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Corrigé 1

Tel que présenté dans l'introduction du cours, la physique statistique systématise ’approche
phénoménologique de la thermodynamique. Nous allons revenir sur les grandeurs propres a la
thermodynamique, avant d’explorer les fondements de la physique statistique et les perspectives
procurées par cette théorie au cours des prochaines séries d’exercices.

Ainsi, le premier exercice vous rappellera comment un gaz parfait est décrit a 'aide de
coordonnées thermodynamiques. En exprimant ’entropie d’un gaz parfait d’aprés son volume,
sa pression et sa température, vous trouverez les relations entre coordonnées thermodynamiques
qui caractérisent une transformation adiabatique.

Le second exercice vous permettra d’utiliser les relations obtenues précédemment, pour
décrire la compression d’un gaz, et analyser en quoi celle-ci est différente de la compression
d’un ressort.

1 Entropie d’un gaz parfait

1. Rappeler la variation d’énergie interne dU pour un systéme fermé soumis uniquement a
des forces de pression.

2. En déduire I'entropie d’un gaz parfait monoatomique en fonction des paramétres sui-
vants :
(a) Sa température et son volume
(b) Sa pression et sa température
(c) Sa pression et son volume
Pour chaque paire de parameétres, trouver la quantité conservée lors d’un processus isen-
tropique.

Rappel : I'énergie interne du gaz parfait monoatomique vaut U = 3NkgT'/2.

Solution :

1. Comme démontré dans le cours a partir des principes fondamentaux de la thermodyna-
mique, la variation d’énergie interne est

3NkgdT

dU = = TdS — PdV (1)

2. (a) D’apres l’équation précédente, la variation d’entropie vaut
dU+ PdV  3NkgdT N PdVv 2)
B T 2T T

Cette équation sert de point de départ pour décrire la variation d’entropie d’apres les
différents paramétres.

dsS

La loi des gaz parfaits PV = NkgT permet de substituer le volume a la pression
dans le second terme de ’expression (2) :

_ 3NkgdT | NhpdV

dsS 3
2T V 3)
En intégrant de [’état initial i a final f et puisque le logarithme est la primitive de la
fonction inverse,
51 3Nkg (7 dT Vrav
AS;y = ds = — 4+ Nk — 4
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Pour un processus isentropique, AS;y =0 = Tfo3 =TV = TV'3 = constante.
(b) On modifie lexpression de la différence d’entropie obtenue au point précédent, pour

qu’en plus de la température, elle dépende de la pression et non du volume. Pour ce
faire, on compare l’équation du gaz parfait des états initial et final :

PV _ NksTy _ Vy _ PTy
PV;  NksT; " V; P,

En insérant cette identité dans ’équation (8), on obtient

2 _2 5
3Nkp, [Ty (PT;\*\ 3Nk [P} °T}
AS;; = In =L (22L) ) = 1 ; 10
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Dans le cas d’un processus isentropique, on trouve que p’%T § = constante.
(c) En réutilisant la loi des gaz parfaits pour substituer la pression a la température,

Ty PV

L~ RV, ()

On substitue la pression dans l'équation (8), pour tomber sur

(12)

2 5
3Nks | (vaf> vy 3Nks [ PrVy
n _— =

2 In 5

AS;y =
En imposant la condition isentropique, on obtient pVg = constante.

On note que dans chaque cas, l’exposant dépend de la constante ¢ = 3/2, présente
pour les gaz monoatomiques. Si on définit d’une facon plus générale le coefficient
gamma du gaz parfait v = (c+ 1)/c > 1, on obtient les lois de conservation

TV7~! = constante, p'™’T7 = constante, pV”7 = constante. (13)
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2 Compression adiabatique vs. Compression isotherme

On considére un gaz parfait placé initialement dans un cylindre fermé de volume Vy, en
équilibre avec un environnement a la température 74. On cherche a le comprimer pour qu’il
atteigne un volume Vi < V4.

1. On comprime le gaz de facon si lente que I’équilibre thermique avec l’environnement
est maintenu a tout instant. Représenter cette transformation dans un diagramme de
Clapeyron (P, V). Calculer le travail fourni pour effectuer la compression.

2. On comprime le gaz de facon suffisamment rapide pour qu’aucun transfert thermique ne
puisse avoir lieu pendant la compression. On pourra considérer qu’il s’agit d’un processus
isentropique. Une fois la compression effectuée, on laisse I’équilibre thermique s’établir en
maintenant le volume Vi constant. Représenter cette transformation dans le diagramme
de Clapeyron. En déduire le travail fourni par 'opérateur.

3. Dans quel cas le travail fourni par 'opérateur est-il le plus important ? Pouvait-on obtenir
ce résultat de facon graphique?

Solution :

1. Le schéma (1a) représente la situation décrite dans l’énoncé. Une lente compression
qui conserve l’équilibre thermique entre le systeme et [’environnement implique que la
transformation est isotherme. La relation entre la pression et le volume pour une telle
transformation provient de la loi des gaz parfaits et prédit :

constante

Pisotherme (V) - Vv

(14)

Cette courbe est tracée dans la figure (1b). Le travail fourni lors de ce processus vaut, en
utilisant la loi des gaz parfaits

“ ¢ NkgT
I/Visotherme = _/ P(V)dv = _/ VB, AdV (15)
A A
= Nk’BTA(IIl(VA) - hl(VC)) (16)
= NkpgT4ln (E> (17)
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FIGURE 1
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2. L’absence de transfert thermique lors de la premiére compression indique un processus
adiabatique. Cette transition est suivie d’une phase d’équilibrage thermique a volume
constant, donc isochore. La situation décrite correspond au diagramme de Clapeyron de
la figure (2a). La courbe de la transition adiabatique a été tracée o laide de la quantité
conservée obtenue a l’exercice précédent, pour un processus isentropique dapendant du
volume et de la pression : pV°/3. Ainsi,

constante

Padiabatique<v) = 1/5/3

(18)
On dessine cette courbe au-dessus de l’isotherme dans le diagramme de Clapeyron. En
effet, le volume est réduit lors d’une compression. Si on considere V4 comme ['unité de
base du systéme et qu’on lui assigne la valeur 1, Vi sera compris entre 0 et 1. Pour une
telle gamme de valeurs, V®/® < V1 = V=53 > V=1 On note que par conséquent, la
courbe adiabatique passe au-dessous de [’isotherme lors d’une dilatation.

Le travail effectué est la somme des travaux des transformations adiabatique et iso-

chore. La contribution de l’isochore s’avére nulle, puisque dV = 0. On combine la loi
des gaz parfaits et ’équation (18) pour obtenir :

B B PAVj/g
Wadiabatique = _/A P(V)dv - _/A V5/3 dV (19)
3 B 3 _
= SPaVAP [V = SRRV = V) (20)
3 Va\?
=Py |V | —= -V 21
PR (VB> A (21)

ou on désigne par B le point ot s’achéve la transition adiabatique. Puisque Vg = Vo et
Py = NkgTa/Va, on réécrit le travail

3 NkgT Va3 3 V)23
Wadiabatique = 5 ‘Z A VC’ (V_2> — VA = §NkBTA (é) —1 (22)
P‘ P
I I
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FIGURE 2
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3. On compare les travaur Wigotherme €t Wadiabatique -

V. \%
VVisotherme o NkBTA In (V_2> _ In (V_2> (23)

Waiaaiue_ 2/3 2/3
g |(12)" 1] ()" ]

Cela revient a évaluer %
inférieure a 1, si x > 1, comme le démontrent la comparaison des dérivées des deux
expressions (v~Y/% > 1/z) et la figure (3b). Ainsi, le travail fourni lors de 'adiabatique

et lisochore combinées est supérieur au travail de [’isotherme.

pour x > 1, puisque V4 > V. Cette fraction est toujours

Ce résultat s’observe aussi directement sur la figure (3a) : aire sous la courbe re-
présente le travail ; elle est inférieure lors du processus isotherme.
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FIGURE 3



