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Corrigé 12

Dans cet exercice, on étudie un modéle d’Ising sous l'effet d’'un champ extérieur, puis on
montre comment il permet de décrire le phénoméne de condensation capillaire.

1. On considére un modeéle d’Ising sur un réseau de coordination ¢ (chaque site a g voisins),
soumis & un champ (magnétique) h. L’énergie d’une configuration des N spins s’écrit
alors

E({S;}) :—JZSS—hZS (1)

On traite ce modéle dans une approximatlon de champ moyen. Généraliser les résultats
du cours pour obtenir I’énergie libre en fonction de m, ainsi qu’'une équation autocohé-
rente sur m.

Solution :

La fonction de partition d’un systéme caractérisé par l’énergie donnée est

Z =) e PPUsh < Zexp(ﬁJZSS +5hZS) 2)

{S:} {Si} <t,7>

On simplifie cette fonction a 'aide de approrimation du champ moyen, qui présuppose
une faible fluctuation des valeurs des spins autour de leur moyenne, S; = (S;) + 65;.
La définition de la magnétisation moyenne m = (S;) permet de récrire le produit de
deuz spins comme S;S; = ((S;) +05:)((S;) + 6S;) = —m?* +m(S; + S;). La fonction de
partition devient alors

7 ~ Ze_BE{S})ZeXp<ﬂJZ —m? +m(S; + S;)) +BhZS> (3)

{S:} {S:} <i,j>

La somme sur les voisins contient Nq/2 paires de voisins, puisque le réseau a une co-
ordination q. Le facteur 1/2 évite un double comptage d’une paire ; en effet, pour un S;
et un S; donnés, la liaison S; < S; est comptée dans la somme une fois lorsque S; est
le spin central et S; le spin voisin (S; — S;), et une fois dans la situation réciproque

Le terme —m~= ne contient aucune dépendance en i ou en j et est ainsi juste multiplié
par le nombre de paires de voisins. La somme sur les paires de voisins de S; (respec-
tivement S;) se décompose en une somme sur toutes les valeurs que peut prendre S,
multipliée par son nombre de voisins respectifs, soit q. On obtient donc

N
Z~Zexp< NBJmq meS 3 1+5J_mZS S 1+6h28i)
=1

=1 j voisin de @ 1 voisin de j
(4)

—ZeXp( +5qu25 +ﬁhZS> (5)

{Si}

N
— o~ NBJIm?q/2 Z exp (6(qu +h) Z SZ) (6)
i=1

{Si}
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1l est nécessaire d’expliciter la somme sur les micro-états pour continuer le calcul. Les
spins S; prennent uniquement les valeurs £1. Ainsi,

+1 +1

Yoemhsio 3% LY s (7)

{Si} S1=—15S=—1 Sy=-—1

1 41 +1
— Z Z Z oS1+Sa++Sy (8)

S1=—1S=—1 Sy=-1

+1 +1 +1
= Z e Z e ... Z ey 9)
S1=—1  Sp=-1 Sy=—1
N 41
=II >_ " (10)
i=1 §;=—1

ot l’on a ramené un enchainement de sommes a un produit de sommes. La fonction de
partition s’écrit donc

N
Z e NPT N exp (B(Jgm + h)S:) (11)
i=1 S;=+1

s , : 1
On note la différence entre la somme sur les valeurs prises par les spins ;-7—1 et celle
=

. . . N . ay. .
sur les indices de spins Yy ._,, qui concerne leurs positions sur le réseau. La somme ne
dépend pas du nom de la variable de sommation, ce qui permet d’introduire S = .S; :

N
7 m e NBIma)? H Z exp (B(Jgm + h)S) (12)
i=1 S=+1
N
— o~ NBIm2q/2 ( Z exp (B(Jgm + h)S)) (13)
S=+1
_ e—NﬁJWQQ/Q (eﬁ(qu+h).(+1) + eﬁ(qu-l—h)'(—l))N (14)
) N
= (efﬁ"m /2.9 cosh(B(Jgm + h))> (15)

L’énergie libre vaut, en prenant le logarithme de cette derniére expression,

F e —hyTIn(2) = ‘]ng — NksTIn[2cosh (B(Jgm + h))] (16)

L’équation auto-cohérente pour m découle de la définition de la magnétisation :

1 .
m=(5i) = 5 3 S PUSD (17)
{S:}
1 2 i
_ g —NBJm*q/2+B(Jgm+h) Y ;21 S; 18
(e=BIm?a/2 .2 cosh(B(Jqm + )™ % . Y
1 N

_ S, eB(Jam+h) S, S 19
(2cosh(B(Jgm + h)))™ Z * "

{S:}
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Le facteur Sy présent dans la somme empéche d’expliciter la somme sur les micro-états
de la méme maniére que précédemment ; il faut distinguer le spin Sy, :

+1 +1 +1 +1 +1
Z S elit1Si — Z St .. Z eSk-1 Z S Z eSkt1 ... Z eSN
(i} Si=—1 Sp_1=—1 Sp=—1 Spp1=—1 Sn=—1
+1 +1 +1 +1 +1
- Z St ... Z eSk-1 Z eSkil L. Z oSN Z SjeSw
Si=—1 Sp_1=—1 Skp1=—1 Sy=—1 Sp=—1
(21)
N-1 +1 +1
(I3 ) 3 s =
i=1 §;=—1 Sp=—1

On récrit des lors la magnétisation, pour S = 5,

1 N—1 +1 +1
B(Jgm+h)S; S, eP(Jam+h)Sy 23
2cosh( B(Jgm + )N (H Z ) Z ’ (23)
2

i=1 S;=—1 Sp=—1
B(Jgm+h S)N 1

Z Se (Jgm+h)S (24)

cosh( (qu+h W Sim1

eBIam+h)-(+1)  oB(Jgm+h)-(~ ))Nfl

(
_ (5
-
_

[(+1) ,eﬁ(qu+h)(+1) + (_1> . eﬁ(qu+h)(71):|

(2 cosh(B(Jgm + h))) (25)
_ (2cosh(B(Jgm + h))N . 9sin m
 (2cosh(B(Jgm + h)))" Fe T ) (26)
_ sinh(B(Jgm + h))
~ cosh(B(Jgm + h)) o
— tanh(B(Jgm + b)) .

ce qui procure une équation auto-cohérente pour m.

Remarque : nous avons repris ici en grand détail le calcul fait dans le
cours. Pour simplement répondre a la question, il n’était pas nécessaire de
refaire tout le calcul. Il suffisait de remarquer qu’en présence du champ ex-
térieur, le champ local ressenti par un spin est modifié selon Jqm — Jqgm + h
et de modifier les résultats obtenus dans le cours en conséquence.

2. Représenter qualitativement m en fonction de h. On s’aidera du fait que la solution
"physique" de ’équation autocohérente est celle qui correspond au minimum global de
I’énergie libre.

Solution :

On résoud graphiquement l’équation auto-cohérente m = tanh(5(Jqgm+h)). Pour visuali-
ser clairement l’eﬁet du champ h, on effectue le changement de variable x = 5(Jgm+h),
ce qui donne g5 — J—q = tanh(z). Chercher les solutions de cette équation revient a trou-
ver intersections des courbes des deux cotés de l’égalité : une droite affine et une tangente
hyperbolique.

Nous avons étudié dans le cours les solutions de cette équation pour h =0 : la droite
passe alors par Uorigine des azxes (Fig. 1a). La pente de la droite est déterminée par la
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température. A haute température (T > T, = Jq/kg), la pente est plus grande que 1 et il
n’y a qu’un seul point d’intersection en m = 0. A basse température (T < T.), la pente
est plus petite que 1 et il y a trois points d’intersection : la solution m = 0 est instable,
alors que les deux solutions a m non nul sont stables.

En présence du champ h (Fig. 1b), la droite est décalée dans le sens de h. Selon les
valeur de h et de T, il y a soit trois points d’intersection (un du méme signe que h, un
de signe opposé, un entre les deuzx). En regardant la forme de l’énergie libre (Fig. 2), on
voit que la solution d’énergie libre minimale (donc celle qui correspond a l’aimantation
effectivement adoptée par le systéme) est toujours celle du méme signe que h. Il y a
donc deuz cas de figure (Fig. 3). Pour T > T,, m est une fonction continue de h. Pour
T < T,., m est discontinue en h = 0 : il y a un renversement brutal de [’aimantation
quand h change de signe.

tanh(m)
() T <T.,h =0 (b) T <T.,h <0
FIGURE 1
T<T, F F
A A

N .

d
N

(a) T < T, (b) T'>T.

FIGURE 2
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FIGURE 3

On considére maintenant un tout autre systéme : un gaz de particules en interaction
contenu dans un pore cylindrique de rayon a et de longueur L, pouvant échanger des
particules avec 'atmosphére gazeuse en dehors du pore, qui joue le role d'un réservoir
de particules.

® "o () Ta / ®
- ® ° ® o
o [ A

A 4

. Montrer que la grande fonction de partition de ce systéme s’écrit

- dr;...dry o~ BUELtN)+BAN
N 2

puis exprimer f en fonction du potentiel chimique p imposé par le réservoir, de la
longueur d’onde de de Broglie At et de v,,, le volume moléculaire.
Solution :

On calcule la grande fonction de partition d’un gaz de particules en interaction, avec

Vénergie B(C) = SN B U(ry,...,tN). Par définition,

1=1 2m
= Ze—,e(E(a—uN) (30)
_ Z / I—[Z 1 drzdpz BZip?/2m—BU(r1,...,rN)+ﬂ,u,N (31)
h3NN|

- Z h3NN| /dpl .pne ’BZiP?/zm/drl---dI'Ne_ﬁu(rl""’rN)wN (32)
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- Z A3NN, /dr1 drye PN +uN 33)

L’évaluation de la premiére intégrale grice a la formule de l’intégrale gaussienne procure
la longueur d’onde thermique de de Broglie Ar. La présence du potentiel dépendant des
positions empéche néanmoins de remplacer ['intégrale sur les positions par le volume de
Uenceinte. Pour obtenir le facteur vY présent dans ’équation (29), il faut donc multiplier
I’équation précédente par vl JvN

o0 N
= Z (U_m) /drl - ‘drNefﬂ(u(rl,.‘.,rN)fuN) (34)
- A3 vV NI
N=0 T m
S dry. . dry _gaiger, ey N =Nk T In(om/A2)
:Z/We e " (35)
dr .. drN —BU(x1,....rN)—(ut+kpT In(vm /AZ))N)
—Z/ vV NI P BN r (36)

Cette derniére réécriture permet d’introduire un potentiel chimique effectif i tel que

fo =+ kgT'log (A3 ) (37)

par analogie avec l’argument de [’exponentielle d’une fonction de partition grand cano-
nique.

4. Pour calculer cette fonction de partition, on adopte une modélisation sur réseau. On
suppose que les particules sont astreintes a occuper les noeuds d’un réseau de M = V/v,,
sites et de coordination ¢. On introduit des variables binaires S; avec S; = 1 si une
particule est présente sur le site i, et S; = 0 sinon. On suppose que les interactions
sont attractives entre les sites proches voisins, avec une constante de couplage J, et on
introduit une énergie d’interaction e entre les particules et la paroi du pore. On peut
alors écrire

E= Zexp BJZSS + B(f+e) ZS (38)
{S:} <i,j>

Ré-exprimer cette fonction de partition en fonction de variables binaires S qui prennent
des valeurs S = +1. Montrer que l'on se rameéne alors au modele d’Ising sous champ
précédemment étudié, avec le champ h = (fi+¢€)/24¢.J/4. On utilisera donc les résultats
dans ’approximation de champ moyen obtenus précédemment.

Solution :

Le changement de variables est donné par la relation S; = 28;—1, qui implique S; = Sit
On applique ce changement a la fonction de partition, puis on calcule :

E=)exp wz(S’;l)(Sj;1>+ﬂ(ﬂ+e)ZS’;1 (39)
{S‘i} L <1,7> 7
I LD MR- RS R RES) gl (40)
g <ij> i
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_ N 3 N
=Y esp %(Zam DS 1+21>+MZ<@+1>
{51} | <i,j> =1 7 voisin de 4 <i,j> =1
(41)
3] ca . N~a Na\ | Bt s~g , NB(i+e)
:Zexp T ZS@Sj—i—qZSi—f‘? +TZSI+T (42)
{5} L <i,j> i=1 i=1
_ 3 N B
[ 850 (0 ) o 20 00 0]
(5} <i,j> =1

puisque le réseau est formé de Nq/2 paires de voisins.
On cherche a comparer cette expression a celle obtenue en (2), soit

Z =Y exp (BJ >SS+ By si> (44)

{S:} <i,j> i=1

NB(fite)

Les deux fonctions de partition se correspondent a la constante multiplicative exp (ﬁ‘]qu +

pres (qui n’a pas d’influence sur le comportement du systéeme) si l'on fize le couplage
J'=J/4 et le champ h = @—F%}.

. On suppose que le réservoir se comporte comme un gaz parfait. Exprimer son potentiel
chimique en fonction de sa densité p. Tracer alors qualitativement la densité dans le pore
en fonction de p. A quelle condition a-t-on une transition de phase?

Solution :

Le potentiel chimique d’un gaz parfait de densité p est donné par
pu = ksT In(pA}), (45)
et I’Eq. (37) devient donc

it =+ kgT'log (X—g{) = kgT In(pv,,) (46)
On voit que la densité dans le pore ppore €st l'analogue de 'aimantation dans le modele
d’Ising précédemment étudié, alors que la densité p dans le réservoir joue le méme role
que le champ h. Donc, qualitativement, [’évolution de ppore en fonction de p est similaire
a l’évolution de m en fonction de h dans le modéle d’Ising. L’évolution est continue
a haute température, alors qu’a basse température, il y a une transition abrupte entre
une phase de basse densité (gazeuse) et une phase de haute densité (liquide), comme
représenté en Fig. 4.

Le changement abrupt d’aimantation dans le modéle d’Ising se produit a h = 0, ce
qui correspond ici G une densité p* dans le réservoir telle que h(p*) = 0.

1 J
h(p*) =0 = §(kBT10g(PUm) +e)+ qz =0, (47)
donc 1
o= U_e—ﬁ(qJ/2+e) (48)

2

)
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4+ Ppore
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FIGURE 4

6. Montrer que la pression critique de gaz dans le réservoir pour laquelle il y a condensation
dans le pore s’écrit

kgT
P* — Uie—ﬁ(q(f/ﬂe). (49)

Solution :

Par la lov des gaz parfaits, la pression correspondant a la densité p* est
En insérant dans 'Eq. (48) on trouve bien

P* = kBTe*B(qJ/%E) (51)

Um,

7. On donne € = 2yv,,/a, ou 7 est la tension de surface solide-liquide (question subsidiaire :
Justifier cette expression). En déduire 'équation de Kelvin :

P, 2vv
10 sat _ m 52
g < P )~ aksT’ (52)
ou P, est la pression de vapeur saturante, soit la pression pour laquelle il y a conden-
sation en l’absence de paroi.

Solution :

La pression de vapeur saturante est la pression a laquelle se passerait la transition liquide-
vapeur en l'absence d’interactions avec la paroi du pore : Py = P*(e =0). On a donc

Psa
P* = Pye P = log ( P:) — kLT (53)
B

En remplagant € par l’expression donnée, on obtient bien [’équation de Kelvin.

On justifie maintnenant ’expression de €. En toute rigueur, € dépend de la densité
dans le pore. Ici, on fait une simplification en prenant pour € la valeur correspondant
a un pore rempli de liquide. € représente alors l’énergie d’interaction par particule de
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liquide (de densité 1/v,,) avec la surface du pore, qui, par définition de la tension de
surface, vaut YA, avec v la tension de surface solide-liquide et A la surface du pore. On
a donc, en utilisant les dimensions du pore,

v 2mal
=L = " — 9w, /a. 54
‘ (1/vy,)ma?L Ym/a (54)

Nous avons ainst décrit le phénomeéne de condensation capillaire. Dans un milieu
poreur avec des parois hydrophiles (v > 0), la vapeur se condense en liquide & une
pression moins €levée que la pression de vapeur saturante, parce que le liquide a une
interaction attractive (stabilisante) avec les parois du pore. L’équation de Kelvin nous
dit que plus le pore est étroit (a petit), plus la condensation se fait a de faibles pressions :
c’est logique car, plus le pore est petit, plus les effets de surface comptent par rapport aux
effets de volume. La condensation capillaire crée notamment des effets d’adhésion dans
les poudres, car du liquide se condense dans les interstices entre les grains.



