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Corrigé 11
Dans cette série d’exercice, on étudie le comportement d’un tensioactif qui forme des micelles

cylindriques, ainsi que son effet sur la tension de surface. On considère une solution aqueuse
de tensioactif à volume V et température T fixés. On note nα le nombre de micelles de taille
α et Nα le nombre de monomères contenus dans des micelles de taille α (N1 est le nombre
de monomères libres). On définit également les fractions moléculaires xα = Nα/Ntot, où Ntot

est le nombre de molécules total (solvant et soluté). On propose d’abord de retrouver par une
méthode différente la relation obtenue en cours entre les fractions moléculaires à l’équilibre :

xα = αxα
1 e

α(ϵ1−ϵα)/kBT . (1)

1. On considère le système de nα micelles de taille α, qui forment par supposition une
solution idéale (équivalente à un gaz parfait). Donner la fonction de partition canonique
du système, en faisant intervenir la fonction de partition interne d’une micelle zα,int.

Solution :
On considère un système dont l’unité est la micelle. Toutes les différentes configurations
que peut adopter une micelle, qui dépendent des monomères la composant, sont dès
lors rassemblées dans les degrés de liberté internes de la micelle zα,int. Avec l’hypothèse
d’indépendance et d’indiscernabilité des micelles, la fonction de partition canonique d’un
gaz parfait de nα micelles est ainsi :

Znα =
znα
α

nα!
=

(zα,transzα,int)
nα

nα!
=

1

nα!

(
V zα,int
Λ3

T

)nα

(2)

où l’on a finalement exprimé la composante translationnelle de la fonction de partition
d’une micelle avec sa longueur d’onde de de Broglie thermique.

2. En déduire l’énergie libre des micelles de taille α.

Solution :
L’expression de l’énergie libre découle de la fonction de partition. A l’aide de l’approxi-
mation de Stirling,

F = −kBT ln(Znα) = −kBT ln

(
1

nα!

(
V zα,int
Λ3

T

)nα
)

(3)
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= −nαkBT ln

(
V zα,int
Λ3

T

)
+ kBT ln(nα!) (4)

= −nαkBT ln

(
V zα,int
Λ3

T

)
+ kBT [nα ln(nα)− nα] (5)

= nαkBT

[
ln

(
Λ3

Tnα

V zα,int

)
− 1

]
(6)

3. Le potentiel chimique µα d’un monomère dans une micelle de taille α est donné par
µα = ∂F/∂Nα. Montrer que

µα =
kBT

α
log

xα

α
+ ϵα, (7)

et donner l’expression de ϵα. On introduira la densité moyenne de la solution ρ = Ntot/V .

Solution :
Nα monomères sont dévolus à constituer nα micelles, qui contiennent chacune α mo-
nomères. Ainsi, Nα = αnα. Cette dernière égalité permet de déterminer le potentiel
chimique d’un monomère dans une micelle de taille α :
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∂F

∂Nα

=
∂

∂Nα
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α
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(8)

=
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]
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α

∂
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]
(9)

=
kBT

α

[
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)
− ln (zα,int)− 1

]
+
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α
(10)

=
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(11)

On définit l’énergie libre interne par particule dans une micelle, fα,int = −kBT ln(zα,int)/α.
On introduit également la densité moyenne de la solution ρ ainsi que la fraction molé-
culaire xα, le potentiel chimique devient

µα =
kBT

α
ln

(
Λ3

TNα

V α

)
+ fα,int (12)

=
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α
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(
Λ3

T

α
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)
+ fα,int (13)

=
kBT

α
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(
Λ3
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α

)
+ fα,int (14)

=
kBT

α

[
ln
(xα

α

)
+ ln(ρΛ3

T )
]
+ fα,int (15)

=
kBT

α
ln
(xα

α

)
+ ϵα (16)

si ϵα = kBT
α

ln(ρΛ3
T ) + fα,int.

4. A l’équilibre, il y a égalité du potentiel chimique du monomère entre toutes les tailles de
micelles : les µα sont tous égaux. En déduire la relation (1).
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Solution :
A l’équilibre chimique entre les monomères libres et ceux présents dans les micelles de
taille α, µ1 = µα et

kBT

1
ln
(x1

1

)
+ ϵ1 =

kBT

α
ln
(xα

α

)
+ ϵα ⇒ ln

(xα

α

)
= α ln(x1) +

α(ϵ1 − ϵα)

kBT
(17)

En prenant l’exponentielle de cette dernière égalité, on obtient bien la relation entre les
fractions moléculaires à l’équilibre

xα = αxα
1 e

α(ϵ1−ϵα)/kBT (18)

5. Dans une micelle cylindrique, l’énergie libre ϵ∞ d’un monomère situé au milieu du cy-
lindre ne dépend pas de la taille de ce dernier. Les terminaisons semi-sphériques ap-
portent cependant une contribution non-négligeable (notée δf) à l’énergie libre totale
du cylindre. L’énergie libre par particule d’un cylindre contenant α monomères vaut
donc ϵα = ϵ∞ + δf/α. Peut-on se limiter à considérer une seule taille de micelles ?

Solution :
Pour considérer une seule taille de micelles, il faudrait que l’un des ϵα soit très inférieur
à tous les autres. Ici, ce n’est pas le cas : ϵα est minimal pour α → ∞, et les ϵα sont
très proches quand α est grand. Il va donc falloir considérer toutes les tailles de micelles.

6. En écrivant la conservation de la matière, montrer que

xs =
x1

(1− x1eβδf )2
, (19)

où xs est la fraction moléculaire totale de tensioactif.
Indication : voir le formulaire pour calculer la somme.

Solution :
La conservation de la matière implique que la fraction moléculaire totale est la somme
des fractions moléculaires correspondant à chacune des tailles de micelles. On obtient
la fraction moléculaire totale en insérant l’énergie libre par particule d’un cylindre ϵα
donnée au point précédent dans l’équation (18) :

xs =
∞∑
α=1

xα =
∞∑
α=1

αxα
1 e

α(ϵ1−(ϵ∞+δf/α))/kBT (20)

= e−βδf

∞∑
α=1

αxα
1 e

βα(ϵ1−ϵ∞) (21)

= e−βδf

∞∑
α=1

α
(
x1e

βδf
)α (22)

=
e−βδfx1e

βδf

(1− x1eβδf )2
(23)

=
x1

(1− x1eβδf )2
(24)

puisqu’en choisissant α = 1, ϵ1 = ϵ∞+δf/1 ⇒ ϵ1−ϵ∞ = δf et
∑∞

α=1 αu
α−1 = α/(1−u)2.
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7. Déterminer la concentration micellaire critique (CMC).

Solution :
A la concentration micellaire critique xc, xs−x1 = x1 et donc xc = xs = 2x1. L’équation
(24) s’écrit alors

xc =
xc/2

(1− (xc/2)eβδf )2
⇒ (1− (xc/2)e

βδf )2 =
1

2
⇒ xc = e−βδf (2−

√
2) (25)

L’équation admettrait aussi comme solution xc = e−βδf (2 +
√
2), mais celle-ci ne serait

pas physique (elle impliquerait x1 > e−βδf , hors du rayon de convergence de la série que
l’on a sommée.

8. Que devient la concentration de monomères libres au-delà de la CMC? Comparer au cas
des micelles sphériques. Que se passe-t-il pour la courbe γ = f(log cs) ?

Solution :
En regardant l’équation (24) on voit que quand xs → ∞, x1 → e−βδf . Donc la concen-
tration en monomère va saturer à une valeur finie au-delà de la CMC. C’est différent
du cas des micelles sphériques, où la concentration en monomère continue à augmenter,
bien que lentement. La courbe γ = f(log cs) aura donc un plateau au-delà de la CMC,
et pas seulement une pente réduite. Cette courbe nous renseigne ainsi sur la nature des
micelles formées par le tensioactif.
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