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Corrigé 12
Dans cet exercice, on étudie un modèle d’Ising sous l’effet d’un champ extérieur, puis on

montre comment il permet de décrire le phénomène de condensation capillaire.

1. On considère un modèle d’Ising sur un réseau de coordination q (chaque site a q voisins),
soumis à un champ (magnétique) h. L’énergie d’une configuration des N spins s’écrit
alors

E({Si}) = −J
∑
<i,j>

SiSj − h

N∑
i=1

Si. (1)

On traite ce modèle dans une approximation de champ moyen. Généraliser les résultats
du cours pour obtenir l’énergie libre en fonction de m, ainsi qu’une équation autocohé-
rente sur m.

Solution :
La fonction de partition d’un système caractérisé par l’énergie donnée est

Z =
∑
{Si}

e−βE({Si}) =
∑
{Si}

exp

(
βJ

∑
<i,j>

SiSj + βh
N∑
i=1

Si

)
(2)

On simplifie cette fonction à l’aide de l’approximation du champ moyen, qui présuppose
une faible fluctuation des valeurs des spins autour de leur moyenne, Si = ⟨Si⟩ + δSi.
La définition de la magnétisation moyenne m = ⟨Si⟩ permet de récrire le produit de
deux spins comme SiSj = (⟨Si⟩+ δSi)(⟨Sj⟩+ δSj) = −m2 +m(Si + Sj). La fonction de
partition devient alors

Z ≈
∑
{Si}

e−βE({Si}) =
∑
{Si}

exp

(
βJ

∑
<i,j>

(−m2 +m(Si + Sj)) + βh
N∑
i=1

Si

)
(3)

La somme sur les voisins contient Nq/2 paires de voisins, puisque le réseau a une co-
ordination q. Le facteur 1/2 évite un double comptage d’une paire ; en effet, pour un Si

et un Sj donnés, la liaison Si ↔ Sj est comptée dans la somme une fois lorsque Si est
le spin central et Sj le spin voisin (Si → Sj), et une fois dans la situation réciproque
(Si ← Sj).

Le terme −m2 ne contient aucune dépendance en i ou en j et est ainsi juste multiplié
par le nombre de paires de voisins. La somme sur les paires de voisins de Si (respec-
tivement Sj) se décompose en une somme sur toutes les valeurs que peut prendre Si,
multipliée par son nombre de voisins respectifs, soit q. On obtient donc

Z ≈
∑
{Si}

exp

(
−NβJm2q

2
+

βJm

2

N∑
i=1

Si

∑
j voisin de i

1 +
βJm

2

N∑
j=1

Sj

∑
i voisin de j

1 + βh

N∑
i=1

Si

)
(4)

=
∑
{Si}

exp

(
−NβJm2q

2
+ βJqm

N∑
i=1

Si + βh

N∑
i=1

Si

)
(5)

= e−NβJm2q/2
∑
{Si}

exp

(
β(Jqm+ h)

N∑
i=1

Si

)
(6)
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Il est nécessaire d’expliciter la somme sur les micro-états pour continuer le calcul. Les
spins Si prennent uniquement les valeurs ±1. Ainsi,

∑
{Si}

e
∑N

i=1 Si =
+1∑

S1=−1

+1∑
S2=−1

· · ·
+1∑

SN=−1

e
∑N

i=1 Si (7)

=
+1∑

S1=−1

+1∑
S2=−1

· · ·
+1∑

SN=−1

eS1+S2+···+SN (8)

=
+1∑

S1=−1

eS1

+1∑
S2=−1

eS2 · · ·
+1∑

SN=−1

eSN (9)

=
N∏
i=1

+1∑
Si=−1

eSi (10)

où l’on a ramené un enchaînement de sommes à un produit de sommes. La fonction de
partition s’écrit donc

Z ≈ e−NβJm2q/2

N∏
i=1

∑
Si=±1

exp (β(Jqm+ h)Si) (11)

On note la différence entre la somme sur les valeurs prises par les spins
∑+1

Si=−1 et celle
sur les indices de spins

∑N
i=1, qui concerne leurs positions sur le réseau. La somme ne

dépend pas du nom de la variable de sommation, ce qui permet d’introduire S ≡ Si :

Z ≈ e−NβJm2q/2

N∏
i=1

∑
S=±1

exp (β(Jqm+ h)S) (12)

= e−NβJm2q/2

(∑
S=±1

exp (β(Jqm+ h)S)

)N

(13)

= e−NβJm2q/2
(
eβ(Jqm+h)·(+1) + eβ(Jqm+h)·(−1)

)N
(14)

=
(
e−βJm2q/2 · 2 cosh(β(Jqm+ h))

)N
(15)

L’énergie libre vaut, en prenant le logarithme de cette dernière expression,

F = −kBT ln(Z) =
NJqm2

2
−NkBT ln [2 cosh (β(Jqm+ h))] (16)

L’équation auto-cohérente pour m découle de la définition de la magnétisation :

m = ⟨Sk⟩ =
1

Z

∑
{Si}

Ske
−βE({Si}) (17)

=
1

(e−βJm2q/2 · 2 cosh(β(Jqm+ h)))
N

∑
{Si}

Ske
−NβJm2q/2+β(Jqm+h)

∑N
i=1 Si (18)

=
1

(2 cosh(β(Jqm+ h)))N

∑
{Si}

Ske
β(Jqm+h)

∑N
i=1 Si (19)
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Le facteur Sk présent dans la somme empêche d’expliciter la somme sur les micro-états
de la même manière que précédemment ; il faut distinguer le spin Sk :∑

{Si}

Ske
∑N

i=1 Si =
+1∑

S1=−1

eS1 · · ·
+1∑

Sk−1=−1

eSk−1

+1∑
Sk=−1

Ske
Sk

+1∑
Sk+1=−1

eSk+1 · · ·
+1∑

SN=−1

eSN (20)

=

 +1∑
S1=−1

eS1 · · ·
+1∑

Sk−1=−1

eSk−1

+1∑
Sk+1=−1

eSk+1 · · ·
+1∑

SN=−1

eSN

 +1∑
Sk=−1

Ske
Sk

(21)

=

(
N−1∏
i=1

+1∑
Si=−1

eSi

)
+1∑

Sk=−1

Ske
Sk (22)

On récrit dès lors la magnétisation, pour S ≡ Si,

m =
1

(2 cosh(β(Jqm+ h)))N

(
N−1∏
i=1

+1∑
Si=−1

eβ(Jqm+h)Si

)
+1∑

Sk=−1

Ske
β(Jqm+h)Sk (23)

=

(∑+1
S=−1 e

β(Jqm+h)S
)N−1

(2 cosh(β(Jqm+ h)))N

+1∑
Sk=−1

Ske
β(Jqm+h)Sk (24)

=

(
eβ(Jqm+h)·(+1) + eβ(Jqm+h)·(−1)

)N−1

(2 cosh(β(Jqm+ h)))N
[
(+1) · eβ(Jqm+h)(+1) + (−1) · eβ(Jqm+h)(−1)

]
(25)

=
(2 cosh(β(Jqm+ h))N−1

(2 cosh(β(Jqm+ h)))N
· 2 sinh(β(Jqm+ h)) (26)

=
sinh(β(Jqm+ h))

cosh(β(Jqm+ h))
(27)

= tanh(β(Jqm+ h)) (28)

ce qui procure une équation auto-cohérente pour m.
Remarque : nous avons repris ici en grand détail le calcul fait dans le

cours. Pour simplement répondre à la question, il n’était pas nécessaire de
refaire tout le calcul. Il suffisait de remarquer qu’en présence du champ ex-
térieur, le champ local ressenti par un spin est modifié selon Jqm 7→ Jqm+ h
et de modifier les résultats obtenus dans le cours en conséquence.

2. Représenter qualitativement m en fonction de h. On s’aidera du fait que la solution
"physique" de l’équation autocohérente est celle qui correspond au minimum global de
l’énergie libre.

Solution :
On résoud graphiquement l’équation auto-cohérente m = tanh(β(Jqm+h)). Pour visuali-
ser clairement l’effet du champ h, on effectue le changement de variable x = β(Jqm+h),
ce qui donne x

βJq
− h

Jq
= tanh(x). Chercher les solutions de cette équation revient à trou-

ver intersections des courbes des deux côtés de l’égalité : une droite affine et une tangente
hyperbolique.

Nous avons étudié dans le cours les solutions de cette équation pour h = 0 : la droite
passe alors par l’origine des axes (Fig. 1a). La pente de la droite est déterminée par la
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température. A haute température (T > Tc = Jq/kB), la pente est plus grande que 1 et il
n’y a qu’un seul point d’intersection en m = 0. A basse température (T < Tc), la pente
est plus petite que 1 et il y a trois points d’intersection : la solution m = 0 est instable,
alors que les deux solutions à m non nul sont stables.

En présence du champ h (Fig. 1b), la droite est décalée dans le sens de h. Selon les
valeur de h et de T , il y a soit trois points d’intersection (un du même signe que h, un
de signe opposé, un entre les deux). En regardant la forme de l’énergie libre (Fig. 2), on
voit que la solution d’énergie libre minimale (donc celle qui correspond à l’aimantation
effectivement adoptée par le système) est toujours celle du même signe que h. Il y a
donc deux cas de figure (Fig. 3). Pour T > Tc, m est une fonction continue de h. Pour
T < Tc, m est discontinue en h = 0 : il y a un renversement brutal de l’aimantation
quand h change de signe.

m

g(m)

m

tanh(m)

(a) T < Tc, h = 0

m

g(m)
m

tanh(m)

(b) T < Tc, h < 0

Figure 1

m

F

(a) T < Tc

m

F

(b) T > Tc

Figure 2
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h

m

Figure 3

On considère maintenant un tout autre système : un gaz de particules en interaction
contenu dans un pore cylindrique de rayon a et de longueur L, pouvant échanger des
particules avec l’atmosphère gazeuse en dehors du pore, qui joue le rôle d’un réservoir
de particules.

L

a

3. Montrer que la grande fonction de partition de ce système s’écrit

Ξ =
∞∑

N=0

∫
dr1 . . . drN

vNmN !
e−βU(r1,...,rN )+βµ̃N , (29)

puis exprimer µ̃ en fonction du potentiel chimique µ imposé par le réservoir, de la
longueur d’onde de de Broglie ΛT et de vm, le volume moléculaire.

Solution :
On calcule la grande fonction de partition d’un gaz de particules en interaction, avec
l’énergie E(C) =

∑N
i=1

p2
i

2m
+ U(r1, . . . , rN). Par définition,

Ξ =
∑
C

e−β(E(C)−µN) (30)

=
∞∑

N=0

∫ ∏N
i=1 dridpi

h3NN !
e−β

∑
i p

2
i /2m−βU(r1,...,rN )+βµN (31)

=
∞∑

N=0

1

h3NN !

∫
dp1 . . .pNe

−β
∑

i p
2
i /2m

∫
dr1 . . . drNe

−βU(r1,...,rN )+µN (32)
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=
∞∑

N=0

1

Λ3N
T N !

∫
dr1 . . . drNe

−βU(r1,...,rN )+µN (33)

L’évaluation de la première intégrale grâce à la formule de l’intégrale gaussienne procure
la longueur d’onde thermique de de Broglie ΛT . La présence du potentiel dépendant des
positions empêche néanmoins de remplacer l’intégrale sur les positions par le volume de
l’enceinte. Pour obtenir le facteur vNm présent dans l’équation (29), il faut donc multiplier
l’équation précédente par vNm/vNm :

Ξ =
∞∑

N=0

(
vm
Λ3

T

)N ∫
dr1 . . . drN

vNmN !
e−β(U(r1,...,rN )−µN) (34)

=
∞∑

N=0

∫
dr1 . . . drN

vNmN !
e−β(U(r1,...,rN )−µN−NkBT ln(vm/Λ3

T )) (35)

=
∞∑

N=0

∫
dr1 . . . drN

vNmN !
e−β(U(r1,...,rN )−(µ+kBT ln(vm/Λ3

T ))N) (36)

Cette dernière réécriture permet d’introduire un potentiel chimique effectif µ̃ tel que

µ̃ = µ+ kBT log

(
vm
Λ3

T

)
(37)

par analogie avec l’argument de l’exponentielle d’une fonction de partition grand cano-
nique.

4. Pour calculer cette fonction de partition, on adopte une modélisation sur réseau. On
suppose que les particules sont astreintes à occuper les noeuds d’un réseau de M = V/vm
sites et de coordination q. On introduit des variables binaires Si avec Si = 1 si une
particule est présente sur le site i, et Si = 0 sinon. On suppose que les interactions
sont attractives entre les sites proches voisins, avec une constante de couplage J , et on
introduit une énergie d’interaction ϵ entre les particules et la paroi du pore. On peut
alors écrire

Ξ =
∑
{Si}

exp

[
βJ

∑
<i,j>

SiSj + β(µ̃+ ϵ)
∑
i

Si

]
(38)

Ré-exprimer cette fonction de partition en fonction de variables binaires S̃ qui prennent
des valeurs S̃ = ±1. Montrer que l’on se ramène alors au modèle d’Ising sous champ
précédemment étudié, avec le champ h = (µ̃+ϵ)/2+qJ/4. On utilisera donc les résultats
dans l’approximation de champ moyen obtenus précédemment.

Solution :
Le changement de variables est donné par la relation S̃i = 2Si−1, qui implique Si =

S̃i+1
2

.
On applique ce changement à la fonction de partition, puis on calcule :

Ξ =
∑
{S̃i}

exp

[
βJ

∑
<i,j>

(S̃i + 1)

2

(S̃j + 1)

2
+ β(µ̃+ ϵ)

∑
i

S̃i + 1

2

]
(39)

=
∑
{S̃i}

exp

[
βJ

4

∑
<i,j>

(S̃iS̃j + S̃i + S̃j + 1) + β(µ̃+ ϵ)
∑
i

S̃i + 1

2

]
(40)
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=
∑
{S̃i}

exp

[
βJ

4

(∑
<i,j>

S̃iS̃j +
N∑
i=1

S̃i

∑
j voisin de i

1 +
∑
<i,j>

1

)
+

β(µ̃+ ϵ)

2

N∑
i=1

(S̃i + 1)

]
(41)

=
∑
{S̃i}

exp

[
βJ

4

(∑
<i,j>

S̃iS̃j + q

N∑
i=1

S̃i +
Nq

2

)
+

β(µ̃+ ϵ)

2

N∑
i=1

S̃i +
Nβ(µ̃+ ϵ)

2

]
(42)

=
∑
{S̃i}

exp

[
βJ

4

∑
<i,j>

S̃iS̃j + β

(
qJ

4
+

(µ̃+ ϵ)

2

) N∑
i=1

S̃i +
βJNq

8
+

Nβ(µ̃+ ϵ)

2

]
(43)

puisque le réseau est formé de Nq/2 paires de voisins.
On cherche à comparer cette expression à celle obtenue en (2), soit

Z =
∑
{Si}

exp

(
βJ

∑
<i,j>

SiSj + βh

N∑
i=1

Si

)
(44)

Les deux fonctions de partition se correspondent à la constante multiplicative exp
(

βJNq
8

+ Nβ(µ̃+ϵ)
2

)
près (qui n’a pas d’influence sur le comportement du système) si l’on fixe le couplage
J ′ = J/4 et le champ h = (µ̃+ϵ)

2
+ qJ

4
.

5. On suppose que le réservoir se comporte comme un gaz parfait. Exprimer son potentiel
chimique en fonction de sa densité ρ. Tracer alors qualitativement la densité dans le pore
en fonction de ρ. A quelle condition a-t-on une transition de phase ?

Solution :
Le potentiel chimique d’un gaz parfait de densité ρ est donné par

µ = kBT ln(ρΛ3
T ), (45)

et l’Eq. (37) devient donc

µ̃ = µ+ kBT log

(
vm
Λ3

T

)
= kBT ln(ρvm) (46)

On voit que la densité dans le pore ρpore est l’analogue de l’aimantation dans le modèle
d’Ising précédemment étudié, alors que la densité ρ dans le réservoir joue le même rôle
que le champ h. Donc, qualitativement, l’évolution de ρpore en fonction de ρ est similaire
à l’évolution de m en fonction de h dans le modèle d’Ising. L’évolution est continue
à haute température, alors qu’à basse température, il y a une transition abrupte entre
une phase de basse densité (gazeuse) et une phase de haute densité (liquide), comme
représenté en Fig. 4.

Le changement abrupt d’aimantation dans le modèle d’Ising se produit à h = 0, ce
qui correspond ici à une densité ρ⋆ dans le réservoir telle que h(ρ⋆) = 0.

h(ρ⋆) = 0⇒ 1

2
(kBT log(ρvm) + ϵ) +

qJ

4
= 0, (47)

donc
ρ⋆ =

1

vm
e−β(qJ/2+ϵ) (48)
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Figure 4

6. Montrer que la pression critique de gaz dans le réservoir pour laquelle il y a condensation
dans le pore s’écrit

P ∗ =
kBT

vm
e−β(qJ/2+ϵ). (49)

Solution :
Par la loi des gaz parfaits, la pression correspondant à la densité ρ∗ est

P ∗ = ρ∗kBT (50)

En insérant dans l’Eq. (48) on trouve bien

P ∗ =
kBT

vm
e−β(qJ/2+ϵ) (51)

7. On donne ϵ = 2γvm/a, où γ est la tension de surface solide-liquide (question subsidiaire :
justifier cette expression). En déduire l’équation de Kelvin :

log

(
Psat

P ∗

)
=

2γvm
akBT

, (52)

où Psat est la pression de vapeur saturante, soit la pression pour laquelle il y a conden-
sation en l’absence de paroi.

Solution :
La pression de vapeur saturante est la pression à laquelle se passerait la transition liquide-
vapeur en l’absence d’interactions avec la paroi du pore : Psat = P ∗(ϵ = 0). On a donc

P ∗ = Psate
−βϵ ⇒ log

(
Psat

P ∗

)
=

ϵ

kBT
(53)

En remplaçant ϵ par l’expression donnée, on obtient bien l’équation de Kelvin.
On justifie maintnenant l’expression de ϵ. En toute rigueur, ϵ dépend de la densité

dans le pore. Ici, on fait une simplification en prenant pour ϵ la valeur correspondant
à un pore rempli de liquide. ϵ représente alors l’énergie d’interaction par particule de

8
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liquide (de densité 1/vm) avec la surface du pore, qui, par définition de la tension de
surface, vaut γA, avec γ la tension de surface solide-liquide et A la surface du pore. On
a donc, en utilisant les dimensions du pore,

ϵ =
γ · 2πaL

(1/vm)πa2L
= 2γvm/a. (54)

Nous avons ainsi décrit le phénomène de condensation capillaire. Dans un milieu
poreux avec des parois hydrophiles (γ > 0), la vapeur se condense en liquide à une
pression moins élevée que la pression de vapeur saturante, parce que le liquide a une
interaction attractive (stabilisante) avec les parois du pore. L’équation de Kelvin nous
dit que plus le pore est étroit (a petit), plus la condensation se fait à de faibles pressions :
c’est logique car, plus le pore est petit, plus les effets de surface comptent par rapport aux
effets de volume. La condensation capillaire crée notamment des effets d’adhésion dans
les poudres, car du liquide se condense dans les interstices entre les grains.
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