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Corrigé 11

Dans cette série d’exercice, on étudie le comportement d’un tensioactif qui forme des micelles
cylindriques, ainsi que son effet sur la tension de surface. On considére une solution aqueuse
de tensioactif a volume V et température T fixés. On note n, le nombre de micelles de taille
a et N, le nombre de monomeéres contenus dans des micelles de taille o (N est le nombre
de monomeéres libres). On définit également les fractions moléculaires x, = N, /Nior, 00 Niot
est le nombre de molécules total (solvant et soluté). On propose d’abord de retrouver par une
méthode différente la relation obtenue en cours entre les fractions moléculaires a 1’équilibre :
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1. On considére le systéme de n, micelles de taille o, qui forment par supposition une
solution idéale (équivalente a un gaz parfait). Donner la fonction de partition canonique
du systéme, en faisant intervenir la fonction de partition interne d'une micelle 24 int-

Solution :

On considére un systéeme dont l'unité est la micelle. Toutes les différentes configurations
que peut adopter une micelle, qui dépendent des monomeres la composant, sont deés
lors rassemblées dans les degrés de liberté internes de la micelle zq ing. Avec Uhypothése
d’indépendance et d’indiscernabilité des micelles, la fonction de partition canonique d’un
gaz parfait de n, micelles est ainsi :
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ot l'on a finalement exprimé la composante translationnelle de la fonction de partition
d’une micelle avec sa longueur d’onde de de Broglie thermique.

2. En déduire I'énergie libre des micelles de taille a.

Solution :

L’expression de ’énergie libre découle de la fonction de partition. A l'aide de ’approxi-
mation de Stirling,
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= —n,kgT In <Viogmt) + kT In(n,!) (4)
T
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3. Le potentiel chimique p, d’'un monomére dans une micelle de taille o est donné par

fo = OF/ON,. Montrer que

kgT N
o = B—logx— + €a, (7)
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et donner l'expression de €,. On introduira la densité moyenne de la solution p = Ny /V .

Solution :

N, monomeres sont dévolus a constituer n, micelles, qui contiennent chacune o mo-
nomeres. Ainsi, N, = an,. Cette derniére égalité permet de déterminer le potentiel
chimique d’un monomere dans une micelle de taille o :
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On définit l’énergie libre interne par particule dans une micelle, foint = —kpT In(24int)/ .

On introduit également la densité moyenne de la solution p ainsi que la fraction molé-
culaire x, le potentiel chimique devient
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4. A Téquilibre, il y a égalité du potentiel chimique du monomeére entre toutes les tailles de
micelles : les 1, sont tous égaux. En déduire la relation (1).
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Solution :

A Déquilibre chimique entre les monoméres libres et ceux présents dans les micelles de
taille o, py = pg et

ale — €y)

A (2) = BT (22) 4 (2) —ie+ 29220 i
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En prenant l’exponentielle de cette derniere égalité, on obtient bien la relation entre les
fractions moléculaires a [’équilibre

To = aale(ce)/kaT (18)

5. Dans une micelle cylindrique, 1’énergie libre €,, d’'un monomeére situé au milieu du cy-
lindre ne dépend pas de la taille de ce dernier. Les terminaisons semi-sphériques ap-
portent cependant une contribution non-négligeable (notée ¢f) a I’énergie libre totale
du cylindre. L’énergie libre par particule d’un cylindre contenant o monoméres vaut
donc €, = €5 + 0 f/a. Peut-on se limiter a considérer une seule taille de micelles 7

Solution :

Pour considérer une seule taille de micelles, il faudrait que l'un des €, soit tres inférieur
a tous les autres. Ici, ce n’est pas le cas : €, est minimal pour oo — o0, et les €, sont
trés proches quand a est grand. Il va donc falloir considérer toutes les tailles de micelles.

6. En écrivant la conservation de la matiére, montrer que

x

T op )

Ts =
oll T, est la fraction moléculaire totale de tensioactif.
Indication : voir le formulaire pour calculer la somme.

Solution :

La conservation de la matiére implique que la fraction moléculaire totale est la somme
des fractions moléculaires correspondant a chacune des tailles de micelles. On obtient
la fraction moléculaire totale en insérant l’énergie libre par particule d’un cylindre €,
donnée au point précédent dans l’équation (18) :

Ts = Zxa = Z ax?e“(el_(5°°+5f/o‘))/kBT (20)
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puisqu’en choisissant o =1, €1 = €xo+0f /1 = €1—€oo = 0f et > oo au®! = a/(1—u)?.
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7. Déterminer la concentration micellaire critique (CMC).
Solution :
A la concentration micellaire critique x., xs—x1 = x1 et donc x. = v, = 2x1. L’équation
(24) s’écrit alors
T2
(1= (zc/2)e?7)

Te =

;= (1= (/2P = S s m =2V (29)

L équation admettrait aussi comme solution x. = =% (2 4 \/2), mais celle-ci ne serait
pas physique (elle impliquerait x; > e~/ hors du rayon de convergence de la série que
l’on a sommeée.

8. Que devient la concentration de monomeres libres au-dela de la CMC ? Comparer au cas
des micelles sphériques. Que se passe-t-il pour la courbe v = f(logcs) ?

Solution :

En regardant ’équation (24) on voit que quand x4 — oo, 1 — e . Donc la concen-
tration en monomere va saturer a une valeur finie au-dela de la CMC. C’est différent
du cas des micelles sphériques, ot la concentration en monomere continue a augmenter,
bien que lentement. La courbe v = f(logc,) aura donc un plateauw au-dela de la CMC,
et pas seulement une pente réduite. Cette courbe nous renseigne ainsi sur la nature des
maucelles formées par le tensioactif.



