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Corrigé 2
Cette série propose de manipuler des outils mathématiques récurrents dans les calculs de mé-
canique statistique : intégrales et développements limités. Le premier exercice est purement
mathématique ; le second propose de calculer les premières corrections quantiques à la loi des
gaz parfaits – calcul qui sera posé plus tard dans le cours.

1 Rappels mathématiques

1. Evaluer l’intégrale gaussienne ∫ +∞

−∞
e−ax2

dx

où a ∈ R∗
+. Une méthode possible consiste à considérer le carré de l’intégrale, puis à

passer en coordonnées polaires.

Solution :

Tel que conseillé dans la donnée, on prend le carré de l’intégrale gaussienne. On passe
ensuite des coordonnées cartésiennes à polaires en utilisant les définitions x = r cos (θ),
y = r sin (θ) pour r ∈ R+ et ϕ ∈ [0, 2π[. L’élément différentiel se transforme selon
dxdy 7→ rdrdϕ. On utilise finalement la relation r2 = x2+y2 et l’absence de dépendance
angulaire de l’intégrande pour obtenir le résultat :(∫ +∞

−∞
e−ax2

dx

)2

=

(∫ +∞

−∞
e−ax2

dx

)(∫ +∞

−∞
e−ay2dy

)
(1)

=

∫ +∞

−∞

∫ +∞

−∞
e−a(x2+y2)dxdy (2)

=

∫ +∞

0

∫ 2π

0

e−ar2rdrdϕ (3)

= 2π

∫ +∞

0

d

dr

(
e−ar2

−2a

)
dr (4)

= 2π

[
e−ar2

−2a

]+∞

0

(5)

=
π

a
(6)

L’expression finale apparaît en prenant la racine de l’égalité :∫ +∞

−∞
e−ax2

dx =

√
π

a
(7)
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2. Evaluer l’intégrale paramétrique ∫ +∞

0

xme−xdx

avec m ∈ N. Cette intégrale peut être calculée par parties, ou à l’aide de la technique de
Feynman. Cette dernière méthode consiste à introduire un paramètre α = 1 dans l’argu-
ment de l’exponentielle, pour exprimer l’intégrande en tant qu’une dérivée par rapport à
α. On peut ensuite commuter l’intégrale et la dérivée, pour finalement remplacer α par
1 au terme du calcul.

Solution :

On évalue l’intégrale à l’aide de la technique de Feynman. L’introduction du paramètre
α produit l’intégrale

Im(α) =

∫ +∞

0

xme−αxdx. (8)

On cherche à calculer Im(α = 1). Si m = 1, on remarque que

xe−αx = − d

dα
e−αx

Cette observation se généralise à l’ordre m :

xme−αx = (−1)m
dm

dαm
e−αx

On insère cette identité, avant de commuter la dérivée et l’intégrale :

Im(α) =

∫ +∞

0

(−1)m
dm

dαm
e−αxdx (9)

= (−1)m
dm

dαm

(∫ +∞

0

e−αxdx

)
(10)

= (−1)m
dm

dαm

[
−e−αx

α

]+∞

0

(11)

= (−1)m
dm

dαm

(
1

α

)
(12)

= (−1)m
(−1)mm!

αm+1
(13)

=
m!

αm+1
(14)

Le produit (−1)m(−1)m vaut 1, m étant un entier.
Ainsi,

Im(α = 1) =

∫ +∞

0

xme−xdx = m! (15)
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3. En déduire la valeur de ∫ +∞

0

xme−σxdx pour σ ∈ R+∗

Solution :

On a le résultat en s’arrêtant à l’avant-dernière étape du calcul précédent, mais on peu
aussi procéder par changement de variable u = σx :∫ +∞

0

xme−σxdx =

∫ +∞

0

(u/σ)me−ud(u/σ) (16)

=
1

σm+1

∫ +∞

0

ume−udu =
m!

σm+1
(17)

4. Calculer les développements limités à l’ordre 3, autour de 0, de

f(x) =
1

1− x
et de g(x) =

1

1 + ex
.

g(x) s’appelle la distribution de Fermi-Dirac.

Solution : On commence par f(x), qui représente le somme d’une série géométrique en
x pour x ∈]− 1, 1[. Ainsi,

1

1− x
=

∞∑
k=0

xk = 1 + x+ x2 + x3 +O(x4) (18)

On va utiliser cette expansion pour obtenir les suivantes.
Pour calculer le développement limité de l’exponentielle, on applique la formule de Taylor-
Young :

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k +R(n)(k) avec R(n) ∼ O(x− a)n+1 (19)

Si a = 0 et f(x) = ex, f (k)(0) = 1 ∀k > 0. Ainsi, pour tout x,

ex =
∞∑
k=0

xk

k!
= 1 + x+

x2

2
+

x3

6
+O(x4) (20)

Le développement de g(x), la distribution de Fermi-Dirac, s’obtient en combinant les
expressions (18) et (20). Il en suit :

1

1 + ex
=

1

1 +
∑∞

k=0
xk

k!

=
1

1 + 1 + x+ x2

2
+ x3

6
+O(x4)

(21)

=
1

2

1

(1 + x
2
+ x2

4
+ x3

12
+O(x4))

(22)

=
1

2

∞∑
k=0

[
−
(
x

2
+

x2

4
+

x3

12
+O(x4)

)]k
(23)
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=
1

2

[
1−

(
x

2
+

x2

4
+

x3

12

)
+

(
x

2
+

x2

4
+

x3

12

)2

−
(
x

2
+

x2

4
+

x3

12

)3

+O(x4)

]
(24)

=
1

2

[
1−

(
x

2
+

x2

4
+

x3

12

)
+

(
x2

4
+ 2 · x

3

8

)
−
(
x3

8

)
+O(x4)

]
(25)

=
1

2
− x

4
+

x3

48
+O(x4) (26)

5. Proposer un développement asymptotique autour de 0+ de

h(x) =
1

ex − 1

h(x) s’appelle la distribution de Bose-Einstein.

Solution :

On développe l’exponentielle comme décrit dans l’équation (20), pour mettre ensuite x
en évidence dans le dénominateur et appliquer la série géométrique. Ainsi,

1

ex − 1
=

1

1 + x+ x2

2
+ x3

6
+O(x4)− 1

(27)

=
1

x

1(
1 + x

2
+ x2

6
+O(x3)

) (28)

=
1

x

∞∑
k=0

[
−
(
x

2
+

x2

6
+O(x3)

)]k
(29)

=
1

x

[
1−

(
x

2
+

x2

6

)
+

(
x

2
+

x2

6

)2

+O(x3)

]
(30)

=
1

x

[
1−

(
x

2
+

x2

6

)
+

x2

4
+O(x3)

]
(31)

=
1

x
− 1

2
+

x

12
+O(x2) (32)
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2 Premières corrections quantiques pour un gaz électronique

On montrera dans le cours que la pression d’un gaz d’électrons dans un volume V = L3

s’exprime comme

P =
2

βV
ln

∏
k⃗

(1 + exp[β(µ− E(k⃗))])


où β = 1/kBT , µ est le potentiel chimique du gaz et les E(k⃗) sont les niveaux d’énergie d’une
particule dans une boîte : E(k⃗) = ℏ2k2/2m, avec k = ||⃗k|| =

√
k2
x + k2

y + k2
z et ki = niπ/L pour

ni ∈ N et i = x, y, z.
Ici, on propose de montrer que cette expression se réduit à la loi des gaz parfaits dans la

limite classique z = eβµ → 0, puis de calculer la première "correction quantique" à cette loi.
Une autre façon d’exprimer la limite classique est nΛ3

T → 0, où n = N/V est la densité du gaz
et ΛT = h/

√
2πmkBT est appelée la longueur d’onde de de Broglie thermique de l’électron. On

cherchera en fait la correction à la loi des gaz parfaits obtenue à l’ordre le plus bas non nul en
nΛ3

T .

1. Montrer que dans la limite thermodynamique L → ∞, le produit sur k⃗ peut être appro-
ché par une intégrale, et exprimer cette intégrale.

Solution :

Les valeurs prises par un vecteur d’onde k⃗, discrètes pour un gaz dans un volume fini,
deviennent continues alors que le volume croît vers l’infini, puisque ki = niπ/L. La
transition s’opère formellement à l’aide de la définition de l’intégrale de Riemann : si
V → ∞, alors

∑
k⃗ → V

∫
d3k⃗/(2π)3. On illustre ce passage d’abord pour la dimension x,

en considérant uniquement l’argument de l’exponentielle qui dépend du vecteur d’onde.
On utilise la définition du vecteur d’onde pour passer de la somme sur kx à la somme sur
les entiers nx. Dans la limite thermodynamique L → ∞, la taille de chaque subdivision
tend vers 0 et on peut convertir la somme en une intégrale :

∑
kx

e−βℏ2k2x/2m =
∞∑

nx=0

e−βℏ2π2n2
x/2mL2

=

∫ ∞

0

dnx e
−βℏ2π2n2

x/2mL2

(33)

On achève le calcul en remplaçant nx par kx, ce qui fait apparaître un préfacteur, puisque
dnx = (L/π)dkx :∫ ∞

0

dnx e
−βℏ2π2n2

x/2mL2

=
L

π

∫ ∞

0

dkx e
−βℏ2k2x/2m =

L

2π

∫ ∞

−∞
dkx e

−βℏ2k2x/2m (34)

où on a finalement symmétrisé le domaine d’intégration. Cette opération n’implique que
de diviser l’intégrale résultante par deux, puisque seul le carré de kx apparaît dans l’ex-
pression. La généralisation à trois dimensions est immédiate, en prenant le cube de
l’égalité. Les trois dimensions sont en effet indépendantes :

∑
k⃗

e−
βℏ2k2
2m =

(∑
kx

e−
βℏ2k2x
2m

)3

=

(
L

2π

∫ ∞

−∞
dkx e

−βℏ2k2x
2m

)3

=
V

(2π)3

∫ ∞

−∞
d3k⃗ e−

βℏ2k2
2m (35)

Pour faire apparaître la somme dans l’expression de la pression, on commence par
inverser le produit et le logarithme, après avoir substitué l’énergie. On remplace ensuite
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la somme par l’intégrale :

P =
2

βV
ln

∏
k⃗

(
1 + exp

[
β

(
µ− ℏ2k2

2m

)]) (36)

=
2

βV

∑
k⃗

ln

(
1 + exp

[
β

(
µ− ℏ2k2

2m

)])
(37)

=
2

β

∫
d3k⃗

(2π)3
ln

(
1 + exp

[
β

(
µ− ℏ2k2

2m

)])
(38)

2. Grâce à un changement de variable approprié, montrer que

P =
1

β

4√
πΛ3

T

∫ +∞

0

dx x1/2 ln(1 + ze−x).

Solution :

On commence par substituer la fugacité z. La pression s’écrit alors

P =
2

β

∫
d3k⃗

(2π)3
ln

(
1 + z exp

[
−βℏ2k2

2m

])
(39)

Le changement de variable le plus évident consiste à remplacer l’argument de l’exponen-
tielle par la nouvelle variable x, sans y intégrer le signe moins, pour que x et k aient un
comportement similaire. Ainsi, x = βℏ2k2/2m, et k s’exprime en fonction de x comme

k =

√
2mkBT

ℏ
x1/2 =

2π1/2

ΛT

x1/2 (40)

où on a remplacé la température inverse par kBT , pour exprimer k en termes de ΛT . On
obtient la variation infinitésimale dk en dérivant l’équation précédente,

dk = d

(
π1/2

ΛT

x1/2

)
=

π1/2

ΛT

x−1/2dx (41)

Il ne reste plus qu’à passer en coordonnées sphériques, en notant que l’intégrande ne
dépend que de la norme k : ∫

d3k =

∫ ∞

0

dk 4πk2, (42)

et

d3k⃗ = 4πk2dk = 4π

(
2π1/2

ΛT

x1/2

)2(
π1/2

ΛT

x−1/2dx

)
=

16π5/2

Λ3
T

x1/2dx (43)

Le facteur 4π provient de l’intégration de l’élément sphérique infinitésimal k2 sin(θ) sur
les deux angles propres aux coordonées sphériques. On insère ce changement de variables
dans l’expression de la pression :

P =
2

β

∫ ∞

0

16π5/2

(2π)3Λ3
T

x1/2dx ln(1 + ze−x) (44)

=
1

β

4√
πΛ3

T

∫ +∞

0

dx x1/2 ln(1 + ze−x) (45)
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3. A l’aide d’une intégration par parties, montrer que

P (z) =
2

βΛ3
T

f5/2(z) où fm(z) =
1

(m− 1)!

∫ ∞

0

dx xm−1

z−1ex + 1

Indice : (3/2)! = (3/2)
√
π/2.

Par une procédure similaire, on trouve pour la densité du gaz

n(z) =
2

Λ3
T

f3/2(z)

Solution :

On utilise l’intégration par parties pour remplacer le logarithme par la fonction inverse :

P (z) =
4

βΛ3
T

√
π

∫ ∞

0

dx x1/2 ln(1 + ze−x) (46)

=
4

βΛ3
T

√
π

∫ ∞

0

dx

(
2

3
x3/2

)′

ln(1 + ze−x) (47)

=
4

βΛ3
T

√
π

[
2

3
x3/2 ln(1 + ze−x)

∣∣∣∣∞
0

−
∫ ∞

0

dx
2

3
x3/2

(
−ze−x

1 + ze−x

)]
(48)

=
4

βΛ3
T

√
π

[
0−

∫ ∞

0

dx
2

3
x3/2

(
−ze−x

1 + ze−x

)]
(49)

=
2

βΛ3
T

4

3
√
π

∫ ∞

0

dx x3/2

z−1ex + 1
(50)

=
2

βΛ3
T

1

(3/2)!

∫ ∞

0

dx x3/2

z−1ex + 1
(51)

=
2

βΛ3
T

f5/2(z) (52)

Le premier terme de l’intégration par parties est nul, puisque la décroissance exponentielle
l’emporte sur la décroissance polynomiale. Pour le prouver, on applique le développement
limité ln(1 + x) =

∑∞
n=1(−1)n+1xn/n, car si x tend vers l’infini, e−x devient petit :

x3/2 ln(1 + ze−x)
∣∣∞
0

= lim
x→∞

x3/2 ln(1 + ze−x)− 0 (53)

= lim
x→∞

x3/2

(
ze−x − z2e−2x

2
+O((ze−x)3)

)
= 0 (54)

Chaque terme décroît plus vite vers 0 que le précédent.

4. On se place dans la limite classique z → 0. Développer fm(z) jusqu’à l’ordre 2 en z.

Solution :

La limite classique z → 0 correspond à une température T élevée et à une température
inverse β petite. On ne peut pas directement développer le dénominateur de l’intégrande,
puisque z−1ex est grand. Il faut donc modifier ce dénominateur pour faire apparaître
ze−x, qui est petit :

fm(z) =
1

(m− 1)!

∫ ∞

0

dx xm−1

z−1ex + 1
(55)
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=
1

(m− 1)!

∫ ∞

0

dx xm−1(ze−x)

1 + ze−x
(56)

=
1

(m− 1)!

∫ ∞

0

dx xm−1ze−x

∞∑
α=0

(−1)α(ze−x)α (57)

=
1

(m− 1)!

∫ ∞

0

dx xm−1

∞∑
α=0

(−1)α(ze−x)α+1 (58)

=
1

(m− 1)!

∫ ∞

0

dx xm−1

∞∑
α=1

(−1)α−1(ze−x)α (59)

=
∞∑
α=1

(−1)α−1zα
1

(m− 1)!

∫ ∞

0

dx xm−1e−αx (60)

=
∞∑
α=1

(−1)α+1 z
α

αm
(61)

= z − z2

2m
+O(z3) (62)

où on renommé l’indice α+1 par α pour faciliter le calcul de l’intégrale. L’intégrale vaut
(m− 1)!/αm, tel qu’établi à l’équation (17).

5. A partir des développements de P et n en fonction de z, déterminer l’expression de P
en fonction de n au premier ordre en nΛ3

T . Commenter.
Indice : exprimer z en fonction de n et z, puis remplacer les termes en z dans le membre
de droite par leur expression en fonction de n et z ordre par ordre.

Solution :

Le point précédent permet de récrire la pression à l’ordre 2 en z :

P (z) =
2

βΛ3
T

∞∑
α=1

(−1)α+1 zα

α5/2
=

2

βΛ3
T

(
z − z2

25/2
+O(z3)

)
(63)

On résout l’équation n(z) = f(z) perturbativement et récursivement, ce qui équivaut à
substituer f(z) par son expression en série et à progresser ordre par ordre, pour obtenir
z(n) = g(n). Ainsi, en débutant par le premier ordre

n(z) =
2

Λ3
T

f3/2(z) =
2

Λ3
T

(
z − z2

23/2
+O(z3)

)
(64)

⇒ z =
Λ3

T

2
n+

z2

23/2
+O(z3) (65)

On considère maintenant le deuxième ordre. On insère z =
Λ3
T

2
n :

z =
Λ3

T

2
n+

1

23/2

(
Λ3

T

2
n

)2

+O

((
Λ3

T

2
n

)3
)

(66)

Le deuxième ordre est suffisant pour obtenir la première correction quantique. On sub-
stitue maintenant z dans l’expression de P (z) :

P =
2

βΛ3
T

(
z − z2

25/2
+O(z3)

)
(67)
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=
2

βΛ3
T

Λ3
T

2
n+

1

23/2

(
Λ3

T

2
n

)2

− 1

25/2

(
Λ3

T

2
n+

1

23/2

(
Λ3

T

2
n

)2
)2

+ ...

 (68)

=
2

βΛ3
T

[
Λ3

T

2
n+

(
1

23/2
− 1

25/2

)(
Λ3

T

2
n

)2

+O

((
Λ3

T

2
n

)3
)]

(69)

= nkBT

[
1 +

1

25/2
Λ3

T

2
n+O

((
Λ3

T

2
n

)2
)]

(70)

Ainsi, en prenant en compte la première correction quantique, l’équation du gaz parfait
s’écrit

P = nkBT

(
1 +

1

25/2
Λ3

T

2
n

)
(71)

Les effects quantiques deviennent importants lorsque nΛ3
T > 2 : cela signifie que la

distance moyenne entre les électrons est plus faible que la longueur d’onde de de Broglie
thermique. Les effets quantiques ont tendance à rendre la pression plus élevée que ce
qu’elle serait dans un gaz parfait classique : c’est la signature du principe de Pauli qui
empêche deux électrons de même spin de se trouver dans le même état.
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