
correspond & un maximum de 1’énergie libre alors que +m™*(T") sont des
minima. f(m)

Notre solution rend donc compte de la transition paramagnétique-
ferromagnétique. L’aimantation est nulle en moyenne au-dessus d’une
température de Curie, et elle acquiert une valeur moyenne non-nulle en-
dessous. Qu’avons-nous perdu dans I’approximation de champ moyen ?
En fait, nous avons négligé les fluctuations du champ local appliqué sur
chaque spin, ou, de fagon équivalente, les corrélations entre les spins voi-
sins. Cette approximations est d’autant meilleure que le nombre ¢ de
voisins d’un spin est grand (le champ est ”automoyenné” par les voisins),
donc que la dimension de ’espace est grande. En effet, un spin a 2 voisins FIGURE 17 — Solution graphique
sur un réseau linéaire, 4 sur un réseau carré, 6 sur un réseau cubique, 4o Pgquation autocohérente pour
etc. On peut montrer que 'approximation de champ moyen est exacte au 1, au-dessus et en-dessous de la
voisinage de la température critique en dimension d’espace supérieure a température critique.
4. Elle est en revanche qualitativement fausse en dimension 1, ou il n’y a
en fait pas de transition de phase comme on verra dans la suite.

5) Classification des transitions de phase
a) Ordre d’une transition de phase

Nous avons étudié deux transitions de phase, chacune représentative des deux grandes classes de transi-
tions de phase qui existent dans la nature. Dans tous les cas, une transition de phase est caractérisée par le
changement abrupt d’une coordonnée thermodynamique que 1'on appelle parametre d’ordre. Dans le cas de
la condensation, le parametre d’ordre est la densité p, dans le cas du modele d’Ising, c’est 'aimantation m.

e Les transitions de phase du premier ordre sont caractérisées par une discontinuité du parametre
d’ordre. Elles peuvent donner lieu & une coexistence des deux phases et elles possedent une chaleur
latente : pour faire passer le systeme d’une phase a ’autre, il faut lui fournir de la chaleur alors que la
température ne varie pas. La transition liquide-gaz est un exemple de transition de phase du premier
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ordre. Nous avons vu qu’en cas de coexistence entre un liquide et sa vapeur, la pression est fixée pour
une température donnée. De facon équivalente, la température est fixée pour une pression donnée,
d’ou l'existence d’une chaleur latente.

e Les transitions de phase du second ordre sont caractérisées par un parametre d’ordre continu a la
transition. Cependant, des dérivées secondes du potentiel thermodynamique peuvent étre disconti-
nues, voire diverger a la transition. Par exemple, la susceptibilité magnétique diverge a la température
de Curie. Une transition du second ordre n’a pas de chaleur latente. La transition ferromagnétique-
paramagnétique est un exemple de transition de phase du second ordre.

C’est une grande force de la mécanique statistique que de pouvoir prédire de telles caractéristiques
générales du comportement collectif d’un systéme & partir de ses interactions microscopiques.

b) Premier ordre : transition brutale ou coexistence ?

Une transition de phase du premier ordre peut soit donner lieu a une coexistence de deux phases, soit
se faire brutalement, selon les contraintes imposées au systéme. Nous avons étudié la transition liquide-gaz
d’un systéme fermé (nombre de particules fixé). Sa densité moyenne est alors imposée par les contraintes
(pression ou volume, et température), et nous avons vu qu’il y a coexistence pour certaines valeurs de
densité moyenne. En revanche, dans un systéme ouvert (ol le nombre de particules peut varier) la densité
moyenne n’est pas imposée par les contraintes : le systéme va donc adopter la densité qui minimise son
grand potentiel et il y aura une transition abrupte.

Considérons en effet un gaz de particules en interaction en situation grand-canonique (u, V,T) fixés. Sa
grande fonction de partition peut s’écrire

[1]

=Y N Z(N,V,T), (463)
N=0

o Z(N,V,T) est la fonction de partition canonique de ce méme gaz & (N,V,T) fixés, que nous avons
calculée plus haut :

A3
Z(N,V,T) = exp[-BF(N,V,T)] = exp [—Nlog lp_ Zp + N + BaNp| = exp[NBg(p)]. (464)
On a donc -
= — Z eNB(utg(p=N/V)) (465)
N=0

On voit que les quantités sommées sont exponentielles en N. Par la méthode du col, la somme est égale a
son plus grand terme dans la limite thermodynamique, et le grand potentiel vaut donc

Y = —kpTlog= = — mKa]x[N(,u + g(N/V))], (466)
et comme Y = —PV on obtient la pression selon
P = maxlp( + 9(0))) (467)

La fonction p(u + g(p)) a un seul maximum local pour T' > T, et deux maxima locaux pour T < T, : le
systeme va donc ”choisir” la maximum global parmi ces deux maxima locaux. La hauteur relative des deux
maxima locaux varie en fonction de p : il y a donc une valeur de p critique pour laquelle le systéme change
brutalement de densité. C’est ce qu’il se passe dans la condensation capillaire (voir Série 12).

c) Second ordre : exposants critiques

On touche ici a la notion d’exposant critique, tres utilisée dans la théorie des transitions de phase, sur
I’exemple de la susceptibilité magnétique dans le modele d’Ising en champ moyen. En présence d’un champ
magnétique (voir Série 12) I’équation autocohérente pour l'aimantation s’écrit

m = tanh[B(Jgm + h)]. (468)
On se place & T > T, en suppose h suffisamment petit pour que S(Jgm + h) < 1. Alors, on peut utiliser le
fait que pour & < 1, tanh(x) & x pour écrire
h

T,
~ —mol 4
m =~ Jgm + Bh me + T (469)
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En réarrangeant, on obtient la sensibilité magnétique & champ nul
om 1
h

o =r M =0= mE Ty (470)

On voit donc que la susceptibilité magnétique diverge quand T s’approche de T, comme 1/(T — T,)" avec
v = 1. v s’appelle un exposant critique. On peut déterminer de tels exposants pour toutes les quantités
physiques qui ont un comportement singulier au voisinage de la transition de phase. Par exemple, juste en-
dessous de la température critique, I’aimantation croit comme (7, — T')? avec 8 = 1/2 (/3 est une notation
conventionnelle pour cet exposant, & ne pas confondre avec 'inverse de la température). La donnée des
exposants critiques détermine complétement le comportement d’un systeme au voisinage d’une transition
de phase du second ordre. Des systémes microscopiquement trés différents peuvent avoir les mémes exposants
critiques : on dit alors qu’ils appartiennent & la méme classe d’universalité. Sil’on arrive a identifier a priori
a quelle classe d’universalité appartient un systéme, on peut déterminer un grand nombre de ses propriétés
sans calcul.

6) Solution exacte du modéle d’Ising 1D

On peut calculer exactement la fonction de partition du modele d’Ising sur un réseau 1D ou 2D. Nous
allons faire ici le calcul en 1D; en 2D, le calcul est beaucoup plus compliqué (il a valu & Onsager le prix
Nobel de chimie en 1968). Les solutions exactes sont trés importantes car elles permettent d’étre stir du
résultat : si 'on arrive a ramener la description d’un systéeme a un modele exactement soluble, on peut
prédire son comportement avec certitude. Dans les cas ou il n’y a pas de solution exacte, les approximations
que 'on peut faire sont souvent non contrdlées. Avec les approximations de champ moyen, par exemple, on
obtient un résultat, mais on peut difficilement savoir s’il est tres différent du résultat exact ou non. Le seul
moyen de juger de la pertinence du résultat est de le confronter & des observations expérimentales.

On considere donc un modele d’Ising de N spins, a température T' et en présence d’un champ magnétique
h, sur une réseau unidimensionnel. On supposera en fait que les spins sont disposés sur un cercle (conditions

aux limites périodiques). Alors, ’énergie d’un micro-état {S;} = (S1,...,Swm) peut s'écrire
N N
E({Si}) =—J) SiSix1 —hY_S, (471)
i=1 i=1

avec Syy1 = 91.

REMARQUE. On pourrait aussi considérer des spins disposés sur une ligne, mais cela particulariserait
le premier et le dernier spin, rendant le calcul légerement plus compliqué, pour un méme résultat dans la
limite thermodynamique.

Nous avons donc a calculer la fonction de partition

N N
Z =Y exp [ﬂj > SiSig1+BhY Si] : (472)
{S8:} i=1 i=1

que 'on peut aussi écrire

N N
Z =Y exp [BJZ S;Siy1 + %,Bh > (Si+ Sm)] , (473)
=1

{Si} i=1
On peut introduire la notation suivante :
Z= > > - Y T(5.5)T(S2,85)... T(Sn,S), (474)
S1=—1,18=—1,1 Sy=—1,1
avec
T(SZ, Sj) = exp [ﬂJSzS] + ﬂh(Sz + S])/Q] . (475)
On définit maintenant la matrice T, appelée matrice de transfert selon

[ T(=1,-1) T(=1,1) ] [ ePUM B
T { T(1,-1) T(1,1) e B eBUER) |- (476)
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On peut aussi noter T;; les éléments de la matrice T, avec 4,5 = 1 ou 2. Par exemple T12 = T((—1,1). On
peut donc réécrire la fonction de partition en termes des éléments de la matrice de transfert :

Z= Z Z e Z Ti1i2Ti2i3 s TiNh' (477)
h=1,2i9=1,2  in=1,2

Examinons le cas NV = 3, en ayant en téte la formulé générale pour le produit de deux matrices en fonction
de leurs coefficients (A - B);; = >, A By :

In=s= Y > > Tii,Tii,Tig, (478)

i1=1,2 i5=1,2 i5=1,2

Z Z (TQ)iliS»TiSil (479)

i1=1,2i5=1,2

Z (Tg)ilil = TF(TS), (480)

i1=1,2

ot 'on a introduit la trace (Tr) d’une matrice — la somme de ses éléments diagonaux. De la méme fagon,

on obtiendra dans le cas général
Z = Tr(TV). (481)
La matrice T est a symétrique réelle, elle est donc diagonalisable. Il existe une matrice de passage P et des

valeurs propres A;, A_ telles que

T=PDP~' avec D= [ Ao+ /\O_ ] . (482)

Comme la trace est invariante par permutation circulaire (Tr(ABC) = Tr(CAB) = Tr(BCA)), on a
Te(TV) = Tr(DV) = AY + AV, (483)
On détermine les valeurs propres de T en résolvant ’équation caractéristique det(T — Ay ) = 0, soit

eBI=h) _ A e BJ
o—BJ B+ _y | =0 (484)

C’est une équation du second degré pour A :

(PR ) (PR )y — 728 = (485)
— A2 —2)e?7cosh(Bh) 4 2sinh(28.J) =0 (486)
= A =eP (cosh(ﬂh) + \/ cosh?(Bh) — Qewsmh(m])) : (487)

On trouve que les valeurs propres sont bien réelles, comme il se doit pour une matrice symétrique, et
A+ > A_. On a alors

)\N
__\N N _ \N - N
Seule la plus grande valeur propre compte dans la limite thermodynamique. On a donc le résultat final pour
la fonction de partition eracte du modele d’Ising 1D :

N

Z =eNBJ (cosh(ﬁh) + y/cosh?(Bh) — Qezﬁfsinh(QﬁJ)> . (489)

A partir de la définition (472)) de la fonction de partition, on voit que I'aimantation est donnée par

N
1 1 OlogZ
A N N _ 490
mEN <; > BN oh (490)
On peut calculer cette dérivée peu sympathique pour obtenir
1+ cosh(Bh) (cosh?(8h) — 2¢~2%7sinh(28.7)) ~"*

m = sinh(8h) + cosh(Bh) (cosh®(Bh) — 2e sinh(2 ))1/2 (491)

cosh(h) + (cosh®(Bh) — 2e~287sinh(25.J))
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On voit que I'aimantation moyenne est toujours nulle en ’absence de champ (h = 0) : le modele d’Ising 1D
ne présente pas de transition de phase paramagnétique-ferromagnétique. Par ailleurs, m est toujours une
fonction continue de h, peu importe la température : il n’y a jamais de changement brutal de 'aimantation
en fonction du champ comme dans la solution champ moyen (voir Série 12). Il faudrait résoudre le modele
en dimension plus grande que 1 pour avoir une transition de phase.

La méthode de la matrice de transfert est en fait tres puissante : elle peut-étre généralisée pour calculer
exactement la fonction de partition d’un systéme 1D avec n’importe quel type d’interaction (pas seulement
des interactions entre proches voisins). Ces solutions par matrice de transfert sont utilisées notamment pour
décrire le comportement d’électrolytes dans des milieux poreux.
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