
Corrigé 1, le 20 février 2025 Mécanique statistique pour la chimie, EPFL

Corrigé 1
Tel que présenté dans l’introduction du cours, la physique statistique systématise l’approche
phénoménologique de la thermodynamique. Nous allons revenir sur les grandeurs propres à la
thermodynamique, avant d’explorer les fondements de la physique statistique et les perspectives
procurées par cette théorie au cours des prochaines séries d’exercices.

Ainsi, le premier exercice vous rappellera comment un gaz parfait est décrit à l’aide de
coordonnées thermodynamiques. En exprimant l’entropie d’un gaz parfait d’après son volume,
sa pression et sa température, vous trouverez les relations entre coordonnées thermodynamiques
qui caractérisent une transformation adiabatique.

Le second exercice vous permettra d’utiliser les relations obtenues précédemment, pour
décrire la compression d’un gaz, et analyser en quoi celle-ci est différente de la compression
d’un ressort.

1 Entropie d’un gaz parfait

1. Rappeler la variation d’énergie interne dU pour un système fermé soumis uniquement à
des forces de pression.

2. En déduire l’entropie d’un gaz parfait monoatomique en fonction des paramètres sui-
vants :
(a) Sa température et son volume
(b) Sa pression et sa température
(c) Sa pression et son volume
Pour chaque paire de paramètres, trouver la quantité conservée lors d’un processus isen-
tropique.

Rappel : l’énergie interne du gaz parfait monoatomique vaut U = 3NkBT/2.

Solution :
1. Comme démontré dans le cours à partir des principes fondamentaux de la thermodyna-

mique, la variation d’énergie interne est

dU =
3NkBdT

2
= TdS − PdV (1)

2. (a) D’après l’équation précédente, la variation d’entropie vaut

dS =
dU + PdV

T
=

3NkBdT

2T
+

PdV

T
(2)

Cette équation sert de point de départ pour décrire la variation d’entropie d’après les
différents paramètres.

La loi des gaz parfaits PV = NkBT permet de substituer le volume à la pression
dans le second terme de l’expression (2) :

dS =
3NkBdT

2T
+

NkBdV

V
(3)

En intégrant de l’état initial i à final f et puisque le logarithme est la primitive de la
fonction inverse,

∆Sif =

∫ Sf

Si

dS =
3NkB
2

∫ Tf

Ti

dT

T
+NkB

∫ Vf

Vi

dV

V
(4)
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=
3NkB
2

ln

(
Tf

Ti

)
+NkB ln

(
Vf

Vi

)
(5)

=
3NkB
2

[
ln

(
Tf

Ti

)
+

2

3
ln

(
Vf

Vi

)]
(6)

=
3NkB
2

[
ln

(
Tf

Ti

)
+ ln

((
Vf

Vi

) 2
3

)]
(7)

=
3NkB
2

ln

TfV
2
3
f

TiV
2
3
i

 (8)

puisque a ln(x) = ln(xa).

Pour un processus isentropique, ∆Sif = 0 ⇒ TfV
2
3
f = TiV

2
3
i ⇒ TV

2
3 = constante.

(b) On modifie l’expression de la différence d’entropie obtenue au point précédent, pour
qu’en plus de la température, elle dépende de la pression et non du volume. Pour ce
faire, on compare l’équation du gaz parfait des états initial et final :

PfVf

PiVi

=
NkBTf

NkBTi

⇒ Vf

Vi

=
PiTf

PfTi

(9)

En insérant cette identité dans l’équation (8), on obtient

∆Sif =
3NkB
2

ln

(
Tf

Ti

(
PiTf

PfTi

) 2
3

)
=

3NkB
2

ln

P
− 2

3
f T

5
3
f

P
− 2

3
i T

5
3
i

 (10)

Dans le cas d’un processus isentropique, on trouve que p−
2
3T

5
3 = constante.

(c) En réutilisant la loi des gaz parfaits pour substituer la pression à la température,

Tf

Ti

=
PfVf

PiVi

(11)

On substitue la pression dans l’équation (8), pour tomber sur

∆Sif =
3NkB
2

ln

(PfVf

PiVi

)
V

2
3
f

V
2
3
i

 =
3NkB
2

ln

PfV
5
3
f

PiV
5
3
i

 (12)

En imposant la condition isentropique, on obtient pV
5
3 = constante.

On note que dans chaque cas, l’exposant dépend de la constante c = 3/2, présente
pour les gaz monoatomiques. Si on définit d’une façon plus générale le coefficient
gamma du gaz parfait γ = (c+ 1)/c > 1, on obtient les lois de conservation

TV γ−1 = constante, p1−γT γ = constante, pV γ = constante. (13)
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2 Compression adiabatique vs. Compression isotherme

On considère un gaz parfait placé initialement dans un cylindre fermé de volume VA, en
équilibre avec un environnement à la température TA. On cherche à le comprimer pour qu’il
atteigne un volume VC < VA.

1. On comprime le gaz de façon si lente que l’équilibre thermique avec l’environnement
est maintenu à tout instant. Représenter cette transformation dans un diagramme de
Clapeyron (P, V ). Calculer le travail fourni pour effectuer la compression.

2. On comprime le gaz de façon suffisamment rapide pour qu’aucun transfert thermique ne
puisse avoir lieu pendant la compression. On pourra considérer qu’il s’agit d’un processus
isentropique. Une fois la compression effectuée, on laisse l’équilibre thermique s’établir en
maintenant le volume VC constant. Représenter cette transformation dans le diagramme
de Clapeyron. En déduire le travail fourni par l’opérateur.

3. Dans quel cas le travail fourni par l’opérateur est-il le plus important ? Pouvait-on obtenir
ce résultat de façon graphique ?

Solution :
1. Le schéma (1a) représente la situation décrite dans l’énoncé. Une lente compression

qui conserve l’équilibre thermique entre le système et l’environnement implique que la
transformation est isotherme. La relation entre la pression et le volume pour une telle
transformation provient de la loi des gaz parfaits et prédit :

Pisotherme(V ) =
constante

V
(14)

Cette courbe est tracée dans la figure (1b). Le travail fourni lors de ce processus vaut, en
utilisant la loi des gaz parfaits

Wisotherme = −
∫ C

A

P (V )dV = −
∫ C

A

NkBTA

V
dV (15)

= NkBTA(ln(VA)− ln(VC)) (16)

= NkBTA ln

(
VA

VC

)
(17)

VA

VC

TA

(a)

P

V

isotherme ~ V-1

VA
VC

(b)

Figure 1
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2. L’absence de transfert thermique lors de la première compression indique un processus
adiabatique. Cette transition est suivie d’une phase d’équilibrage thermique à volume
constant, donc isochore. La situation décrite correspond au diagramme de Clapeyron de
la figure (2a). La courbe de la transition adiabatique a été tracée à l’aide de la quantité
conservée obtenue à l’exercice précédent, pour un processus isentropique dàpendant du
volume et de la pression : pV 5/3. Ainsi,

Padiabatique(V ) =
constante

V 5/3
(18)

On dessine cette courbe au-dessus de l’isotherme dans le diagramme de Clapeyron. En
effet, le volume est réduit lors d’une compression. Si on considère VA comme l’unité de
base du système et qu’on lui assigne la valeur 1, VC sera compris entre 0 et 1. Pour une
telle gamme de valeurs, V 5/3 < V 1 ⇒ V −5/3 > V −1. On note que par conséquent, la
courbe adiabatique passe au-dessous de l’isotherme lors d’une dilatation.

Le travail effectué est la somme des travaux des transformations adiabatique et iso-
chore. La contribution de l’isochore s’avère nulle, puisque dV = 0. On combine la loi
des gaz parfaits et l’équation (18) pour obtenir :

Wadiabatique = −
∫ B

A

P (V )dV = −
∫ B

A

PAV
5/3
A

V 5/3
dV (19)

=
3

2
PAV

5/3
A

[
V −2/3

]B
A
=

3

2
PA(V

5/3
A V

−2/3
B − VA) (20)

=
3

2
PA

[
VB

(
VA

VB

)5/3

− VA

]
(21)

où on désigne par B le point où s’achève la transition adiabatique. Puisque VB = VC et
PA = NkBTA/VA, on réécrit le travail

Wadiabatique =
3

2

NkBTA

VA

[
VC

(
VA

VC

)5/3

− VA

]
=

3

2
NkBTA

[(
VA

VC

)2/3

− 1

]
(22)

P

V
VA

VC

adiabatique ~ V-5/3
isochore

(a)

P

V

isotherme ~ V-1

VA
VC

adiabatique ~ V-5/3isochore

(b)

Figure 2
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3. On compare les travaux Wisotherme et Wadiabatique :

Wisotherme

Wadiabatique

=
NkBTA ln

(
VA

VC

)
3
2
NkBTA

[(
VA

VC

)2/3
− 1

] =
ln
(

VA

VC

)
3
2

[(
VA

VC

)2/3
− 1

] (23)

Cela revient à évaluer ln(x)

3(x2/3−1)/2
pour x > 1, puisque VA > VC. Cette fraction est toujours

inférieure à 1, si x > 1, comme le démontrent la comparaison des dérivées des deux
expressions (x−1/3 > 1/x) et la figure (3b). Ainsi, le travail fourni lors de l’adiabatique
et l’isochore combinées est supérieur au travail de l’isotherme.

Ce résultat s’observe aussi directement sur la figure (3a) : l’aire sous la courbe re-
présente le travail ; elle est inférieure lors du processus isotherme.

P

V

isotherme ~ V-1

VA
VC

adiabatique ~ V-5/3isochore
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Figure 3
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