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Corrigé 9

Dans cet exercice, on se propose d’étudier une réaction chimique a I'importance industrielle
majeure : la formation de 'ammoniac & partir d’azote et d’hydrogéne en phase gazeuse.

N2+3H2 : 2NH3

L’objectif de cet exercice est de déterminer la constante d’équilibre de la réaction a la tempé-
rature T' = 973 K, a partir des résultats vus en cours.

NH; Ny Hy
Masse (Da) 17.032 28.016 2.016
Groupe ponctuel de symétrie Cs, Do, D,
Energie d’atomisation (kJ/mol) 1158.17 941.69 432.03
Températures rotationnelles (cm™!) 9.944, 1.998 58.73

0.944,

6.196
Températures vibrationnelles (cm™!) 3340 (1), 2360 (1) 4400 (1)
(dégénérescence) 950 (1),

3440 (2),

1630 (2)

On rappelle que la fonction de partition rotationnelle d’une molécule linéaire s’exprime comme

d 1)

U@rot,B

Zrot =

Si la molécule est non-linéaire et posséde trois axes de rotation principaux A, B et C, sa fonction
de partition rotationnelle s’écrit :

T T T
Zrot = ﬁ : : ) (2)
o C'_')rot,A ®r0t,B @rot,C

ou le facteur de symétrie o dépend du groupe de symétrie ponctuel de la molécule. On se
référera au tableau ci-dessous pour la détermination de o.

TasLe 140. SYMMETRY NUMBERS (¢) FOR VARIOUS POINT GROUPS.

Point group Symmetry Point group Symmetry | point group | Syrmmetry

number number number
<y, G, C, 1 D;, Dyg, Dop=V, 4 Con 1
Cs, Cov, Caa 2 Dy, D3y, Dy 6 Dy 2
Cs, C3y, Can 3- Dy, Dyg, Dix 8 T, T 12
Cy, Cyp, Cap 4 Ds, Dga, Dgp 12 O 24
Cs, Ceo, Con 6 Ss 3

Les constantes a utiliser pour les calculs numériques sont :

kg =138 %107 J. K1 =0.695 cm™! - K™,
h=6.63x103J.s,
Ny = 6.022 x 102 mol ™.
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1. En tout généralité, exprimer la constante d’équilibre d’une réaction chimique a 'aide
des fonctions de partition moléculaires des espéces impliquées dans la réaction.

Solution : On considere une réaction chimique faisant intervenir n espéces chimiques A;.
Formellement, la réaction chimique s’écrit

i ViAi = 07 (3)
=1

ot les coefficients stoechiométriques v; sont positifs pour les produits et négatifs pour les
réactifs. On note p; le potentiel chimique de l'espéce A;. En étudiant le systéme dans
l’ensemble de Gibbs, [’état d’équilibre chimique s’obtient en minimisant [’enthalpie libre
G par rapport a l'avancement de la réaction. Cette condition implique

Z vip; =0 a Uéquilibre. (4)
i=1

On se référera au cours pour plus de détails sur [’établissement de cette relation. Le
potentiel chimique p; s’exprime a partir du nombre de particules N; et de la fonction de
partition moléculaire z; de ’espece A; comme

1y = kT log (ﬁ> | (5)

<

On introduit les concentrations ¢; = N;/V en les différentes espéces chimiques a I'équi-
libre, ou V' est le volume du systéme. On obtient alors :

0= z:;y log (ZC/V) = log (lj (ﬁ)) , (6)

d’ot ’on identifie la constante d’équilibre de la réaction chimique :

K°(T) = ﬁc - ﬁ (%) . (7)

2. En utilisant la loi des gaz parfaits, exprimer les concentrations des espéces chimiques en
fonction de leurs pressions partielles et identifier une constante d’équilibre exprimée en
unités de pression.

Solution : Chaque espéce se comportant comme un gaz parfait, la pression partielle p; de
l’espéce A; est reliée a sa concentration c; par :

pi = cikpT. (8)
On en déduit alors :
& pi \" Sy,
K°(T) = = K°(T) x (kgT)~ =", 9
0 =11 () = K500 = ) )
ot l'on a identifié
o _ - 12 - Zi Vi
K =[]r =] (VkBT> (10)
i=1 i=1
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la constante d’équilibre de la réaction exprimée en unités de pression (si les pressions
sont exprimées en bar, K> (T) est exprimée en bar-"i ),

3. Pour chacune des espéces de la réaction, développer la fonction de partition moléculaire
en produit des différentes contributions (i.e. (a) translationnelle, (b) vibrationnelle, (c)
rotationnelle), et calculer leurs valeurs numériques a 'aide des données de ’énoncé. En
déduire la constante d’équilibre de la réaction étudiée, et comparer a la valeur expéri-
mentale K°(T = 973 K) = 4.64 x 1077 bar™2.

Solution : On commence par exprimer chaque fonction de partition moléculaire, comme
le produit des contributions translationnelles (Ziyansi) €t internes (zinti),

Zi = Ztrans,i " Rint,i  AVEC  Zint i = Reli * Rvib,i ° Rrot,i » (11)

ot les contributions électronique, vibrationnelle et rotationnelle a zin; sont considérées
indépendantes. Comme les différentes espéces se trouvent dans leur état fondamental,
non dégénéré, la fonction de partition électronique de [’espece i s’écrit en fonction de
l’énergie du niveau électronique fondamental €; comme

Zeli = €XP (_ k;l ) . (12)

(a) Contribution translationnelle

On exprime la fonction de partition translationnelle a partir du résultat mono-atomique
et en utilisant les masses respectives de chaque espéce :

®) kpT _ <2wmikBT>3/2V_kBT _ (27rmik‘BT

3/2
) -kgT  [pression].

Rtransi — Ztrans,i'T h2 \%4 h2

(13)

Par exemple, pour la molécule de Hy, on obtient a T'= 973 K :

2.016 g/mol o4 _o7
mpy, = =3.35 x 10 =3.35 x 107" kg, 14
"7 6,02 x 10% mol ! & & (14)
(2mmu, )%/ ?(kpT)>/?

2 = T =219 x 10" Pa =219 x 10°bar.  (15)

De maniere similaire, on obtient pour l’azote et I’ammoniac :

) o =113x10%bar, 27 5.38 x 107 bar. (16)

Ztrans,Ng trans,NH3 =

(b) Contribution vibrationnelle

On exprime la fonction d’onde vibrationnelle, en utilisant ’approximation de [’os-
cillateur harmonique. Pour rappel, les états propres de l'oscillateur harmonique |n)
possedent une énergie associée donnée par H |n) = (n + $)hw ny, avec n le nombre
quantique principal et w la pulsation angulaire caractéristique de la vibration. La
fonction de partition vibrationnelle moléculaire de [’espéce A;, dont les M; modes de
vibration (comptés avec leur dégénérescence) sont indexés par j = 1,..., M;, s’ex-
prime par :
Mi e~ O5vin/(2T)

(17)

Zvib,i =

o 1 — e~ ©jvin/T

3
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(c)

ou le coefficient au numérateur e~ Oiviv/CT) = o=Mwi/ksT) yient de I’énergie de point
zéro de loscillateur harmonique associé au mode de vibration j. On définit [’énergie
de point zéro wibrationnelle totale de [’espéece i comme

1 &
€pzi — 5 ; hwﬁ (18)

de sorte que :
_ Spzi 1
Zyib; = € BT .
H 1-— exp(—@vib,j/T)

J

(19)

Cette expression contient la contribution vibrationnelle réduite a la fonction de par-
tititon moléculaire :

1
Zyibi = : 20
1:[ 1 —exp(—Oyin;/T) (20)
On évalue cette derniére quantité a partir des données fournies par ’énoncé, en
effectuant la conversion ©(cm™) = O(K) x kg(cm™' - K™) :

Zuba, = 1.0015,  Zupn, = 10314, Fupnm, = 1.6312. (21)

Attention a bien prendre en compte les dégénérescences des modes vibrationnels pour
chacune des especes. Pour rappel, une molécule avec N atomes posséde 3N — 6 modes
wvibrationnels si elle est non-linéaire, et 3N — 5 modes si elle est linéaire. Ainsi NHg
posséde bien 3 -4 — 6 = 6 modes de vibration, mais seulement 3 températures vibra-
tionnelles (deuz des modes étant dégénérés).

Contribution rotationnelle

Les molécules Ny et Hy sont linéaires, et leur fonction de partition rotationnelle s’écrit
donc sous la forme

T
Zrotyp — .~ s
U@rot

ot le facteur de symétrie est donné par o = 2 pour les molécules Ny et Hy, d’apres
le tableau de I’énoncé. Ainsi :

(22)

Zrot,Hy = 5.757, Zrot,Ng = 169.2. (23)

La molécule de NHg est non-linéaire et sa fonction de partition rotationnelle s’écrit

Ji [T T T
o = ’ ’ ’ 24
“rot,NH o @rot,A C_')rot,B @rot,C ( )

ot le facteur de symétrie de NHs est 0 = 3. On trouve ainsi :

=419.7. (25)

JT 9733
Zro = 5
O 7370/ (9.944/0.695)2 - (6.196,/0.695)
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(d) Contribution électronique

Comme les différentes espéces se trouvent dans leur état fondamental, non dégénéré,
la fonction de partition électronique de ’espéce 1 s’écrit en fonction de [’énergie du
nieau Electronique fondamental €; comme

€
Zeli = €XP (— kBT) ) (26)

L’énergie d’atomisation E;s de l’espece A; donnée dans I’énoncé correspond a [’énergie
nécessaire pour séparer la molécule en ses atomes. FElle correspond a ['opposé de
l’énergie de ’état fondamental d’une molécule, i.e.

57; = —€; — Epzﬂ', (27)
et ainst : L
Zeli X e T efil (kBT) (28)

(e) Calcul de la constante d’équilibre de la réaction

Finalement, pour chaque espéce, la fonction de partition moléculaire s’écrit (en unités
de pression)

AP = %kBT (29)
= Zt(fa)ns,i X B_Ei/(kBT) X Zvib,i X Zrot,i- (30)

On en dédwit directement la constante d’équilibre de la réaction, exprimée aussi en
unités de pression :

K°(T) :M (31)
P zl(\%) X (zg?)?’
(% NH,)” 26(NHy) — £(N3) — 3E(Hy)
K (T) ==, o) X eXp< ksT ) (32)
Ztrans,NQ X (Ztrans,Hg)3 B
5 2 2
. (zv1b,NH3) % (Zrot,NHg) (33)

2Vib,N2 X (2vib,H2)3 Zrot,Nz X (Zrot,Hz)3

ot (26(NH3) — E(Ng) — 3E(Hy))/(kgT) = 9.711 est positif. Compte tenu des appli-
cations numériques déja effectuées, on obtient finalement :

o _ _ =7 -2
K, (T =973K) =5.64 x 107" bar™~, (34)

et on retrouve bien la valeur expérimentale.
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4. Parmi les degrés de liberté internes, lesquels contribuent le plus & déterminer la constante
d’équilibre ?

Solution : On calcule séparément :

(Zvib,NHs)? B
_ ! — 2.568, (35)
Zyib,Ng X (Zvib,Hg)
et )
Croin)” 5 456 (36)

Zrot,Ng X (Zrot,Hz)

On en déduit que c’est la partie rotationnelle qui contribue le plus a la constante d’équi-
libre.



