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Corrigé 2

Cette série propose de manipuler des outils mathématiques récurrents dans les calculs de mé-
canique statistique : intégrales et développements limités. Le premier exercice est purement
mathématique ; le second propose de calculer les premiéres corrections quantiques a la loi des
gaz parfaits — calcul qui sera posé plus tard dans le cours.

1 Rappels mathématiques

1. Evaluer l'intégrale gaussienne

+oo 9
/ e “dx
— 00

ou a € R%. Une méthode possible consiste a considérer le carré de 'intégrale, puis a
passer en coordonnées polaires.

Solution :

Tel que conseillé dans la donnée, on prend le carré de lintégrale gaussienne. On passe
ensuite des coordonnées cartésiennes a polaires en utilisant les définitions x = r cos (6),
y = rsin(0) pour r € Ry et ¢ € [0,2n[. L’élément différentiel se transforme selon
dzdy s rdrde. On utilise finalement la relation r* = 2% +1y? et 'absence de dépendance
angulaire de 'intégrande pour obtenir le résultat :

+oo 2 2 Hoo 2 +oo 2
(/ e dx) = (/ e da:) (/ e~ W dy) (1)

+oo +o0o

:/ / e_“(12+y2)dxdy (2)
e

= e” " rdrde (3)
0 0

+o0 —ar?

_ 271'/0 % (‘3_266) dr (@)

L’expression finale apparait en prenant la racine de [’égalité :

Foo 2 T
—ar d = —
/_OO ¢ ’ \/; (7)
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2. Evaluer 'intégrale paramétrique

—+oco
/ e dx
0

avec m € N. Cette intégrale peut étre calculée par parties, ou a I'aide de la technique de
Feynman. Cette derniére méthode consiste a introduire un parameétre o = 1 dans ’argu-
ment de 'exponentielle, pour exprimer 'intégrande en tant qu’une dérivée par rapport a
«. On peut ensuite commuter 'intégrale et la dérivée, pour finalement remplacer « par
1 au terme du calcul.

Solution :

On évalue [intégrale a l’aide de la technique de Feynman. L introduction du paramétre
a produit l'intégrale

Iy(a) = /0+00 xMe*dx. (8)

On cherche a calculer I,,(a = 1). Sim =1, on remarque que

d

— QT —Qx
re W =——e
da
Cette observation se généralise a l’ordre m :
dm
TMe~or — (_1)m e~
dam

On insere cette identité, avant de commuter la dérivée et l'intégrale :

I(a) = /0+°°<—1) LU (9)

dam
m d™
—1)"— e “*d 10
(e (10
d ooz +oo
—1)"— 11
d04 { } (11)
md™ (1
S (2 12
s (a) (12)
( m
= (T (13)
m!
- amt1 <14)
Le produit (—1)™(—1)" vaut 1, m étant un entier.
Ainsi,
+oo
In(a=1)= / z™e *dx = m! (15)
0
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3. En déduire la valeur de

“+o0o
/ z™e 7 dx pour o€ R™
0

Solution :

On a le résultat en s’arrétant & ['avant-derniére étape du calcul précédent, mais on peu
aussi procéder par changement de variable w = ox :

/0 " meordy = /0 ™ oymeud(ufo) (16)

1 oo !
= / umetdy = — (17)
0

0—m+1

4. Calculer les développements limités a I'ordre 3, autour de 0, de

1

flw) = —

et de g(x) =

1—=x
g(x) s’appelle la distribution de Fermi-Dirac.

Solution : On commence par f(x), qui représente le somme d’une série géométrique en
x pour x €] — 1,1[. Ainsi,

1 oo
1_x:2xk=1+x+x2+x3+(’)(x4) (18)
k=0

On va utiliser cette expansion pour obtenir les suivantes.

Pour calculer le développement limité de [’exponentielle, on applique la formule de Taylor-
Young :

") (g
f(z) = Z Ll )(x —a)f + R™ (k) avec R™ ~ O(x — a)"*! (19)

Sia=0 et f(x)=e", f®(0)=1Vk > 0. Ainsi, pour tout x,

k 2 $3

- 7 x
e :ZH:1+x+5+E+O(x4) (20)
k=0

Le développement de g(x), la distribution de Fermi-Dirac, s’obtient en combinant les
expressions (18) et (20). Il en suit :

1 1 1
= o ok 2 3 (21)
I+er 1432 % 1+1+o+5+ %5 +0(@)
1 1
=35 2 3 (22)
2(1+2+2 4+ 2 4 O(at))
1 & r 2 2P RV
_ - (EPLT T 23
2;[ (2+4+12+ (x))} (23)
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1 1 x+x2+x3 L x+x2+x32 x+x2+I3 3+(’)(4)
= — — —_ _— _— —_ _— _— — —_ _— _— €T
2 2 4 12 2 4 12 2 4 12

| (1)
:%_1—(g+%2+f—;)+(%2+2-%3)—(%3)+0($4)] (25)

5. Proposer un développement asymptotique autour de 0% de

1
et —1

h(x) =

h(z) s’appelle la distribution de Bose-Einstein.

Solution :

On développe [’exponentielle comme décrit dans I'équation (20), pour mettre ensuite x
en évidence dans le dénominateur et appliquer la série géométrique. Ainst,

er1—1:1+x+%+%’+0(x4>—1 0
N §(1 +Z4 ; +O(a3)) 2
-1 ;0 [_ (g + %2 + (9(:63)>]k (29)
:é[l—(g+%2>+<§+%2)2+0(x3) (30)
-1 {1 _ (g + '%2) + %2 + o«ﬁ)} (31)
= O (32)
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2 Premiéres corrections quantiques pour un gaz électronique

On montrera dans le cours que la pression d’'un gaz d’électrons dans un volume V = L3
s’exprime comme

P= oo | [T +explatu— EE)

k

ou 8 = 1/kgT, u est le potentiel chimique du gaz et les E(E) sont les niveaux d’énergie d’une
particule dans une boite : E(k) = h2k%/2m, avec k = ||k|| = | /K2 + k2 + kZ et k; = nyw /L pour
n;i € Neti=uxy,z2.

Ici, on propose de montrer que cette expression se réduit a la loi des gaz parfaits dans la
limite classique z = e — 0, puis de calculer la premiére "correction quantique" & cette loi.
Une autre fagon d’exprimer la limite classique est nA3. — 0, ot n = N/V est la densité du gaz
et Ap = h/+/2mrmkgT est appelée la longueur d’onde de de Broglie thermique de 1’électron. On
cherchera en fait la correction a la loi des gaz parfaits obtenue a l’ordre le plus bas non nul en
nAj.

1. Montrer que dans la limite thermodynamique L — oo, le produit sur k peut étre appro-
ché par une intégrale, et exprimer cette intégrale.

Solution :

Les valeurs prises par un vecteur d’onde E, discrétes pour un gaz dans un volume fini,
deviennent continues alors que le volume croit vers linfini, puisque k; = n;w/L. La
transition s’opére formellement a 'aide de la définition de lintégrale de Riemann : si
V — 00, alors Yz =V [ A3k /(2m)3. On illustre ce passage d’abord pour la dimension z,
en considérant uniquement 'argument de [’exponentielle qui dépend du vecteur d’onde.
On utilise la définition du vecteur d’onde pour passer de la somme sur k, a la somme sur
les entiers n,. Dans la limite thermodynamique L — o0, la taille de chaque subdivision
tend vers 0 et on peut convertir la somme en une intégrale :

[e.9]

00
Ze—ﬂfﬂkgzc/%ﬂ — Z e—ﬁh27r2n%/2mL2 — / dn, e—ﬂh2ﬂ'2n§/2mL2 (33)
0

ko N =0

On acheéve le calcul en remplagant n, par k., ce qui fait apparaitre un préfacteur, puisque
dn, = (L/m)dk, :

0 0

T 27

—0o0

ol on a finalement symmétrisé le domaine d’intégration. Cette opération n’implique que
de dwviser lintégrale résultante par deuz, puisque seul le carré de k, apparait dans [’ex-
pression. La généralisation a trois dimensions est immédiate, en prenant le cube de
[’égalité. Les trois dimensions sont en effet indépendantes :

3
 pn2k2  Br2k2 L b _ Br2k2 3 V o0 g7 _ pn2K?
EE e~ zm = (E e 2m ) = (g/ dk, e 2m > :(27)3/ d’ke” zm (35)

kz —00 —00

Pour faire apparaitre la somme dans ’expression de la pression, on commence par
inverser le produit et le logarithme, aprés avoir substitué ’énergie. On remplace ensuite
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la somme par 'intégrale :

P:Blvln H(Hexp[ (u—ﬁ)]) (36)

—

B
va (1—|—eXp {5 (u—ﬁ)b (37)

)

2. Grace a un changement de variable approprié, montrer que

1 4 e 1/2 —x
= BW ; dx x 1H<1+Z€ )
T

Solution :

On commence par substituer la fugacité z. La pression s’écrit alors

2 [ &3k Bh2k2

Le changement de variable le plus évident consiste a remplacer [’argument de [’exponen-
tielle par la nouvelle variable x, sans y intégrer le signe moins, pour que x et k aient un
comportement similaire. Ainsi, x = Bh*k?/2m, et k s’exprime en fonction de x comme

v 2mkgT 1/2 orl/2 1/2
—rlf=——ux

h Ar
ot on a remplacé la température inverse par kg'l', pour exprimer k en termes de Ar. On
obtient la variation infinitésimale dk en dérivant [’équation précédente,

T1/2 T1/2
dk =d 12) = 712 41
(AT ) e (41)

Il ne reste plus qu’a passer en coordonnées sphériques, en notant que lintégrande ne

dépend que de la norme k :
/ &Pk = / dk 4nk?, (42)
0

. 91/2 2 1/2 1675/2
Bk = drkdk = dr [ 2 g1/? T o4z ) = Lgxl/gdx (43)
Arp Ar A5
Le facteur 4w provient de lintégration de l’élément sphérique infinitésimal k*sin(0) sur
les deuz angles propres auzr coordonées sphériques. On insére ce changement de variables
dans [’expression de la pression :

k= (40)

et

> 167/ 172 _
dx In(1 x 44
5/ o) 3A3 xIn(l + ze™) (44)

5\/;/\%/ dz 2% In(1 4 ze™®) (45)
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3. A T'aide d’une intégration par parties, montrer que

* dgzm !
P(z):ﬁi/\%fg,m(z) oi Mz)zﬁ/o Py

Indice : (3/2)! = (3/2)\/7/2.

Par une procédure similaire, on trouve pour la densité du gaz
2
n(2) = 55 faa(2)
T

Solution :

On utilise 'intégration par parties pour remplacer le logarithme par la fonction inverse :

4
BATVT

4 > 2 ' .
o A Gl KR a

4 2 4 N /°° 2 4 —ze™?
z In(1 x _ Z32 == 4
{ z?*In(1 + ze )0 i dx3yc T po=s (48)

P(z) = /000 dz 22 In(1 + ze™®) (46)

T BARVT |3
_ 4 0_/Oodx2x3/2 et (49)
© BART 0 3 14 ze™®
2 4 [ dwa?
e A (50
BAS 3T [y z7ler 41
2 1 > dga®/?
= —3—,/ — (51)
BAL (3/2)! Jo z7lem+1
2
= 6A3 f5/2<2) (52)
T

Le premier terme de l'intégration par parties est nul, puisque la décroissance exponentielle
l’emporte sur la décroissance polynomuale. Pour le prouver, on applique le développement
limité In(1 4+ x) =Yo7 (=1)"" 2" /n, car si x tend vers Uinfini, e™® devient petit :

n=1
221+ 2e7) [ = lim 2*?In(1 + 2e7) — 0 (53)
Tr—00
22e72x
= lim 2°/2 (ze_’” - + (’)((ze_””)3)) =0 (54)
Tr—00

Chaque terme décroit plus vite vers 0 que le précédent.

4. On se place dans la limite classique z — 0. Développer f,,(z) jusqu’a l'ordre 2 en z.

Solution :

La limite classique z — 0 correspond a une température T' élevée et a une température
inverse 3 petite. On ne peut pas directement développer le dénominateur de l’intégrande,
puisque z~'e® est grand. Il faut donc modifier ce dénominateur pour faire apparaitre
ze *, qut est petit :

1 © dggm !
Jm(z) = (m — 1)! /0 et 1 1 (55)

7
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_ 1 /OOO dr 2™ 1 (ze™) (56)

(m— 1) 1+ ze*
= ﬁ /0 Al §<—1)a(zex)a (57)
— ﬁ /Ooo dz 2™ Olf;o(—l)&(,ze—ﬂﬂ)“+1 (58)
- ﬁ /0 " dp g ?:1(—1)@—1(%%)& (59)
_ g(_l)alzaﬁ / T dggmiees (60)
_ §;<_1>a+1§_fn (61)
=z — 22—; +O(2%) (62)

ot on renommé l'indice a+1 par o pour faciliter le calcul de l'intégrale. L’intégrale vaut
(m —1D)!/a™, tel qu’établi a I’équation (17).

5. A partir des développements de P et n en fonction de z, déterminer I’expression de P
en fonction de n au premier ordre en nA2. Commenter.
Indice : exprimer z en fonction den et z, puis remplacer les termes en z dans le membre
de droite par leur expression en fonction de n et z ordre par ordre.

Solution :

Le point précédent permet de récrire la pression a l'ordre 2 en z :

[e.9]

2 @ 2 2
P(Z) = W Z<—1)a+1# = ﬁ_/X;L (Z - % + 0(23)> (63)

a=1

On résout ’équation n(z) = f(z) perturbativement et récursivement, ce qui équivaut a
substituer f(z) par son expression en série et a progresser ordre par ordre, pour obtenir
z(n) = g(n). Ainsi, en débutant par le premier ordre

2 2 22 5
n(2) = 3y fiale) = 37 (2= g2 + O (64)
A3 22
= z= TTn toat O(z%) (65)

o ) » o A3
On considere maintenant le deuxieme ordre. On insére z = —=n

A3, 1 /A3 A3\

Le deuzieme ordre est suffisant pour obtenir la premiére correction quantique. On sub-
stitue maintenant z dans 'expression de P(z) :

2 22 3
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[ 2
= _ﬂA% 771 + W (771 — W 771 + W Tn 4o (68)

2 | A3 1 1 A3\ 2 A3 \?
=38 7’”(2—/—2—/) (7”) +0<(7T”) )] (69)
1 A3 A3\ 2

Ainsi, en prenant en compte la premiére correction quantique, I’équation du gaz parfait
e
s’écrit

= nkBT

1A
Les effects quantiques deviennent importants lorsque nA3. > 2 : cela signifie que la
distance moyenne entre les électrons est plus faible que la longueur d’onde de de Broglie
thermique. Les effets quantiques ont tendance a rendre la pression plus élevée que ce
qu’elle serait dans un gaz parfait classique : c’est la signature du principe de Pauli qui
empéche deux électrons de méme spin de se trouver dans le méme état.



