
Corrigé 13, le 24 mai 2025 Mécanique statistique pour la chimie, EPFL

Corrigé 13
Dans cet exercice, on étudie une membrane nanoporeuse immergée dans une solution d’élec-

trolyte. L’électrolyte ayant une concentration en ions cs, on se demande quelle sera la concen-
tration en ions cin dans le pore. On décrit les ions contenus dans le pore dans l’ensemble grand
canonique, comme un gaz de particules en interaction. De la même manière que dans la série
12, on peut effectuer l’intégration sur les impulsions dans la grande fonction de partition, puis
la représenter par un modèle d’Ising :

Ξ =
∑
{Si}

exp

[
−βJ

M∑
i=1

SiSi+1 + βw

M∑
i=1

|Si|

]
(1)

Ce modèle comporte les caractéristiques suivantes :
— Les spins Si peuvent prendre trois valeurs, +1,−1 et 0, correspondant respectivement à

la présence d’un ion positif, à celle d’un ion négatif, ou à l’absence d’ion sur le site.
— Pour rendre compte de la taille nanométrique du pore (de l’ordre de la taille d’un ion), on

place les spins sur un réseau unidimensionnel de M sites, pour lequel on pourra supposer
des conditions aux limites périodiques. On modélise les interactions coulombiennes des
ions par une interaction entre proches voisins : Eint({Si}) = J

∑M
i=1 SiSi+1 avec J > 0.

Le système est donc stabilisé si deux ions de signes opposés sont voisins.
— Comme dans la série 12, le potentiel vaut w = µ̃ − Es, où µ̃ = kBT log(csvm) avec vm

le volume d’un ion, et Es > 0 est une pénalité énergétique que doit payer un ion pour
rentrer dans le pore. Cette pénalité est notamment due à la distorsion de la couche de
solvatation de l’ion.

On procède par étapes pour obtenir la concentration cin :
1. Pour une configuration donnée {Si}, exprimer le nombre d’ions N dans le canal en

fonction des Si. Justifier que cin = ⟨N⟩/(Mvm).

Solution :
Un spin Si est nul dans le cas où un site est vide, et la charge d’un ion n’entre pas en
ligne de compte. Le nombre d’ions dans le canal est donc la somme des valeurs absolues
des spins de chaque site, N =

∑M
i=1 |Si|.

La concentration d’ions dans le pore cin est le nombre moyen d’ions divisé par le vo-
lume disponible. La modélisation sur réseau implique que le volume disponible est consti-
tué du nombre de sites M multiplié par le volume de chaque site vm. On déduit donc
cin = ⟨N⟩/(Mvm).

2. On définit le grand potentiel Y = −kBT log Ξ. Exprimer cin en fonction de ∂Y/∂w, puis
en fonction de ∂Y/∂cs.

Solution :
cin impliquant le nombre moyen de particules, on cherche d’abord à obtenir ⟨N⟩ comme
une dérivé de la fonction de partition. En observant l’Eq. (1), on remarque que

∂Ξ

∂w
= β

∑
{Si}

(
M∑
i=1

|Si|

)
exp

[
−βJ

M∑
i=1

SiSi+1 + βw

M∑
i=1

|Si|

]
(2)
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C’est "presque" ⟨N⟩ : en divisant par βΞ des deux côtés, on obtient

1

βΞ

∂Ξ

∂w
=

1

β

∂ log Ξ

∂w
=

1

Ξ

∑
{Si}

(
M∑
i=1

|Si|

)
exp

[
−βJ

M∑
i=1

SiSi+1 + βw

M∑
i=1

|Si|

]
= ⟨N⟩.

(3)
On réexprime maintenant ⟨N⟩ en fonction du grand potentiel.

⟨N⟩ = 1

β

∂ log Ξ

∂w
= −∂(−kBT log Ξ)

∂w
= −∂Y

∂w
(4)

Ainsi, d’après le point précédent, cin = − 1
Mvm

∂Y
∂w

.
La concentration cs est contenue dans le paramètre w = kBT log(csvm)−Es. La dérivée
du grand potentiel par rapport à la concentration de l’électrolyte est donc

∂Y

∂cs
=

∂Y

∂w

∂w

∂cs
= −⟨N⟩∂w

∂cs
= −⟨N⟩

βcs
(5)

puisque
∂w

∂cs
=

∂(µ̃− Es)

∂cs
=

∂(kBT log(csvm)− Es)

∂cs
=

1

βcs
(6)

On a donc
cin = − βcs

Mvm

∂Y

∂cs
(7)

3. Montrer que la grande fonction de partition peut s’écrire comme la trace d’une matrice
de transfert 3× 3 :

Ξ = Tr(TM) (8)

et donner l’expression de T.

Solution :
La fonction de partition peut s’écrire en fonction d’une matrice de transfert 3×3 puisque
les spins peuvent adopter 3 valeurs (+1,0 ou -1). La transition vers la matrice de transfert
s’opère en faisant apparaître le spin Si+1 dans le second terme de l’exposant, pour le
rendre symétrique :

Ξ =
∑
{Si}

exp

[
M∑
i=1

(
−βJSiSi+1 +

βw

2
(|Si|+ |Si+1|)

)]
(9)

=
∑
{Si}

M∏
i=1

exp

[
−βJSiSi+1 +

βw

2
(|Si|+ |Si+1|)

]
(10)

=
∑

S1=0,±1;S2=0,±1;...;SM=0,±1

TS1S2TS2S3 . . .TSM−1SM
TSMS1 (11)

=
∑

S1=0,±1;S3=0,±1;...;SM=0,±1

( ∑
S2=0,±1

TS1S2TS2S3

)
. . .TSM−1SM

TSMS1 (12)

=
∑

S1=0,±1;S3=0,±1;...;SM=0,±1

[
T2
]
S1S3

. . .TSM−1SM
TSMS1 (13)
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=
∑

s1=0,±1

[
TM
]
S1S1

(14)

= Tr
[
TM
]

(15)

où TSiSi+1
= exp

[
−βJSiSi+1 +

βw
2
(|Si|+ |Si+1|)

]
.

La forme matricielle de la matrice de transfert s’obtient en évaluant toutes les com-
binaisons possibles pour aller de l’une des trois valeurs de Si à l’une des trois de Si+1.
Par exemple le facteur permettant de passer de l’état Si = −1 à Si+1 = 0 est

T−10 = exp

[
−βJ · (−1) · 0 + βw

2
(| − 1|+ |0|)

]
= exp

[
βw

2

]
(16)

Les colonnes de la matrice se rapportent aux valeurs de Si et les lignes à celles de Si+1,

Figure 5

comme le détaille la figure (5). On écrit cette matrice dans la base (+1,0,-1), en calculant
les éléments un par un :

T =

e−βJ+βw eβw/2 e+βJ+βw

eβw/2 1 eβw/2

e+βJ+βw eβw/2 e−βJ+βw

 (17)

La matrice est symétrique, grâce à l’ajout du spin Si+1 en début de calcul de la fonction
de partition. Le poids correspondant au transfert de l’état Si = −1 à Si+1 = 0 s’obtient
en multipliant la matrice par les vecteurs Si et Si+1 :

[Si = −1] · T · [Si+1 = 0] =
(
0 0 1

)e−βJ+βw eβw/2 e+βJ+βw

eβw/2 1 eβw/2

e+βJ+βw eβw/2 e−βJ+βw

0
1
0

 = eβw/2 (18)

4. En calculant la plus grande valeur propre de T, on trouve l’expression suivante pour le
grand potentiel Y = −kBT log Ξ :

Y = −MkBT log
[
1 + csvme

−βEs + c2sv
2
me

−2β(Es−J)(eβJ − 1)2 + o(c2s)
]
, (19)

dans la limite diluée csvm ≪ 1. En déduire un développement limité de cin en fonction
de cs jusqu’à l’ordre 2 en cs.

Solution :
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On utilise la relation entre la concentration dans le pore et celle de l’électrolyte obtenue
à l’équation (7) :

cin = − βcs
Mvm

∂

∂cs

(
−MkBT log

[
1 + csvme

−βEs + c2sv
2
me

−2β(Es−J)(eβJ − 1)2 + o(c2s)
])
(20)

=
cs
vm

(
vme

−βEs + 2csv
2
me

−2β(Es−J)(eβJ − 1)2
)

(1 + csvme−βEs + c2sv
2
me

−2β(Es−J)(eβJ − 1)2)
+ o(c2s) (21)

La limite diluée csvm ≪ 1 permet d’approximer le dénominateur à l’aide du développe-
ment limité (1 − x)−1 =

∑+∞
n=0 x

n si x = −csvme−βEs − c2sv
2
me

−2β(Es−J)(eβJ − 1)2. On
obtient ainsi, en conservant uniquement les termes allant jusqu’à l’ordre 2 en cs,

cin =
cs
vm

(
vme

−βEs + 2csv
2
me

−2β(Es−J)(eβJ − 1)2
)
· (22)(

1− csvme
−βEs − c2sv

2
me

−2β(Es−J)(eβJ − 1)2 + c2sv
2
me

−2βEs
)
+ o(c2s) (23)

=
cs
vm

(
vme

−βEs − csv
2
me

−2βEs + 2csv
2
me

−2β(Es−J)(eβJ − 1)2
)
+ o(c2s) (24)

On a donc la relation à l’ordre 2

cin = cse
−βEs

[
1− csvme

−βEs
(
1− 2e2βJ(eβJ − 1)2

)]
+ o(c2s) (25)

= cse
−βEs

[
1 + csvme

−βEs
(
2e4βJ − 4e3βJ + 2e2βJ − 1

)]
+ o(c2s) (26)

5. Que trouve-t-on à l’ordre 1 en cs ? Commenter.

Solution :
L’expression (26) s’écrit à l’ordre 1

c
(1)
in = cse

−βEs (27)

La concentration dans le pore est reliée à la concentration de l’électrolyte par le facteur
de Boltzmann de la pénalité énergétique que doit payer un ion pour entrer dans le canal.

6. Lorsqu’ils sont suffisamment concentrés, les ions ont tendance à former des paires (+,−),
appelées paires de Bjerrum. Justifier que la concentration de paires dans le canal peut
s’exprimer comme c2 = −⟨SiSi+1⟩/vm (pour un i quelconque). Relier ⟨SiSi+1⟩ à une
dérivée partielle de Y et en déduire c2 en fonction de cs. A quoi correspond le terme
d’ordre 2 dans l’expression de cin en fonction de cs ?

Solution :
On raisonne de manière similaire à la question 1. Si deux sites vides ou un site occupé
et un site vide se succèdent, alors SiSi+1 = 0. Dans le cas où deux ions de même charge
se suivent, SiSi+1 = 1, alors que pour des charges opposées, SiSi+1 = −1. Des paires
d’ions de mêmes signes sont rares, puisqu’ils se repoussent électriquement. On estime
leur nombre négligeable devant celui des ions de charges opposées.

Si l’on ajoute un signe - pour obtenir un nombre de paires positif, puis qu’on divise
par le volume pour une concentration, on a

c2 = −M
⟨SiSi+1⟩

V
= −⟨SiSi+1⟩

vm
(28)
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où V = Mvm est le volume du pore. Le grand potentiel est

Y = −kBT log Ξ = −kBT log

∑
{Si}

exp

[
−βJ

M∑
i=1

SiSi+1 + βw

M∑
i=1

|Si|

] (29)

Par le même type de raisonnement qu’à la question 2, on trouve :

⟨SiSi+1⟩ =
1

M

∂Y

∂J
(30)

La concentration c2 vaut donc, dans la limite diluée,

c2 = −
1

Mvm

∂Y

∂J
(31)

= − 1

Mvm

∂

∂J

(
−MkBT log

[
1 + csvme

−βEs + c2sv
2
me

−2β(Es−J)(eβJ − 1)2 + o(c2s)
])
(32)

=
MkBT

Mvm

c2sv
2
m

(
2βe−2β(Es−J)(eβJ − 1)2 + e−2β(Es−J)2βeβJ(eβJ − 1)

)
(1 + csvme−βEs + c2sv

2
me

−2β(Es−J)(eβJ − 1)2)
+ o(c2s) (33)

= 2c2svm
e−2β(Es−J)(eβJ − 1)

(
(eβJ − 1) + eβJ

)
(1 + csvme−βEs + c2sv

2
me

−2β(Es−J)(eβJ − 1)2)
+ o(c2s) (34)

= 2c2svme
−2β(Es−J)(eβJ − 1)

(
2eβJ − 1

)
+ o(c2s) (35)

= 2c2svme
−2βEse2βJ(2e2βJ − 3eβJ + 1) + o(c2s) (36)

= 2c2svme
−2βEs(2e4βJ − 3e3βJ + e2βJ) + o(c2s) (37)

Le développement limité du dénominateur n’apporte qu’un facteur 1 à l’ordre de c2s,
puisqu’il est de la forme (1−K · cs +O(c2s)).
Si l’on compare le résultat précédent à l’expression 26, où l’on a obtenu

c
(2)
in = c2svme

−2βEs
(
2e4βJ − 4e3βJ + 2e2βJ − 1

)
(38)

on voit que c
(2)
2 = 2c

(2)
in si l’on ne prend en compte que les termes qui dépendent de J .

On peut donc interpréter ces termes dans le développement de cin comme étant dûs à la
formation de paires de Bjerrum.

7. Qualitativement, à quoi s’attend-on pour cin quand csvm ∼ 1 ?

Solution :
Si csvm ∼ 1, l’expression du grand potentiel dans la limite diluée n’est plus valable. On
s’attend à ce que la concentration de l’électrolyte et du pore soient égales.

8. Tracer qualitativement log cin/cs en fonction de log cs à partir de tous les résultats pré-
cédents.

Solution :
La courbe de log cin/cs est composée de trois régimes : la limite diluée, le régime transi-
toire des paires de Bjerrum et la saturation. D’après les résultats obtenus dans les trois
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points précédents, on a donc respectivement c(1)in = cse
−βEs, αc2s et 1. Tous ces résultats

procurent la fonction

log

(
cin
cs

)
=


−βEs si csvm ≪ 1

log(cs) + α sinon
0 si csvm ∼ 1

(39)

représentée dans la figure (6).

Figure 6
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