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Corrigé 8
Le graphène est un matériau bidimensionnel, constitué d’atomes de carbone arrangés dans

un réseau en nid d’abeille. Les niveaux d’énergie des électrons libres d’un flocon de graphène
de taille L × L sont donnés par ϵk = ℏγ|k|, où γ ≈ 106 m · s−1 et ki = niπ/L, ni ∈ N. Ils ont
chacun une dégénérescence g = 4.

1. Les électrons du graphène sont maintenus à un potentiel chimique µ. Exprimer leur den-
sité surfacique n = N/L2 comme une intégrale sur k, en faisant intervenir la distribution
de Fermi-Dirac.

Solution : La distribution de Fermi-Dirac fFD(ϵk−µ) = 1/(eβ(ϵk−µ)+1) donne le nombre
moyen d’électrons dans un état à une particule k. Le nombre total d’électrons s’exprime
donc comme

N = g
∑
k

fFD(ϵk − µ). (1)

Dans la limite thermodynamique, on utilise le résultat du cours pour passer d’une somme
sur k à une intégrale, en adaptant à la géométrie 2D :

∑
k 7→ L2

∫
dk/(2π)2. On a donc

n = g

∫
dk

(2π)2
fFD(ϵk − µ). (2)

2. Montrer que

n =

∫ ∞

0

dϵ
ρ(ϵ)

eβ(ϵ−µ) + 1
(3)

et exprimer la densité d’états ρ(ϵ).

Solution : On passe d’abord l’intégrale en coordonnées polaires (k, θ) :

n = g

∫ ∞

0

k dk

∫ 2π

0

dθ

(2π)2
fFD(ℏγk − µ). (4)

L’intégrande ne dépend pas de θ, donc l’intégrale sur θ donne 2π :

n = g

∫ ∞

0

k dk

2π
fFD(ℏγk − µ). (5)

On fait maintenant le changement de variable ϵ = ℏγk (et on remplace la fonction de
Fermi-Dirac par son expression) :

n =

∫ ∞

0

dϵ
gϵ

2π(ℏγ)2
1

eβ(ϵ−µ) + 1
. (6)

On trouve donc le résultat demandé avec ρ(ϵ) = gϵ/(2π(ℏγ)2)) ≡ αϵ.

Pour faire agir le graphène comme un capteur de pH, on le dépose sur un substrat isolant de
permittivité diélectrique κ et d’épaisseur d. De l’autre côté du substrat, on place une électrode
métallique. Lorsque le graphène est mis en contact avec une solution d’intérêt, l’adsorption
d’ions H+ ou OH− à sa surface modifie la densité électronique. On peut alors relier le pH de
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la solution à la tension Vg aux bornes du condensateur formé par le graphène et l’électrode
métallique.

L’électrode métallique joue le rôle de réservoir d’électrons pour le graphène, qui lui impose
un potentiel chimique µ = eVg − e2d

κ
n. Le deuxième terme vient de l’interaction électrostatique

entre le graphène et l’électrode.

1. Dans la limite de basse température (β → ∞), exprimer Vg en fonction de n.

Solution : Dans la limite de basse température, la fonction de Fermi-Dirac vaut 1 pour
ϵ < µ et 0 pour ϵ > µ. On a donc

n =

∫ µ

0

αϵ = αµ2/2 =
α

2

(
eVg −

e2d

κ
n

)2

. (7)

On en déduit

Vg =
1

e

√
2n

α
+

de

κ
n. (8)

2. Calculer la sensibilité du capteur dVg/dn. Dans quelles conditions le capteur est-il le
plus sensible ?

Solution :
dVg

dn
=

1

e
√
2αn

+
de

κ
. (9)

La sensibilité est maximale quand n est proche de 0 (le graphène est peu chargé). La
sensibilité semble diverger quand n → 0, mais ce n’est en fait pas le cas à température
non nulle.

3. On se place maintenant à température quelconque. Exprimer dVg/dn en Vg = 0 et n = 0
en fonction de l’intégrale

I =

∫ ∞

0

du
ueu

(1 + eu)2
(10)

que l’on ne cherchera pas à calculer.

Solution : On repart de l’expression générale :

n =

∫ ∞

0

dϵ
αϵ

eβ(ϵ−eVg+(e2d/κ)n) + 1
(11)

On a une expression du type n = f(n, Vg), que l’on peut différentier :

dn =
∂f

∂n
dn+

∂f

∂Vg

dVg ⇒
dVg

dn
=

1− ∂f/∂n

∂f/∂Vg

(12)

On calcule les dérivées partielles :

∂f

∂Vg

=

∫ ϵ

0

dϵ αβeϵ
eβ(ϵ−eVg+(e2d/κ)n)

(1 + eβ(ϵ−eVg+(e2d/κ)n))2
=

n=0,Vg=0
αβe

∫ ϵ

0

dϵ ϵ
eβϵ

(1 + eβϵ)2
. (13)

∂f

∂n
= −

∫ ϵ

0

dϵ αβ(e2d/κ)ϵ
eβ(ϵ−eVg+(e2d/κ)n)

(1 + eβ(ϵ−eVg+(e2d/κ)n))2
=

n=0,Vg=0
−αβ(e2d/κ)

∫ ϵ

0

dϵ ϵ
eβϵ

(1 + eβϵ)2
.

(14)
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On fait le changement de variable u = βϵ pour obtenir∫ ϵ

0

dϵ ϵ
eβϵ

(1 + eβϵ)2
=

1

β2

∫ ∞

0

du
ueu

(1 + eu)2
=

1

β2
I. (15)

Finalement,
dVg

dn
(n = 0, Vg = 0) =

1 + α(e2d/κ)I/β

eαI/β
=

β

eαI
+

de

κ
. (16)

4. Montrer que quand T est proche de 0, dVg/dn ∝ 1/T .

Solution : Quand T → 0 (β est grand), le terme indépendant de β est négligeable dans
l’expression ci-dessus et on a

dVg

dn
≈ 1

eαIkBT
. (17)

La sensibilité du capteur ne diverge pas au voisinage de n = 0, mais elle est d’autant
meilleure que la température est basse.

5. Montrer que le résultat de la question 1 peut s’écrire

Vg =

(
1

Ccl

+
1

Cq

)
Q, (18)

où Q = Ne est la charge sur le graphène. Pourquoi parle-t-on de capacité quantique ?

Solution : On multiplie le premier terme par
√
n/

√
n pour obtenir

Vg =
1

e

√
2n

α
+

de

κ
n =

(
1

e2

√
2

nα
+

d

κ

)
Q

L2
(19)

=

(
2ℏγ
e2L2

√
π

gn
+

d

κL2

)
Q. (20)

puisque Q = Ne = nL2e. On obtient la forme demandée avec

Ccl = κL2/d et Cq =
e2L2

2ℏγ

√
gn

π
. (21)

On se doute que la capacité quantique est celle qui contient ℏ. La capacité usuelle vient
de l’interaction électrostatique entre les deux armatures d’un condensateur. La capacité
quantique est une capacité supplémentaire qui vient de la distribution de Fermi-Dirac :
pour amener un électron supplémentaire dans le graphène, il faut le placer au-dessus
du niveau de Fermi – un coût énergétique supplémentaire par rapport à une situation
"classique". L’effet de capacité quantique est important si la densité d’états ρ(ϵ) au
niveau de Fermi est suffisamment faible. Ce n’est pas le cas pour des métaux usuels,
mais c’est le cas pour le graphène dont la densité d’états ρ(ϵ) = αϵ tend vers 0 pour ϵ
proche de 0 (point de Dirac).
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