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Corrigé 3

La modification de I’espace des configurations d’un systéme peut engendrer une force effective
entre ses composantes. Une telle force, qualifiée d’entropique, traduit la volonté du systéme
d’atteindre un macro-état d’entropie maximale, selon le deuxiéme principe de la thermodyna-
mique. Les deux exercices de cette série visent a illustrer des situations dans lesquelles une force
entropique émerge : 'allongement d’un polymeére et I'interaction entre colloides dans un bain
de polymeéres.

1 Ressort entropique

On étudie un polymére unidimensionnel isolé, constitué de N monomeéres de taille a. Chaque
monomeére a deux orientations possibles : vers la droite ou vers la gauche. Les deux orientations
ont la méme énergie.

1. Définir un micro-état du polymeére. Déterminer le nombre ., de ces micro-états.

Solution :

Un micro-état du polymeére est une configuration de ses coordonnées microscopiques. Le
polymere a N coordonnées, correspondant a [’orientation de chacun de ses monomeres.
Un micro-état est donc de la forme

Cpolymére = (Ul, -~->UN) ‘ U; € {—1, —|—1} (1)
Un micro-état correspond ainst a une succession précise de + et de —. Par exemple,
(—,—,—, ..., —) est le micro-état du polymére dont tous les monomeéres sont alignés a

gauche. (+,+, 4+, ...,+) désigne le micro-état du polymere pour lequel tous les mono-
meres sont alignés vers la droite. Le micro-état (—, 4+, —,+,...,+), ot chaque monomére
orienté a gauche est suivi d’un monomere orienté a droite correspond a un polymere de
longueur nulle, si N est pair. Un micro-état associé a un polymere de longueur nulle est
(+,—,+,—, ..., —). La figure 1 exhibe quatre micro-états possibles, si N = 3. Les points
signalent le début et la fin de chaque polymere. Tous ces micro-états ont la méme énergie,
donc ils peuvent bien tous étre adoptés par un polymere isolé.

Le cardinal de Uensemble des micro-états du polymeére {Cpoiymere} donne le nombre
Qior des micro-états. Chaque monomeére a deux configurations a choiz. Le nombre total
de configurations est donc oy = 2.

. X=a
“— . e X=a

- x =-3a
>—> »  x=3a
—t—t—t+—t+—+—+>~x
-3a -2a -a 0 a 2a 3a

FIGURE 1
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2. En utilisant le théoréme central limite, déterminer la probabilité P(z) pour que le poly-
mere ait une longueur x. En déduire ’entropie d’un polymeére de longueur x imposée.

Solution :

La longueur du polymere est la somme des longueurs algébriques de ses monomeres :

Les au; sont des variables aléatoires indépendantes, et x est aussi une variables aléatoire,
définie comme leur somme. D’aprés le théoreme central limite, quand N est grand, la
distribution de x tend vers une gaussienne, dont la moyenne est la somme des moyennes
de au; et la variance est la somme des variances des au;. Les deuxr orientations étant
équiprobables, (au;) = 0 et ((au;)?) — (au;)? = a*. On a donc, pour N — oo,

]_ 2 2
—z?/(2Na?)
Blz) = 27TN6L2€ ' ®)

Par ailleurs, tous les micro-états du polymeére étant équiprobables, la probabilité que celui-
ci ait une longueur x est donnée par

P(z) — % -2 (4)

ot Q(x) est le nombre de micro-états correspondant a une longueur x ("nombre d’issues
favorables sur nombre d’issues possibles”). Si l'on fize la longueur x du polymere, son
entropie est

.772

S(z) = kplogQ(z) = —kp SN

1
— Nlog2+ 5 log(2rNa?)| . (5)

3. St vous avez le temps : retrouver ce résultat par un calcul direct. Dans la limite thermo-
dynamique, on pourra toujours supposer x < Na et on utilisera la formule de Stirling.

Solution :

Soit Ny (resp. N_) le nombre de monoméres orientés vers la droite (resp. vers la gauche).
Alors & = a(Ny—N_) = a(2N,—N), soit N = 5(N+z/a). Pour que le polymére ait une
longueur x, il faut que ce nombre N de monomeéres pointe vers la droite. Q(x) = Q(N,)
correspond au nombre de fagons de choisir ces N. monomeres parmi les N possibles :

N!
QN = S v )

et P(z) = P(N,) = Q(N,)/2N.
Pour appliquer lapprozimation de Stirling dans la limte N grand, on va calculer

le logarithme de P(N,). Par ailleurs, on va utiliser la condition x < Na pour écrire
Ny = (N/2)(1+¢€) avec e = z/(Na) < 1. On obtient :

In(P(N;)) =In <2NN+!(]]\\ZT!— N+)!) (7)
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On développe les termes a l'aide de la formule de Stirling au deuziéme ordre : In(N'!) =
NIn(N) — N +1n(27N)/2. Le troisieme terme devient ainsi

In ((%) !) - (%) In (N(l; E)> - N“; ) i n (%NUT“)) 9)

€ est petit, on peut ainsi approzimer le logarithme In(1+ €) par son développement limité
e —€e2/2+O(e®). On en déduit

In ((M) !) :M(m(m +In(1+€) — In(2)) — M (10)
In(7N) N In(1+¢) (11)

2 2
:—N<12+ J (In(N) + € — ; —In(2)) — —N<12+ i (12)
—IH(ZN ) 4 g - % + O (13)
:g(ln(N) —In(2) — 1) + ln(gN) (14)
+ € (%(m(zv) —1In(2) — 1)) + € (Z(N — 1)) +0()  (15)

On en déduit

In ((W) !) :g(ln(N) —In(2) - 1)+ m(;TN) (16)

y (%(m(zv) n(2) - 1)> b (i(N - 1)) Lo (1)

Ainsi, lorsqu’on additionne les deux logarithmes, les puissances impaires de € s’annulent,
alors que les puissances paires se cumulent. On récrit I’équation (8) en

In(P(N,)) =N In(N) — N + ID(QTWN) — Nn(2) (18)
- {N(ln(N) —In(2) — 1) + In(zN) + 62N2_ 1] (19)
1 Ne?
=3 In(27N) — In(7N) — 5 (20)
2 Née?
=In < m) ahre (21)

ot les crochets contiennent la somme des termes (15) et (17). Si l'on prend 'ezponentielle
de ’égalité précédente et qu’on insére l’expression d’e en termes de N, soit € = (2N, —
N)/N, on obtient

2 Ne2 2 (2N —N)? 1 22
]P) N — — e 2 = — 0 2N = —— _7 22
N =y7xe " =V an° VN 22

car comme déduit a la premiére question, Ny = (N + x/a)/2.
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4. Exprimer le travail élémentaire fourni par une force F' qui étire le polymére de dx. En
déduire la différentielle de ’entropie en fonction des coordonnées thermodynamiques du
polymeére.

Solution :

Le travail élémentaire s’écrit SW = F dx. C’est bien un signe + car selon la convention
du banguier, SW > 0 correspond & un travail re¢u par le systéme (fourni par lopérateur).
C’est le cas si F' et dx sont dans le méme sens. L’identité thermodynamique pour le
polymere s’écrit donc

U F
dU = TdS + Fdz = dS = TU ~ ida. (23)

5. Déterminer la relation entre la force F' et I'allongement z. Pourquoi parle-t-on de ressort
entropique ?

Solution :
On déduit de la question précédente ' = —T0,S. En utilisant ’expression de [’entropie
en fonction de x, on trouve

kgT

On a une relation linéaire entre la force et ’allongement : le polymere se comporte donc
comme un ressort! En étirant le polymeére, on réduit le nombre de configurations qui
lui sont accessibles. Le polymere résiste a l’allongement car il cherche a augmenter son
entropie : c¢’est pour cela qu’on parle de ressort entropique.

Le modele du ressort entropique (aussi dénommé "chaine librement jointe"), malgré
sa simplicité, décrit assez bien l’élasticité de biopolymeres tels que I’ADN, qui peut étre
mesurée grice a des dispositifs de pinces optiques. Cependant, a ne correspond en réalité
pas a la longueur d’un monomére, mais a une grandeur caractéristique du polymere
appelée longueur de persistance.

La description mathématique que vous avez effectuée est identique a celle d’une chaine
constituée de N maillons, ou au fameux probleme de la promenade de [’wrogne, qui a
notamment inspiré le titre du livre du physicien Leonard Mlodinow.
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2 Force de déplétion entre colloides

On considére un systéme de volume V' constitué de NN, colloides et de N, polymeéres. Les
deux types de particules sont modélisés par des sphéres dures (donc impénétrables) de rayon R
pour les colloides et R, pour les polymeéres, d’aprés le modéle d’Asakura-Oosawa. Les colloides
sont supposés beaucoup plus grands que les polymeres, donc R > R,. Nous allons montrer
qu’il existe dans ce systéme une force d’attraction d’origine entropique entre colloides, appellée
force de déplétion.

1. On considére un systéme contenant N, = 1 colloide. Calculer le volume accessible a un
polymeére, c’est-a-dire le volume dans lequel peut se trouver son centre de masse.

Solution :

Le colloide et le polymére sont deux spheres dures. Cela implique que la distance entre
les centres de masse du colloide et du polymeére est au minimum R + R4, comme le
schématise la figure (2), puisque les sphéres sont impénétrables. Le cercle en traitillé
délimite le volume exclu pour le centre de masse du polymére, qui vaut

4
Vasata = 57 (R + Ry) = %(2(}2 + R, = %D3 (25)
o D =2(R+ Ry) est le diamétre du volume exclu. Le volume accessible auz polyméres
est ainsi -
Vacc,chl =V —Vaau=V — ED?) (26)

FIGURE 2

2. On considére maintenant N, = 2 colloides maintenus avec une distance fixée x entre leurs
surfaces. Qualitativement, comment le volume V' (x) accessible aux polymeéres dépend-il
de x?
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Solution :

Lorsque les deux colloides sont assez €loignés pour que leurs volumes exclus n’aient pas
d’intersection, le volume exclu total vaut la somme des deux volumes exclus, comme
Villustre la figure (3a) :

V;,cc,Nc=2 =V =2Vaeau =V — gD?’ (27)

Dans ce cas, la distance x entre la surface des colloides est telle que v > 2R,.

Si les colloides sont proches, les deux volumes exclus se chevauchent et le volume
accessible augmente. Cette situation est représentée dans la figure (3b). Le volume ac-
cessible pour le polymeére est Voee() =V — 2Vixetu + Venevauchement () -

FIGURE 3
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3. Exprimer le nombre de configurations des IV, polymeéres & une constante multiplicative
indépendante de x prés. En déduire I'entropie du systéme.

Solution :

Pour un polymere, le nombre de configurations est proportionnel au volume accessible.
On ne sait pas pour l'instant exprimer la constante de proportionnalité, mais ce n’est pas
nécessaire car elle ne dépend pas de x. Pour N, polyméres, le nombre de configurations
peut donc s’écrire :
& (Vace (x))Np
Np! '
On tient finalement compte de lindiscernabilité des polymeres en divisant par N,!, et
a est la constante de proportionnalité inconnue. L’entropie du systéme est donc, par la
formule de Boltzmann et la formule de Stirling

S = kg In(Q) = kg In (M> (29)

0= (28)

N,!
= kp[ln(a) + In(Viee(2))™ — In(N,))] (30)
= kg[ln(a) + Ny In(Vace(7)) — Np In(N) — N} (31)

On peut redéfinir la constante multiplicative en o = (In(a)/N,) — 1 — In(N,) pour sim-
plifier Uexpression :

S = kpNp[In(Vaee(2)) + o] (32)

4. Exprimer la différentielle de I'entropie en fonction des coordonnées thermodynamiques
du systéme. En déduire la force nécessaire pour maintenir les colloides & une distance x,
puis I’énergie d’interaction correspondante, en fonction de V(). Pourquoi parle-t-on de
force entropique ?

Solution :

La différentielle de l’entropie s’écrit en toute généralité

oS oS
ds = @dU + mdvmca (33)

ou, comme le volume accessible ne dépend que de x :

1 05
dS = =dU + —dx. 34
T * ox v (34)
Or, lorsqu’on applique une force F' pour éloigner les colloides de dx, la variation d’énergie

mterne s’écrit

dU = TdS + Fdzx. (35)
On en déduit, comme dans ’exercice précédent,
ds
F=-T— 36
. (36)

On insére 'expression de l’entropie trouvée en (32) dans l’équation (36) pour déduire :
d
F(w) = =T (kaNp[In(Vaee(2)) + @]) (37)

7
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1 d

— NhpT—— =
pB Viace(x) dx

Vace() (38)
puisque seul le volume accessible dépend de x. La force est non-nulle uniquement si le
volume accessible dépend de x, donc st les volumes exclus se chevauchent. Elle est dans
ce cas négative, donc attractive. Cette force est provoquée par la volonté du systeme de
mazximiser ’entropie en maximisant l’espace accessible auzx polymeres.

L’énergie d’interaction correspondant a F(x) est donnée par son intégrale sur dx.
Ainsi,

o / Fdz = —kgTN, In(Vaee () + ¢ (39)

¢ est une constante d’intégration, qui n’est pas forcément égale o', définie en (32). On
représente l'énergie dans la figure (4), en utilisant ’expression du volume calculée au
point suivant (48).

L’énergie montre la présence d’un puits de potentiel. La force de déplétion est donc
attractive et dépend du carré de la distance entre les centres de masse des deux col-
loides. Lorsqu’une partie des volumes exclus des colloides se superposent, l’espace des
configurations des polymeres augmente, ce qui accroit [’entropie du systeme.
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—_ _4 1
X
w
-6
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_ —log((1 —x)?) si x<1
0 sinon
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FIGURE 4

5. Pour un challenge calculatoire : calculer V(x).

Astuce : pour simplifier les calculs, on utilisera le fait que R > R,. On pourra utiliser
l’équation du cercle simplifiée dans cette limite pour réduire le probleme a un calcul
d’intégrale.

Solution :

On calcule le volume de l’intersection des deux volumes exclus, représentée en bleu foncé
sur la figure (3). Cette intersection est la somme de deux calottes sphériques de hauteur
d. Le volume d’une calotte est obtenu en intégrant la fonction qui la délimite, comme
dans la figure (5). Cela correspond a sommer des disques centrés sur l'aze z, dont les
rayons sont de plus en plus grands, pour remplir le volume.
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La partie courbe est une section d’un cercle de rayon R+ R, = D/2. On définit le
systéme d’azxes (z,1) pour que le zéro de l'aze z soit en au sommet de la calotte. Dans
ce systeme, lorigine du cercle est donc en (R+ R,,0) = (D/2,0). L’équation du cercle
est donc

r*+(z = D/2)* = (D/2)* (40)

La fonction qu’on cherche a intégrer est donc [’équation de ce cercle entre 0 et d =
R, — x/2. On déduit de ’équation précédente

r(z) = V(D/2)? = (2 = D/2)* = f(2) (41)

Le volume vaut donc, en ajoutant la révolution de 27 autour de l'axe z pour passer a

trois dimensions,
2m d f(z)
Vealotte = / do / dz / rdr (42)
0 0 0

a e @ 210
=27 dz/ rdr = 27r/ dz [—} (43)
0 0 0 2],
d

w/ (VDR - Dj2pP) o (44)

0

Zﬁ/od<Dz—Z2 dz (45)

=7 {DZ; — %3}: (46)
= 71d? (g - g) (47)

Dans lapprozimation R > R,, R>> d et donc d* est négligeable par rapport o Dd*. On
récrit le volume de la calotte en termes de x, puisque d = R, — x/2 :

‘/;alotte ~ =

2 2

) = 2R, — 0 (48)

rd>D @(239—95)2 D
8

Le volume accessible aux polyméres est donc

Vacc(m) =V - 2Vvexclu + 2‘/(:alotte (49)
D? D
v - TR, - 2)? (50)
6 4
D
=V - % (2D — 3(2R, — )°) (51)
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FIGURE 5
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