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Corrigé 3
La modification de l’espace des configurations d’un système peut engendrer une force effective
entre ses composantes. Une telle force, qualifiée d’entropique, traduit la volonté du système
d’atteindre un macro-état d’entropie maximale, selon le deuxième principe de la thermodyna-
mique. Les deux exercices de cette série visent à illustrer des situations dans lesquelles une force
entropique émerge : l’allongement d’un polymère et l’interaction entre colloïdes dans un bain
de polymères.

1 Ressort entropique

On étudie un polymère unidimensionnel isolé, constitué de N monomères de taille a. Chaque
monomère a deux orientations possibles : vers la droite ou vers la gauche. Les deux orientations
ont la même énergie.

1. Définir un micro-état du polymère. Déterminer le nombre Ωtot de ces micro-états.

Solution :

Un micro-état du polymère est une configuration de ses coordonnées microscopiques. Le
polymère a N coordonnées, correspondant à l’orientation de chacun de ses monomères.
Un micro-état est donc de la forme

Cpolymère = (u1, ..., uN) |ui ∈ {−1,+1} (1)

Un micro-état correspond ainsi à une succession précise de + et de −. Par exemple,
(−,−,−, ...,−) est le micro-état du polymère dont tous les monomères sont alignés à
gauche. (+,+,+, ...,+) désigne le micro-état du polymère pour lequel tous les mono-
mères sont alignés vers la droite. Le micro-état (−,+,−,+, ...,+), où chaque monomère
orienté à gauche est suivi d’un monomère orienté à droite correspond à un polymère de
longueur nulle, si N est pair. Un micro-état associé à un polymère de longueur nulle est
(+,−,+,−, ...,−). La figure 1 exhibe quatre micro-états possibles, si N = 3. Les points
signalent le début et la fin de chaque polymère. Tous ces micro-états ont la même énergie,
donc ils peuvent bien tous être adoptés par un polymère isolé.

Le cardinal de l’ensemble des micro-états du polymère {Cpolymère} donne le nombre
Ωtot des micro-états. Chaque monomère a deux configurations à choix. Le nombre total
de configurations est donc Ωtot = 2N .
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Figure 1
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2. En utilisant le théorème central limite, déterminer la probabilité P(x) pour que le poly-
mère ait une longueur x. En déduire l’entropie d’un polymère de longueur x imposée.

Solution :

La longueur du polymère est la somme des longueurs algébriques de ses monomères :

x =
N∑
i=1

aui. (2)

Les aui sont des variables aléatoires indépendantes, et x est aussi une variables aléatoire,
définie comme leur somme. D’après le théorème central limite, quand N est grand, la
distribution de x tend vers une gaussienne, dont la moyenne est la somme des moyennes
de aui et la variance est la somme des variances des aui. Les deux orientations étant
équiprobables, ⟨aui⟩ = 0 et ⟨(aui)

2⟩ − ⟨aui⟩2 = a2. On a donc, pour N → ∞,

P(x) =
1√

2πNa2
e−x2/(2Na2). (3)

Par ailleurs, tous les micro-états du polymère étant équiprobables, la probabilité que celui-
ci ait une longueur x est donnée par

P(x) =
Ω(x)

Ωtot

=
Ω(x)

2N
, (4)

où Ω(x) est le nombre de micro-états correspondant à une longueur x ("nombre d’issues
favorables sur nombre d’issues possibles"). Si l’on fixe la longueur x du polymère, son
entropie est

S(x) = kB log Ω(x) = −kB

[
x2

2Na2
−N log 2 +

1

2
log(2πNa2)

]
. (5)

3. Si vous avez le temps : retrouver ce résultat par un calcul direct. Dans la limite thermo-
dynamique, on pourra toujours supposer x ≪ Na et on utilisera la formule de Stirling.

Solution :

Soit N+ (resp. N−) le nombre de monomères orientés vers la droite (resp. vers la gauche).
Alors x = a(N+−N−) = a(2N+−N), soit N+ = 1

2
(N+x/a). Pour que le polymère ait une

longueur x, il faut que ce nombre N+ de monomères pointe vers la droite. Ω(x) = Ω(N+)
correspond au nombre de façons de choisir ces N+ monomères parmi les N possibles :

Ω(N+) =
N !

N+!(N −N+)!
, (6)

et P(x) = P(N+) = Ω(N+)/2
N .

Pour appliquer l’approximation de Stirling dans la limte N grand, on va calculer
le logarithme de P(N+). Par ailleurs, on va utiliser la condition x ≪ Na pour écrire
N+ = (N/2)(1 + ϵ) avec ϵ = x/(Na) ≪ 1. On obtient :

ln(P(N+)) = ln

(
N !

2NN+!(N −N+)!

)
(7)
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= ln(N !)−N ln(2)− ln

((
N(1 + ϵ)

2

)
!

)
− ln

((
N(1− ϵ)

2

)
!

)
(8)

On développe les termes à l’aide de la formule de Stirling au deuxième ordre : ln(N !) =
N ln(N)−N + ln(2πN)/2. Le troisième terme devient ainsi

ln

((
N(1 + ϵ)

2

)
!

)
=

(
N(1 + ϵ)

2

)
ln

(
N(1 + ϵ)

2

)
− N(1 + ϵ)

2
+ ln

(
2π

N(1 + ϵ)

2

)
(9)

ϵ est petit, on peut ainsi approximer le logarithme ln(1+ ϵ) par son développement limité
ϵ− ϵ2/2 +O(ϵ3). On en déduit

ln

((
N(1 + ϵ)

2

)
!

)
=
N(1 + ϵ)

2
(ln(N) + ln(1 + ϵ)− ln(2))− N(1 + ϵ)

2
(10)

+
ln(πN)

2
+

ln(1 + ϵ)

2
(11)

=
N(1 + ϵ)

2
(ln(N) + ϵ− ϵ2

2
− ln(2))− N(1 + ϵ)

2
(12)

+
ln(πN)

2
+

ϵ

2
− ϵ2

4
+O(ϵ3) (13)

=
N

2
(ln(N)− ln(2)− 1) +

ln(πN)

2
(14)

+ ϵ

(
1

2
(ln(N)− ln(2)− 1)

)
+ ϵ2

(
1

4
(N − 1)

)
+O(ϵ3) (15)

On en déduit

ln

((
N(1− ϵ)

2

)
!

)
=
N

2
(ln(N)− ln(2)− 1) +

ln(πN)

2
(16)

− ϵ

(
1

2
(ln(N)− ln(2)− 1)

)
+ ϵ2

(
1

4
(N − 1)

)
+O(ϵ3) (17)

Ainsi, lorsqu’on additionne les deux logarithmes, les puissances impaires de ϵ s’annulent,
alors que les puissances paires se cumulent. On récrit l’équation (8) en

ln(P(N+)) =N ln(N)−N +
ln(2πN)

2
−N ln(2) (18)

−
[
N(ln(N)− ln(2)− 1) + ln(πN) + ϵ2

N − 1

2

]
(19)

=
1

2
ln(2πN)− ln(πN)− Nϵ2

2
(20)

= ln

(√
2

πN

)
− Nϵ2

2
(21)

où les crochets contiennent la somme des termes (15) et (17). Si l’on prend l’exponentielle
de l’égalité précédente et qu’on insère l’expression d’ϵ en termes de N , soit ϵ = (2N+ −
N)/N , on obtient

P(N+) =

√
2

πN
e−

Nϵ2

2 =

√
2

πN
e−

(2N+−N)2

2N =
1√

2πNa2
e−

x2

2Na2 (22)

car comme déduit à la première question, N+ = (N + x/a)/2.
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4. Exprimer le travail élémentaire fourni par une force F qui étire le polymère de dx. En
déduire la différentielle de l’entropie en fonction des coordonnées thermodynamiques du
polymère.

Solution :

Le travail élémentaire s’écrit δW = F dx. C’est bien un signe + car selon la convention
du banquier, δW > 0 correspond à un travail reçu par le système (fourni par l’opérateur).
C’est le cas si F et dx sont dans le même sens. L’identité thermodynamique pour le
polymère s’écrit donc

dU = TdS + Fdx ⇒ dS =
dU

T
− F

T
dx. (23)

5. Déterminer la relation entre la force F et l’allongement x. Pourquoi parle-t-on de ressort
entropique ?

Solution :

On déduit de la question précédente F = −T∂xS. En utilisant l’expression de l’entropie
en fonction de x, on trouve

F =
kBT

Na2
x. (24)

On a une relation linéaire entre la force et l’allongement : le polymère se comporte donc
comme un ressort ! En étirant le polymère, on réduit le nombre de configurations qui
lui sont accessibles. Le polymère résiste à l’allongement car il cherche à augmenter son
entropie : c’est pour cela qu’on parle de ressort entropique.

Le modèle du ressort entropique (aussi dénommé "chaîne librement jointe"), malgré
sa simplicité, décrit assez bien l’élasticité de biopolymères tels que l’ADN, qui peut être
mesurée grâce à des dispositifs de pinces optiques. Cependant, a ne correspond en réalité
pas à la longueur d’un monomère, mais à une grandeur caractéristique du polymère
appelée longueur de persistance.

La description mathématique que vous avez effectuée est identique à celle d’une chaîne
constituée de N maillons, ou au fameux problème de la promenade de l’ivrogne, qui a
notamment inspiré le titre du livre du physicien Leonard Mlodinow.

4



Corrigé 3, le 6 mars 2025 Mécanique statistique pour la chimie, EPFL

2 Force de déplétion entre colloïdes

On considère un système de volume V constitué de Nc colloïdes et de Np polymères. Les
deux types de particules sont modélisés par des sphères dures (donc impénétrables) de rayon R
pour les colloïdes et Rg pour les polymères, d’après le modèle d’Asakura-Oosawa. Les colloïdes
sont supposés beaucoup plus grands que les polymères, donc R ≫ Rg. Nous allons montrer
qu’il existe dans ce système une force d’attraction d’origine entropique entre colloïdes, appellée
force de déplétion.

1. On considère un système contenant Nc = 1 colloïde. Calculer le volume accessible à un
polymère, c’est-à-dire le volume dans lequel peut se trouver son centre de masse.

Solution :

Le colloïde et le polymère sont deux sphères dures. Cela implique que la distance entre
les centres de masse du colloïde et du polymère est au minimum R + Rg, comme le
schématise la figure (2), puisque les sphères sont impénétrables. Le cercle en traitillé
délimite le volume exclu pour le centre de masse du polymère, qui vaut

Vexclu =
4

3
π(R +Rg)

3 =
π

6
(2(R +Rg))

3 =
π

6
D3 (25)

où D = 2(R + Rg) est le diamètre du volume exclu. Le volume accessible aux polymères
est ainsi

Vacc,Nc=1 = V − Vexclu = V − π

6
D3 (26)

R RgD

Figure 2

2. On considère maintenant Nc = 2 colloïdes maintenus avec une distance fixée x entre leurs
surfaces. Qualitativement, comment le volume V (x) accessible aux polymères dépend-il
de x ?
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Solution :

Lorsque les deux colloïdes sont assez éloignés pour que leurs volumes exclus n’aient pas
d’intersection, le volume exclu total vaut la somme des deux volumes exclus, comme
l’illustre la figure (3a) :

Vacc,Nc=2 = V − 2Vexclu = V − π

3
D3 (27)

Dans ce cas, la distance x entre la surface des colloïdes est telle que x ≥ 2Rg.
Si les colloïdes sont proches, les deux volumes exclus se chevauchent et le volume

accessible augmente. Cette situation est représentée dans la figure (3b). Le volume ac-
cessible pour le polymère est Vacc(x) = V − 2Vexclu + Vchevauchement(x).

D

(a)

x
D

(b)

Figure 3
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3. Exprimer le nombre de configurations des Np polymères à une constante multiplicative
indépendante de x près. En déduire l’entropie du système.

Solution :

Pour un polymère, le nombre de configurations est proportionnel au volume accessible.
On ne sait pas pour l’instant exprimer la constante de proportionnalité, mais ce n’est pas
nécessaire car elle ne dépend pas de x. Pour Np polymères, le nombre de configurations
peut donc s’écrire :

Ω =
α (Vacc(x))

Np

Np!
. (28)

On tient finalement compte de l’indiscernabilité des polymères en divisant par Np!, et
α est la constante de proportionnalité inconnue. L’entropie du système est donc, par la
formule de Boltzmann et la formule de Stirling

S = kB ln(Ω) = kB ln

(
α (Vacc(x))

Np

Np!

)
(29)

= kB[ln(α) + ln(Vacc(x))
Np − ln(Np!)] (30)

= kB[ln(α) +Np ln(Vacc(x))−Np ln(Np)−Np] (31)

On peut redéfinir la constante multiplicative en α′ = (ln(α)/Np)− 1− ln(Np) pour sim-
plifier l’expression :

S = kBNp[ln(Vacc(x)) + α′] (32)

4. Exprimer la différentielle de l’entropie en fonction des coordonnées thermodynamiques
du système. En déduire la force nécessaire pour maintenir les colloïdes à une distance x,
puis l’énergie d’interaction correspondante, en fonction de V (x). Pourquoi parle-t-on de
force entropique ?

Solution :

La différentielle de l’entropie s’écrit en toute généralité

dS =
∂S

∂U
dU +

∂S

∂Vacc(x)
dVacc, (33)

ou, comme le volume accessible ne dépend que de x :

dS =
1

T
dU +

∂S

∂x
dx. (34)

Or, lorsqu’on applique une force F pour éloigner les colloïdes de dx, la variation d’énergie
interne s’écrit

dU = TdS + Fdx. (35)

On en déduit, comme dans l’exercice précédent,

F = −T
dS

dx
(36)

On insère l’expression de l’entropie trouvée en (32) dans l’équation (36) pour déduire :

F (x) = −T
d

dx
(kBNp[ln(Vacc(x)) + α′]) (37)
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= −NpkBT
1

Vacc(x)

d

dx
Vacc(x) (38)

puisque seul le volume accessible dépend de x. La force est non-nulle uniquement si le
volume accessible dépend de x, donc si les volumes exclus se chevauchent. Elle est dans
ce cas négative, donc attractive. Cette force est provoquée par la volonté du système de
maximiser l’entropie en maximisant l’espace accessible aux polymères.

L’énergie d’interaction correspondant à F (x) est donnée par son intégrale sur dx.
Ainsi,

E =

∫
F dx = −kBTNp ln(Vacc(x)) + c (39)

c est une constante d’intégration, qui n’est pas forcément égale α′, définie en (32). On
représente l’énergie dans la figure (4), en utilisant l’expression du volume calculée au
point suivant (48).

L’énergie montre la présence d’un puits de potentiel. La force de déplétion est donc
attractive et dépend du carré de la distance entre les centres de masse des deux col-
loïdes. Lorsqu’une partie des volumes exclus des colloïdes se superposent, l’espace des
configurations des polymères augmente, ce qui accroît l’entropie du système.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

8

6

4

2

0

E(
x)

log((1 x)2) si x<1 
 0 sinon

Figure 4

5. Pour un challenge calculatoire : calculer V (x).
Astuce : pour simplifier les calculs, on utilisera le fait que R ≫ Rg. On pourra utiliser
l’équation du cercle simplifiée dans cette limite pour réduire le problème à un calcul
d’intégrale.

Solution :

On calcule le volume de l’intersection des deux volumes exclus, représentée en bleu foncé
sur la figure (3). Cette intersection est la somme de deux calottes sphériques de hauteur
d. Le volume d’une calotte est obtenu en intégrant la fonction qui la délimite, comme
dans la figure (5). Cela correspond à sommer des disques centrés sur l’axe z, dont les
rayons sont de plus en plus grands, pour remplir le volume.
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La partie courbe est une section d’un cercle de rayon R + Rg = D/2. On définit le
système d’axes (z, r) pour que le zéro de l’axe z soit en au sommet de la calotte. Dans
ce système, l’origine du cercle est donc en (R + Rg, 0) = (D/2, 0). L’équation du cercle
est donc

r2 + (z −D/2)2 = (D/2)2 (40)

La fonction qu’on cherche à intégrer est donc l’équation de ce cercle entre 0 et d =
Rg − x/2. On déduit de l’équation précédente

r(z) =
√

(D/2)2 − (z −D/2)2 = f(z) (41)

Le volume vaut donc, en ajoutant la révolution de 2π autour de l’axe z pour passer à
trois dimensions,

Vcalotte =

∫ 2π

0

dϕ

∫ d

0

dz

∫ f(z)

0

r dr (42)

= 2π

∫ d

0

dz

∫ f(z)

0

r dr = 2π

∫ d

0

dz

[
r2

2

]f(z)
0

(43)

= π

∫ d

0

(√
(D/2)2 − (z −D/2)2

)2
dz (44)

= π

∫ d

0

(
Dz − z2

)
dz (45)

= π

[
D
z2

2
− z3

3

]d
0

(46)

= πd2
(
D

2
− d

3

)
(47)

Dans l’approximation R ≫ Rg, R ≫ d et donc d3 est négligeable par rapport à Dd2. On
récrit le volume de la calotte en termes de x, puisque d = Rg − x/2 :

Vcalotte ≈
πd2D

2
=

πD

2

(
2Rg − x

2

)2

=
πD

8
(2Rg − x)2 (48)

Le volume accessible aux polymères est donc

Vacc(x) = V − 2Vexclu + 2Vcalotte (49)

= V − πD3

6
+

πD

4
(2Rg − x)2 (50)

= V − πD

12

(
2D2 − 3(2Rg − x)2

)
(51)
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x
D

(a)

Rg

z
r

d x/2 R

(R+Rg, 0)

(b)

Figure 5
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