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Corrigé 10
Dans cette série d’exercice, on cherche à étudier le processus d’adsorption dissociative de

dihydrogène H2 présent en phase gazeuse moléculaire, sur un substrat solide métallique, comme
par exemple du platine Pt ou de l’alumine Al2O3. Ce processus d’adsorption moléculaire, de
type chimisorption, s’accompagne en particulier de la dissociation de la molécule de dihydrogène
en deux atomes d’hydrogène :

H2(gaz) → 2 H(ads). (1)

On considère un substrat solide adsorbant possédant M sites, pouvant recevoir chacun au
plus un atome d’hydrogène H. L’adsorbant solide est en équilibre avec un gaz de dihydrogène
H2, que l’on modélise par un gaz parfait à température T et pression P fixées. On note Na le
nombre d’atomes d’hydrogène adsorbés. L’objectif de cet exercice est de déterminer la fraction
des sites occupés en fonction de la pression du gaz de H2, i.e. θ(P ) = ⟨Na⟩/M .

Un atome H adsorbé peut se trouver dans un ensemble de micro-états dépendant des dif-
férents degrés de liberté de l’atome adsorbé. On caractérise par un nombre quantique l les
micro-états de l’atome adsorbé, et on désigne par El l’énergie du micro-état correspondant.

1. Dans un premier temps, on considère que les atomes d’hydrogène adsorbés ont un po-
tentiel chimique µa(H) imposé par l’équilibre avec la phase gazeuse (on ne cherchera pas
à l’exprimer à ce stade).
(a) Donner la description d’un micro-état du système global constitué des atomes H ad-

sorbés. On se placera dans le cadre de l’ensemble grand-canonique.
Solution :
On se place dans le cadre de l’ensemble grand-canonique : le nombre d’atomes H
adsorbés n’est pas fixé, et chaque site peut ainsi être occupé ou non indépendamment
des autres. Pour chacun des sites i = 1, . . . ,M , on décrit l’occupation du site par un
entier ni, avec ni = 0 si le site n’est pas occupé par un atome H, et ni = 1 si le site
est occupé par un atome H. On désigne par li le nombre quantique caractérisant le
micro-état quantique de l’atome H adsorbé. Un micro-état global du système est ainsi
décrit par la donnée de l’état d’occupation de chacun des sites, et de l’état quantique
dans lequel se trouvent les atomes adsorbés sur chaque site, à savoir la donnée de
C = (n1, l1, . . . , nM , lM).

(b) Exprimer la fonction de partition grand canonique Ξ du système en fonction de la
fonction de partition canonique d’un adsorbat

za(T ) =
∑
l

e−βEl

et du potentiel chimique µa(H).
Solution :
L’énergie d’un micro-état C = (n1, l1, . . . , nM , lM) est donnée par

E(C) =
M∑
i=1

niEli ,

et le nombre d’atomes adsorbés dans ce micro-état s’écrit

Na(C) =
M∑
i=1

ni.
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La fonction de partition grand canonique s’écrit alors :

Ξ =
∑
C

e−β(E(C)−µa(H)Na(C)) (2)

=
∑
n1,l1

· · ·
∑

nM ,lM

e−β
∑M

i=1 ni(Eli
−µa(H)) (3)

=
∑
n1,l1

e−βn1(El1
−µa(H)) × · · · ×

∑
nM ,lM

e−βnM (ElM
−µa(H)) (4)

Ξ = ξM (5)

où l’on identifie la fonction de partition d’un site

ξ =
∑
n=0,1

∑
l

e−β(El−µa(H)) = 1 + eβµa(H)
∑
l

e−βEl = 1 + eβµa(H)za(T ). (6)

Finalement, la fonction de partition grand canonique s’écrit

Ξ =
(
1 + eβµa(H)za(T )

)M
. (7)

(c) Déterminer l’expression de la fraction adsorbée θ = ⟨Na⟩/M en fonction de µa(H) et
za(T ).
Solution :
Le nombre moyen d’atomes adsorbés s’obtient à partir de la fonction de partition
grand canonique comme

⟨Na⟩ =
1

β

∂ log(Ξ)

∂µa(H)
=

1

β

∂

∂µa(H)

(
M log(1 + eβµa(H)za(T ))

)
, (8)

d’où l’on déduit directement l’expression de θ = ⟨Na⟩/M :

θ =
eβµa(H)za(T )

1 + eβµa(H)za(T )
. (9)

2. On se propose dans cette question d’exprimer le potentiel chimique des atomes H adsor-
bés, tel qu’imposé par l’équilibre avec le dihydrogène gazeux, à la pression P .
(a) Rappeler l’expression du potentiel chimique µg(H2) du dihydrogène gazeux H2 en

fonction de la pression P , de la température T , et de la fonction de partition interne
d’une molécule de H2, zint(T ).
Solution :
Comme vu dans le cours (section VI.1), le potentiel chimique d’un gaz parfait molé-
culaire s’écrit

µg(H2) = kBT log
( c

c◦

)
= kBT log

(
NΛ3

T

V zint(T )

)
= kBT log

(
PΛ3

T

kBTzint(T )

)
, (10)

où ΛT =
√

h2

2πm(H2)kBT
est la longueur d’onde de de Broglie thermique des molécules

de dihydrogène, et zint(T ) est fonction de partition interne des molécules de H2.
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(b) On se place dans l’ensemble de Gibbs, à nombre total de particules fixé. On note Na

le nombre d’atomes H adsorbés, et Ng le nombre de molécules H2 en phase gazeuse.
Exprimer l’enthalpie libre totale du système {molécules H2 + atomes H adsorbés}
G(Na, Ng, T, P ) en fonction des enthalpies libres des phases gazeuse et adsorbée.
Solution :
On se place dans l’ensemble de Gibbs, à température T et pression P fixées. Le nombre
total de particules est fixé dans cet ensemble, de sorte que le nombre Na d’atomes H
adsorbés et le nombre Ng de molécules H2 restant en phase gazeuses sont reliés par

2Ng +Na = cste = Ntot,

où Ntot correspond au nombre total d’atomes H présents dans le système (soit adsor-
bés, soit appartenant à une molécule H2.
On note Gg(Ng, T, P ) l’enthalpie libre du gaz pour Ng molécules H2 en phase gazeuse,
et Ga(Na, T, P ) l’enthalpie libre de la phase adsorbée, pour Na atomes H adsorbés.
L’enthalpie libre totale du système s’écrit alors

G(Na, Ng, T, P ) = G(Ng, T, P ) = Gg(Ng, T, P ) +Ga(Na, T, P ) (11)
= Gg(Ng, T, P ) +Ga(Ntot − 2Ng, T, P ). (12)

(c) Ecrire la condition d’équilibre thermodynamique sur G et en déduire une relation
entre µa(H) et µg(H2).
Solution :
Dans l’ensemble de Gibbs, la condition d’équilibre thermodynamique est obtenue par la
minimisation de l’enthalpie libre totale du système G, par rapport aux différents degrés
de liberté. Ici, l’état d’équilibre thermodynamique correspond donc à la minimisation
de G(Ng, T, P ) par rapport à Ng, i.e.

∂G(Ng, T, P )

∂Ng

= 0. (13)

Ainsi, la condition d’équilibre thermodynamique se réécrit :

0 =
∂Gg

∂Ng

(Ng, T, P ) +
∂Ga

∂Na

(Na = Ntot − 2Ng, T, P )× ∂(Ntot − 2Ng)

∂Ng

(14)

=
∂Gg

∂Ng

(Ng, T, P )− 2× ∂Ga

∂Na

(Na = Ntot − 2Ng, T, P ). (15)

On identifie alors dans l’expression précédente les potentiels chimiques des molécules
H2 en phase gazeuse µg(H2) =

∂Gg

∂Ng
et des atomes H adsorbés µa(H) =

∂Ga

∂Na
. On en dé-

duit finalement que l’équilibre thermodynamique entre les phases gazeuse et adsorbée
impose la valeur du potentiel chimique des atomes H adsorbés selon la relation :

µa(H) =
µg(H2)

2
. (16)

Cette égalité, obtenue dans le cadre de l’ensemble de Gibbs, reste valable dans l’en-
semble grand canonique par équivalence des ensembles dans la limite thermodyna-
mique.

3. Déterminer l’expression des isothermes d’adsorption θ(P ) à température T donnée. Com-
menter la dépendance en P à basse et haute pression et les comparer au cas où l’adsorp-
tion se fait sans dissociation.
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Solution :
A partir des égalités 8 et 16, on exprime le potentiel chimique des atomes d’hydrogène
adsorbés en fonction de la pression de dihydrogène gazeux P comme :

µa(H) =
kBT

2
log

(
PΛ3

T

kBTzint(T )

)
. (17)

On en déduit alors que

eβµa(H)za(T ) =

(
PΛ3

T

kBTzint(T )

)1/2

za(T ) =

(
P

P0(T )

)1/2

, (18)

où l’on a introduit
P0(T ) =

kBT

Λ3
T

zint(T )

za(T )2
. (19)

On obtient ainsi directement, à partir de l’équation 9, l’expression des isothermes
d’adsorption :

θ(P ) =
(P/P0(T ))

1/2

1 + (P/P0(T ))1/2
=

P 1/2

P 1/2 + P0(T )1/2
. (20)

A haute pression, pour P ≫ P0(T ), on obtient, comme pour le modèle de Langmuir
(pas de dissociation), une saturation : θ(P ) ≃ 1. A basse pression, pour P ≪ P0(T ), la
fraction adsorbée est en racine carrée de la pression : θ(P ) ≃

√
P/P0(T ), ce qui diffère du

modèle de Langmuir dans lequel la fraction adsorbée à basse pression est proportionnelle
à la pression.
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