
Mécanique Statistique pour la Chimie

Condensé de mécanique statistique
➢ La mécanique statistique permet de déterminer le macro-état d’un système (décrit

par ses coordonnées thermodynamiques (CT)) à partir de ses micro-états, décrits par
des coordonnées microscopiques. Une CT A peut toujours être calculée comme la moyenne
statistique d’une observable macroscopique A sur les micro-états C :

A = ⟨A⟩ =
∑
C

A(C)P(C). (1)

➢ Exemple très important : l’entropie

S = −kB⟨logP⟩ = −kB
∑
C

P(C) logP(C). (2)

L’entropie vérifie l’identité thermodynamique fondamentale :

dU = TdS +
∑
i

JidXi = TdS − PdV + µdN. (3)

On a aussi la relation de Gibbs-Duhem :

U = TS +
∑
i

JiXi = TS − PV + µN. (4)

➢ L’ensemble des micro-états accessibles et les probabilités associées dépendent des CT
fixées par l’environnement (contraintes imposées au système). Différents jeux de contraintes
définissent différents ensembles statistiques. Dans chaque ensemble statistique, on définit
le potentiel thermodynamique, qui est la CT qui décroît toujours lors d’une évolution
spontanée.

➢ Conséquence : condition d’équilibre. Si deux systèmes, dont le potentiel thermody-
namique est A, sont mis en contact de façon à ce qu’ils puissent échanger X, alors dans le
nouvel état d’équilibre les quantités ∂A/∂X s’égalisent entre les deux systèmes. Par exemple le
potentiel chimique s’égalise à l’équilibre entre deux systèmes qui s’échangent des particules.

➢ Souvent, on calcule les CT d’intérêt comme des dérivées partielles du potentiel ther-
modynamique (grâce à son expression thermodynamique et Eq. (3)). Mais on peut toujours
utiliser Eq. (1).

➢ Dans la limite thermodynamique (N → ∞) on utilisera très souvent l’approximation
de Stirling :

logN ! = N logN −N +O(logN). (5)

Ensemble microcanonique

➢ Contrainte : (U, V,N) ≡ (U,X).

➢ Probabilité et fonction de partition :

P(C) = 1

Ω
, Ω =

∑
C

1. (6)

➢ Potentiel thermodynamique : −S, avec

S = kB log Ω (7)
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Ensemble canonique

➢ Contrainte : (T, V,N) ≡ (T,X).

➢ Probabilité et fonction de partition :

P(C) = e−βE(C)

Z
, Z =

∑
C

e−βE(C) (8)

➢ Potentiel thermodynamique : énergie libre

F = −kBT logZ = U − TS. (9)

Ensemble grand canonique

➢ Contrainte : (T, µ, V ) ≡ (T, µ,X) .

➢ Probabilité et fonction de partition :

P(C) = e−β(E(C)−µN(C))

Ξ
, Ξ =

∑
C

e−β(E(C)−µN(C)) (10)

➢ Potentiel thermodynamique : grand potentiel

Y = −kBT log Ξ = U − TS − µN. (11)

Gaz parfait

➢ Fonction de partition canonique d’un gaz parfait monoatomique classique :

Z =

∫ ∏N
i=1 dridpi

N !h3N
exp

[
−β

N∑
i=1

p2
i

2m

]
=

1

N !

(
V

Λ3
T

)N

, (12)

avec la longueur d’onde de de Broglie thermique

ΛT =

√
h2

2πmkBT
. (13)

➢ Pour un gaz parfait de molécules avec des degrés de liberté internes, on a

Z =
zN

N !
, (14)

où z est la fonction de partition d’un gaz de 1 molécule. On peut la décomposer en produit de
la fonction de partition translationnelle et de la fonction de partition interne :

z = ztrans · zint =
V

Λ3
T

zint. (15)

Pour un gaz monoatomique zint = 1.
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➢ On retiendra pour le potentiel chimique du gaz parfait

µ = kBT log(N/z) = kBT log(c/c◦), (16)

avec c = N/V et c◦ = zint/Λ
3
T .

➢ Loi des gaz parfaits :
PV = NkBT (17)

➢ Théorème d’équipartition : un degré de liberté quadratique classique contribue kBT/2
à l’énergie moyenne par particule.

➢ La modélisation du gaz parfait s’applique également aux solutions diluées. L’analogue
de la loi des gaz parfaits est alors la loi de van’t Hoff pour la pression osmotique :

Π = kBTc. (18)

Elle traduit le fait que le solvant joue le rôle de "volume disponible pour le soluté".

➢ Points importants à retenir sur le gaz parfait quantique :
• Calcul de la fonction de partition à une particule à partir des niveaux d’énergie d’une

particule dans une boîte pour retrouver le facteur 1/h3 postulé dans le cas classique.
• Calcul de la fonction de partition à N particules dans l’ensemble grand canonique, en

utilisant la représentation des nombres d’occupation.
• Nombre d’occupation moyen d’un état d’énergie ϵ. Pour les fermions,

n(ϵ) =
1

eβ(ϵ−µ) + 1
(distribution de Fermi-Dirac) (19)

Pour les bosons,

n(ϵ) =
1

eβ(ϵ−µ) − 1
(distribution de Bose-Einstein) (20)

• Comportements à basse température : formation d’une mer de Fermi pour les fermions
et condensation de Bose-Einstein pour les bosons.

Réactions chimiques

Pour une réaction
∑

i νiAi = 0, la constante d’équilibre s’exprime en fonction des fonctions
de partition moléculaires zi des espèces en présence :

∂G

∂ξ
= 0 ⇒

∑
i

νiµi = 0 ⇒
∏
i

cνii =
∏
i

(zi/V )νi = K◦. (21)

Adsorption

➢ Modèle de Langmuir : une seule molécule adsorbée par site. L’isotherme θ(P ) sature à
haute pression :

θ(P ) =
KLP

1 +KLP
. (22)

➢ Modèle BET : nombre illimité de molécules adsorbées par site. L’isotherme θ(P ) diverge
à la pression P0 où il y a condensation sur l’adsorbant.
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Tension de surface

➢ Définition thermodynamique :

γ =
∂F

∂A

∣∣∣∣
N,V,T

. (23)

➢ Interprétation mécanique : une interface "tire" sur ses bords avec une force par unité de
longueur γ (orientée selon la normale au bord).

➢ Loi de Young-Dupré pour l’angle de contact d’une goutte de liquide (à savoir retrouver
avec le dessin) :

γLA cos θ = γSA − γSL. (24)

➢ Longueur capillaire :

ℓc =

√
γ

ρg
. (25)

Une goutte plus grande que la longueur capillaire est aplatie par la gravité.

➢ La tension de surface peut être modulée par des tensioactifs. Isotherme de Gibbs :

∂γ

∂ log cs
= −Γs, (26)

avec cs la concentration de tensioactif libre en solution et Γs l’excès de surface du tensioactif
(défini pour une position de la séparatrice de Gibbs telle que l’excès de surface du solvant
est nul). La concentration de tensioactif libre en solution est limitée par la concentration
micellaire critique.

Systèmes en interaction

➢ Méthodes de résolution : développement perturbatif, approximation de champ moyen,
solution exacte, simulations numériques.

➢ Condensation en champ moyen : on étudie un gaz réel de particules en interaction.
On remplace l’interaction par une interaction moyenne en supposant le système homogène. On
trouve que pour certaines densités le système homogène est instable. Il se sépare alors en deux
phases, liquide et gaz.

• Il n’y a instabilité que si la température est inférieure à une température critique.
• S’il y a coexistence des deux phases, la pression est fixée à une température donnée, peu

importe la composition du système. Il y a donc une chaleur latente.
⇒ La condensation est une transition de phase du premier ordre.

➢ Modèle d’Ising :
E({Si}) = −J

∑
<i,j>

SiSj − h
∑
i

Si, (27)

où Si = ±1 et la première somme porte sur les paires de proches voisins.
• Solution en champ moyen – on suppose que les fluctuations de spin sont petites :
δSi = Si−⟨Si⟩ ≪ 1. Cela revient à supposer que chaque spin est soumis au champ moyen
de ses voisins : hloc = h+ Jqm où q est le nombre de voisins d’un spin et m = ⟨Si⟩. On
trouve alors une équation autocohérente pour m :

m = tanh(β(Jqm+ h)). (28)
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Cette équation a une solution stable non-nulle pour T < Tc = Jq/kB : le système
acquiert une aimantation spontanée. L’aimantation est continue à la transition mais la
susceptibilité magnétique diverge.
⇒ Le modèle d’Ising en champ moyen a une transition de phase du second ordre.

• Solution exacte pour un réseau 1D – on écrit la fonction de partition en termes de la
matrice de transfert T :

Z = Tr(TN) =
N→∞

λN
+ , (29)

où λ+ est la plus grande valeur propre de T. On trouve que le système n’a pas d’aiman-
tation spontanée quelle que soit la température.
⇒ Le modèle d’Ising 1D n’a pas de transition de phase.
On aurait une transition de phase avec une solution exacte en dimension plus grande
(2D et plus).
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