3.3. Additional examples of Diels-Alder cycloaddition

3.3.1. Extented polycyclic aromatics as diene component

Polycyclic arenes can react as diene-components in Diels-alder cycloaddition
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3.3.2. Benzyne as dienophile
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3.3. Additional examples of Diels-Alder cycloaddition

3.3.3. Intramolecular Diels-Alder reactions
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=3 |n intramolecular Diels-Alder reactions, even not very favorable Diene/Dienophile
combinations which are unreactive for intermolecular Diels-alder reactions react.

3.3.4. Self condensation and Retro-Diels-Alder reaction

Cyclopentadiene self-condenses at ambient temperature. The reaction is

reversible above 140°C
23°C
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==  All Diels-Alder cycloadditions are principally reversible at a high enough
temperature (>350°C) as the entropy increases (2 molecules v.s. 1 molecule)



4.1.1. 1,3-dipolar cycloaddition

= Recap of the Diels-Alder cycloaddition:

Diels Alder

H/\ § Cycloaddition
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diene dienophile
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=Analogy for 1,3-dipolar cycloaddition:

1,3-dipolar
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Types and Classification of 1,3-Dipoles

Two Types of Dipoles:

(1) Allyl anion

(2) Propargyl/allenyl anion
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4.1.1. Ozonolysis

= Ozonolysis is a synthetically very important reaction converting olefins into alcohols,
aldehydes, or carboxylic acids.
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= Ozone O, is generated from O, (dry) by silent discharge: O, i» 1t0 5% O3 in O,

Ozone has a blue color in solution, allowing to follow the progress of a reaction with it.
When the reaction mixture turns light blue, it means that ozone is not consumed
anymore and that the reaction is complete.

Careful: it is explosive in pure solution
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4.1.1. Ozonolysis

Different work-up strategies:

* Reductive work up with NaBH, + MeOH: formation of alcohols

1) O3
2) NaBH,4, MeOH
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* Mildly reductive work up with Me,S or PPh;: formation of aldehydes or ketones

1) Os 0 0 0
2) Me,S or PPh4 PO I or P
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* Oxidative work-up with H,0, + acetic acid: formation of carboxylic acids or ketones
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Careful with tri- or tetra-substituted alkenes:
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4.1.1. Huisgen azide-alkyne cycloadditions, Click chemistry

1,3-dipole
azide
@ .. R2 .o .o
:N=N-N° N -
=4 --)6 AT :N7ON-RE Ran TN
— 100°C, 18h >_<_ i >_<_ .
R'———H R1 H R'] H
dipolarophile triazoles
alkyne

When catalyzed by copper(l), it is known as “Click chemistry” :
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It is no longer a concerted mechanism but a stepwise metal-catalyzed process.

Usually: cu'(OAc), + NaAscorbate ——— = Cu' source
reductant

The reaction is very fast even at room temperature and it is proceeding in water as well.

It has found widespread applications in chemistry, chemical biology, material science, etc.



4.1.1. Nitrile-oxide cycloaddition
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®

._ —r_pR2 .
Gy e gy
—> L4

— R’I
R1
dipolarophile
alkyne

The nitrile-oxide dipole is not isolable, it needs to be generated in situ:
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4.2.1. Cope rearrangement

Diels Alder and 1,3-cycloadditions: 4me™ + 2ne"

Now, concerted molecular rearrangments: 4ne + 2o bonds
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The equilibrium is thermally induced.

The reaction proceeds via a chair or boat transition state:
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4.2.1. Cope rearrangement

= Driving the equilibrium to one side:

* oxy-Cope rearrangement: driving force = aldehyde formation

HO o
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equilibrium

The carbonyl tautomer is more stable, removing the enol from the equilibrium.

* Divinylcyclopropene rearrangement: driving force = release of the ring strain of
cyclopropane

Example: bullvalene

fluxional molecule: degenerated Cope rearrangements lead to different
(1’209’600) valence tautomers

bullvalene



4.2.2. Claisen rearrangement
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allyl vinyl ether

driving force of the reaction = carbonyl group formation

* Aromatic Claisen rearrangement:
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