
Corrigé 6, le 27 mars 2025 Mécanique statistique pour la chimie, EPFL

Corrigé 6
On continue à appliquer les méthodes de la mécanique statistique à des systèmes en inter-

action avec un environnement. Dans cet exercice, on s’intéresse à un modèle élémentaire du
comportement des ions dans un canal nanofluidique.

1 Non-électroneutralité d’un canal nanofluidique

On considère un canal de volume V qui porte une charge totale q = −Qe sur sa paroi
intérieure. Ce canal est en équilibre avec un réservoir d’électrolyte 1 :1 à la concentration c0.
On admet que l’électrolyte peut être décrit comme un gaz parfait d’ions : on montrera dans
le cours que c’est vrai pour un électrolyte suffisamment dilué. Dans la suite, on "oublie" pour
simplifier les ions négatifs et on cherche à calculer le nombre d’ions positifs dans le canal.

1. Justifier que l’énergie électrostatique du canal contenant N ions positifs peut s’écrire
sous la forme Ec(N −Q)2, avec Ec > 0.

Solution :

L’énergie électrostatique d’une charge est proportionnelle à la charge au carré, et la
charge totale du canal contenant N ions positifs est (N − Q)e. Ainsi, le carré de cette
dernière expression est bien proportionnel à (N −Q)2.

2. On décrit le canal dans l’ensemble grand-canonique. Quels sont les micro-états des ions
dans le canal ? Quelle est l’énergie associée ?

Solution :

Un micro-état du canal est défini par le nombre N d’ions qu’il contient, et par la configu-
ration des N ions à l’intérieur du canal, c’est-à-dire leurs positions (r1, . . . , rN) et leurs
impulsions (p1, . . . ,pN). L’énergie d’un micro-état est la somme de l’énergie cinétique
et de l’énergie potentielle électrostatique des ions :

E(CN) =
N∑
i=1

p2
i

2m
+ Ec(N −Q)2. (1)

3. Montrer que la fonction de partition grand-canonique s’exprime selon

Ξ =
∞∑

N=0

1

N !

(
V

Λ3
T

)N

e−β(Ec(N−Q)2−µN), (2)

avec µ le potentiel chimique des ions dans le réservoir et ΛT la longueur d’onde de de
Broglie thermique d’un ion.

Solution :

En appliquant la définition du cours,

Ξ =
∞∑

N=0

∑
CN

e−β(E(CN )−µN) =
∞∑

N=0

eβµN
∑
CN

e−βE(CN ). (3)
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On explicite maintenant l’intégration sur les positions et les impulsions des ions pour
chaque valeur de N . Comme vu en cours, on normalise l’espace des configurations par
h3NN !, les ions étant indiscernables. On obtient :

Ξ =
∞∑

N=0

eβµNe−Ec(N−Q)2
∫ ∏N

i=1 dridpi

h3NN !
e−β

∑N
i=1

p2
i

2m . (4)

On retrouve exactement le calcul fait en cours pour la fonction de partition canonique du
gaz parfait à N particules. L’intégration sur les positions donne un facteur V N , et l’in-
tégration sur les impulsions donne (

√
2mπkBT )

3N (on applique la formule de l’intégrale
gaussienne à N dimensions). Avec le facteur h3N au dénominateur, on fait apparaître
ΛT =

√
h2/(2πmkBT ) et on retrouve bien l’expression demandée.

4. Donner l’expression de µ en fonction de c0.

Solution :

Puisqu’on adopte une description de gaz parfait pour les ions, on peut utiliser la formule
vue en cours pour le potentiel chimique du gaz parfait : µ = kBT log(c0Λ

3
T ).

5. On considère d’abord le système sans interactions coulombiennes : Ec = 0. Evaluer la
fonction de partition et en déduire le nombre d’ions dans le canal. On pourra utiliser le
développement en série entière de la fonction exponentielle.

Solution :

Si Ec = 0, on a

Ξ =
∞∑

N=0

1

N !

(
V

Λ3
T

eβµ
)N

. (5)

On reconnaît le développement en série de ex pour x = V
Λ3
T
eβµ :

Ξ = exp

(
V

Λ3
T

eβµ
)
. (6)

On utilise maintenant la formule du cours :

⟨N⟩ = 1

β

∂ log Ξ

∂µ
=

V

Λ3
T

eβµ = c0V. (7)

C’est bien le nombre d’ions que doit contenir le canal si la concentration dans le canal
est égale à celle du réservoir.

6. On suppose maintenant Ec ̸= 0 et Ec ≫ kBT . La somme (5) est alors dominée par les
termes avec N proche de Q. Montrer que si l’on ne garde que le terme N = Q dans la
somme, on retrouve bien ⟨N⟩ = Q.

Solution :

En ne gardant que le terme N = Q,

Ξ =
1

Q!

(
V

Λ3
T

eβµ
)Q

(8)
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Alors
⟨N⟩ = 1

β

∂ log Ξ

∂µ
=

∂

∂µ
(Qµ) = Q, (9)

comme attendu.

7. On garde maintenant les termes N = Q− 1, Q,Q+ 1. Calculer le nombre d’ions moyen
dans le canal. On fera apparaître N0 = c0V et on supposera N0 ≪ Q. Qualitativement,
pourquoi n’a-t-on pas électroneutralité ?

Solution :

On écrit les termes en question, à partir de la somme explicitée à l’équation (5) :

Ξ =
1

Q!

(
V

Λ3
T

eβµ
)Q

+
e−βEc

(Q− 1)!

(
V

Λ3
T

eβµ
)Q−1

+
e−βEc

(Q+ 1)!

(
V

Λ3
T

eβµ
)Q+1

(10)

=
1

Q!

(
V

Λ3
T

eβµ
)Q [(

QΛ3
T

V
e−βµ +

V

Λ3
T (Q+ 1)

eβµ
)
e−βEc + 1

]
. (11)

On calcule le nombre d’ions moyen comme précédemment :

⟨N⟩ = 1

β

∂ log Ξ

∂µ
(12)

= Q+

(
−QΛ3

T

V
e−βµ + V

Λ3
T (Q+1)

eβµ
)
e−βEc

1 +
(

QΛ3
T

V
e−βµ + V

Λ3
T (Q+1)

eβµ
)
e−βEc

(13)

= Q+

(
− Q

N0
+ N0

Q+1

)
e−βEc

1 +
(

Q
N0

+ N0

Q+1

)
e−βEc

(14)

=︸︷︷︸
N0≪Q

Q− Q

N0

e−βEc

1 + Q
N0

e−βEc
. (15)

L’électroneutralité n’est pas exactement respectée. Qualitativement, cela résulte d’une
compétition entre énergie et entropie. D’un point de vue énergétique, le canal cherche à
être neutre. Mais il y a un coût entropique à payer si cela implique d’avoir une concen-
tration dans le canal très supérieure à celle dans le réservoir. Dans la vraie vie, on peut
effectivement trouver des nano-canaux non-électroneutres. Il y a alors une accumulation
de contre-ions à leurs entrées pour assurer la neutralité à grande échelle.
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