

ORGANOMETALLIC CHEMISTRY

Professor Marinella Mazzanti

Marinella.Mazzanti@epfl.ch

- 14 weeks, 13 classes (1 week is public holiday)
- Course will contain exercises & examples
- Content will be available on Moodle (CH-223 Organometallics)
- Written exam

Basic and easy reading:

- “Organometallics 1” and “Organometallics 2” by M. Bochmann (Oxford Chemistry Primers 1994).

Others (more general, but each contains relevant sections):

- “Inorganic Chemistry” by P. Atkins, T. Overton, J. Rourke, M. Weller, and F. Armstrong (Oxford University Press 2006).
- “Inorganic Chemistry” by C. Housecroft and A. Sharpe (Pearson Prentice Hall 2005).
- **Also very useful: Rob Toreki’s Organometallic Hypertextbook -** <http://www.ilpi.com/organomet/> (contains online tests).

The course and exercises suffice for the exam. I recommend also looking for courses online for comparisons.

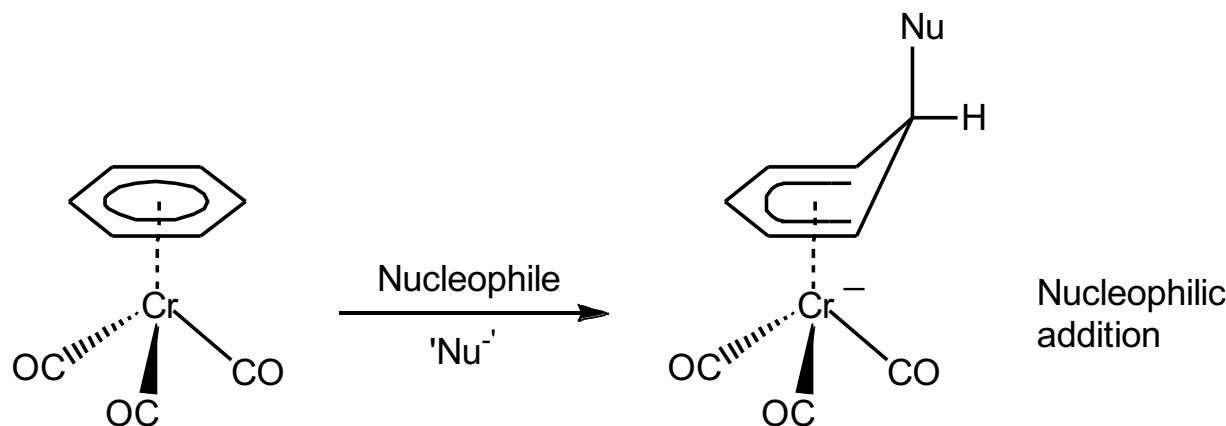
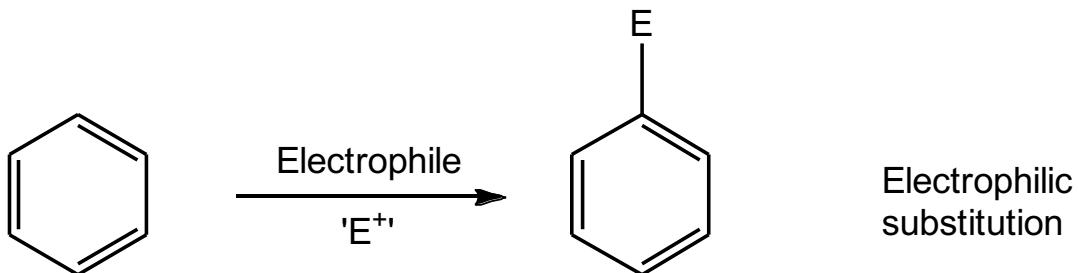
Slides from past course will also be accessible on moodle.

Course Outline

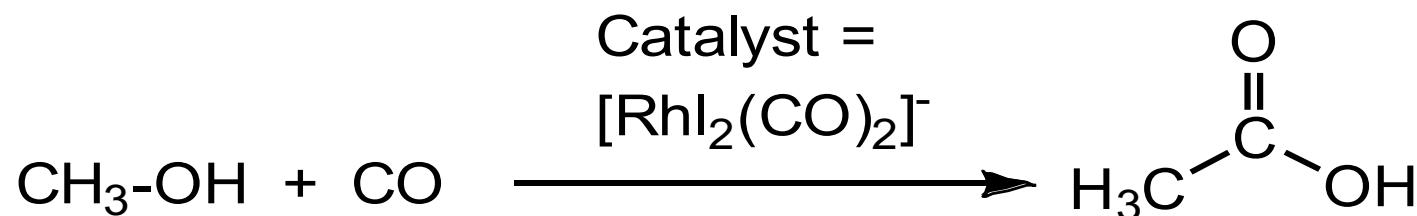
- 1) Introduction and the Basics** types of organometallic complex; formal oxidation state; d^n electron count; coordinative unsaturation and saturation; bonding; Pauling electroneutrality principle; kinetic and thermodynamic stability the 18 (and 16) electron rule; how to electron count.
- 2) Principal Reaction Types:** salt elimination; protonolysis; oxidative addition; reductive elimination; oxidative coupling; reductive cleavage; migratory insertions; elimination reactions; σ -bond metathesis.
- 3) Metal–Carbon σ -Bonds:** bonding modes; metal compounds containing alkyls, hydrides, carbenes, carbynes, and carbonyls
- 4) Metal–Carbon π -Bonds:** structure and bonding in metal compounds containing alkenes, alkynes, allyls, dienes, cyclopentadienyls, arenes
- 5) Homogeneous Catalysis:** introduction to homogeneous catalysis; survey of some important catalytic cycles.

Definition and Context:

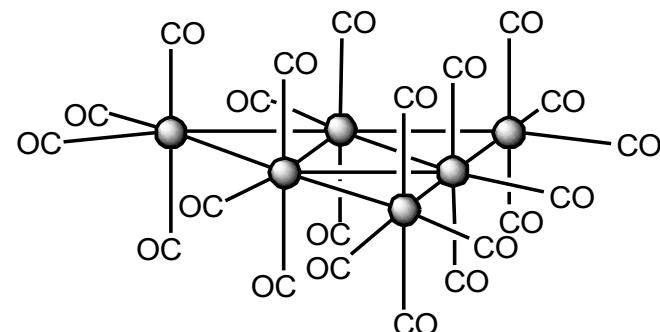
“An organometallic complex is one which contains, by definition, at least one metal–carbon bond (ionic or covalent, localized or delocalized) between one or more carbon atoms of an organic group or molecule and a main group, transition, lanthanide, or actinide metal atom (or atoms).”

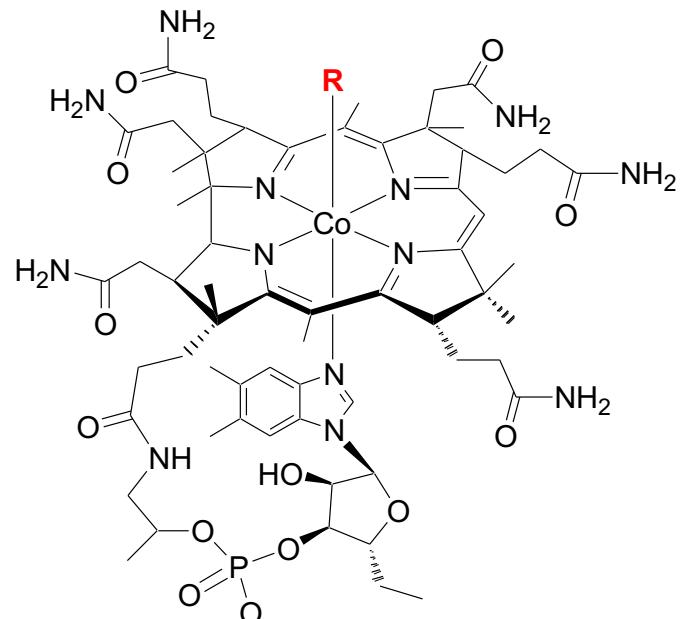


Organometallic chemistry is typically regarded as a subset of Inorganic Coordination Chemistry (See Course [Wendy Queen](#)), although it is really a major discipline in its own right and it is at the interface of organic and materials chemistries.

Why the interest?

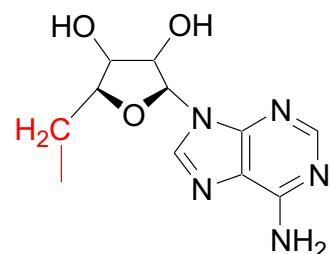

- Chemical - new compounds adjusting bonding and reaction theories, trapping organic intermediates, inverting reactivity.
- Commercial - catalysts for industrial processes
- Biological - vitamin B₁₂ coenzyme has a Co–alkyl bond, bio-sensors, artificial metalloenzymes, bio-nanotechnology, enantioselective catalysis

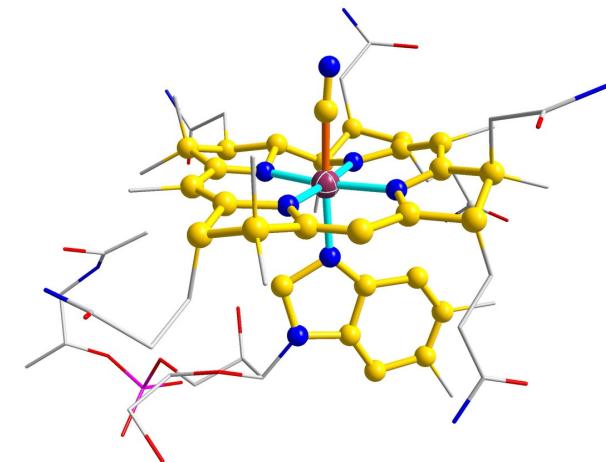
EPFL Why are OM compounds interesting?

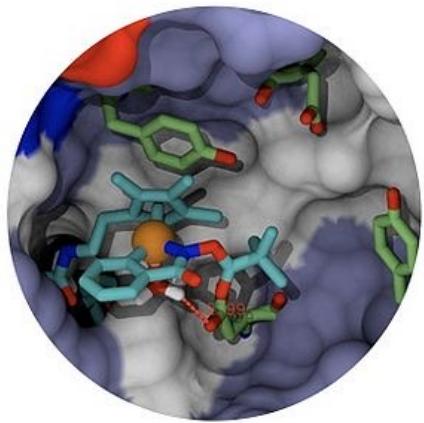

They are used to modify classic organic reactivity:


They can be used as catalysts. For example: The catalytic conversion of methanol and CO to acetic acid – the Monsanto process

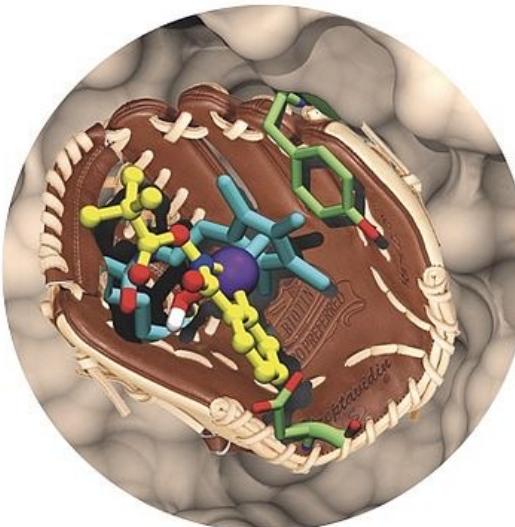
They can serve as model for heterogeneous catalysts that are not easy to characterize owing to their non soluble properties.


There are examples of OM complexes originating in nature. Example: Vitamin B12

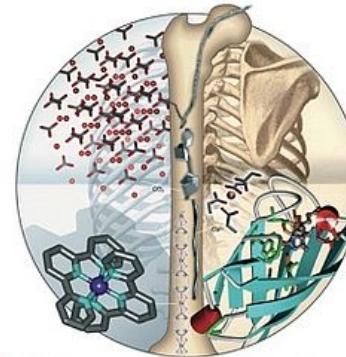

R = CN (Vitamin B₁₂)

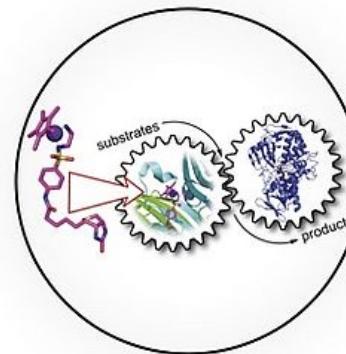

R = CH₃ (Methylcobalamin)

R = 5'-Desoxyadenosyl (Coenzyme B₁₂)

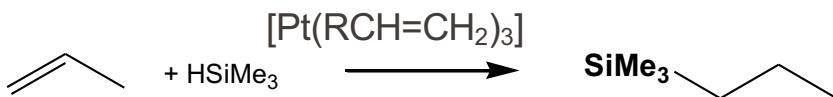


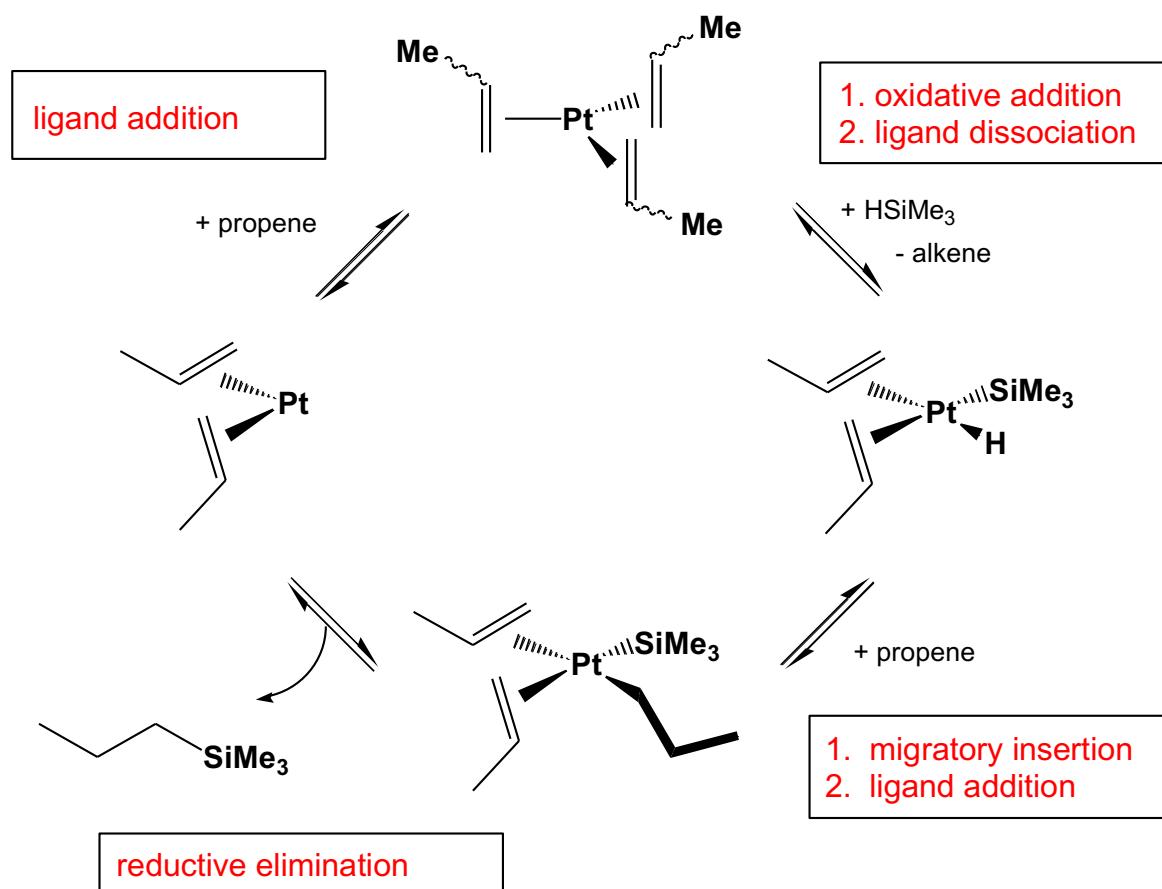
5'-Desoxyadenosyl:




● **white biotechnology**
enantioselective catalysis for
high added-value chemicals

Concept: Combine an *active organometallic moiety* with a *selective host protein* affords *artificial metallo-enzymes* with applications in...


● **bio-nanotechnology**
programmed protein
assemblies


● **synthetic biology**
in vivo catalysis to
complement metabolic
pathways

- Taken from T.Ward research website

An example of a Pt-catalyzed reaction

Hydrosilylation

Note that there are different numbers of **ligands** on the metal. Too many is bad, too few is bad. How can you tell how many to use??

Electron counting is the key, which is presented later in this chapter.

Nomenclature:

THE PERIODIC TABLE

Non metals

He	2	4.00	Helium
Ne	10	20.18	Neon
Ar	18	39.95	Argon
Cl	17	35.45	Chlorine
S	16	32.07	Sulfur
P	15	30.97	Phosphorus
O	9	16.00	Oxygen
N	7	14.01	Nitrogen
C	6	12.01	Carbon
B	5	10.81	Boron
He	2	4.00	Helium

Mid metals

Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton

Early metals

Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon

Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	(210) Astatine	(222) Radon

Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Unnamed								
87	88	89	104	105	106	107	108	109	Discovery								
Francium	Radium	Actinium	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meltathrium	(261)	(262)	(263)	(264)	(265)	(266)	(267)	(268)	(269)

LANTHANIDES

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium

ACTINIDES

Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

← Electropositive → Electronegative

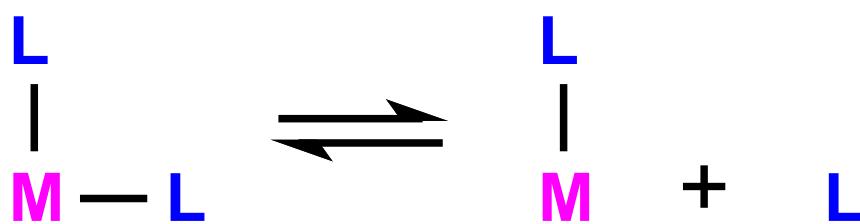
Periodic table with atomic number, symbol, and electron configuration

		Periodic table with atomic number, symbol, and electron configuration																		
period	group	Alkali metals		Halogens		Alkaline-earth metals		Noble gases		Transition metals		Rare-earth elements (21, 39, 57–71) and lanthanoid elements (57–71 only)		Other metals		Other nonmetals		Actinoid elements		
		1*	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1	H		Li	Be									2	He					
2	3	[He]2s ¹	4	[He]2s ²										13	14	15	16	17	18	
3	11	Na	12	Mg										5	6	7	8	9	10	
4	19	K	20	Ca	21	Sc	22	Ti	23	V	24	Cr	25	Mn	26	Fe	27	Co	28	
5	37	Rb	38	Sr	39	Y	40	Zr	41	Nb	42	Mo	43	Tc	44	Ru	45	Rh	46	Ag
6	55	Cs	56	Ba	57	La	72	Hf	73	Ta	74	W	75	Re	76	Os	77	Ir	78	Pt
7	87	Fr	88	Ra	89	Ac	104	Rf	105	Db	106	Sg	107	Bh	108	Hs	109	Mt	110	Ds

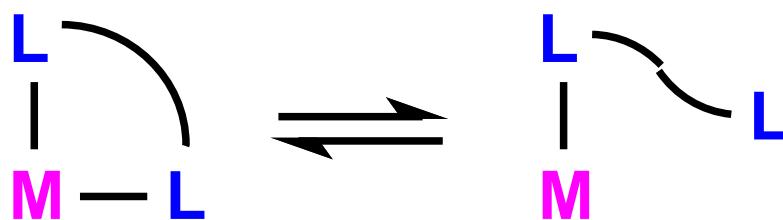
lanthanoid series	6	58	Ce	59	Pr	60	Nd	61	Pm	62	Sm	63	Eu	64	Gd	65	Tb	66	Dy	67	Ho	68	Er	69	Tm	70	Yb	71	Lu
actinoid series	7	90	Th	91	Pa	92	U	93	Np	94	Pu	95	Am	96	Cm	97	Bk	98	Cf	99	Es	100	Fm	101	Md	102	No	103	Lr

- Please print this table and use it for the exercises

General Trends for the Transition Metals

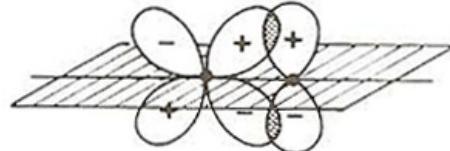
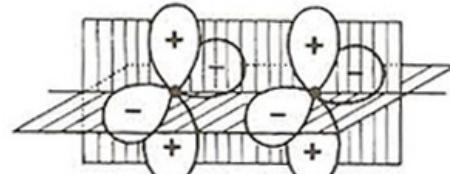

d^3	d^4	d^5	d^6	d^7	d^8	d^9	d^{10}	$d^{10} s^1$
21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manganese	26 Fe Iron	27 Co Cobalt	28 Ni Nickel	29 Cu Copper
39 Y Yttrium	40 Zr Zirconium	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag Silver
57 La Lanthanum	72 Hf Hafnium	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au Gold

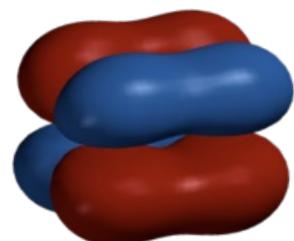
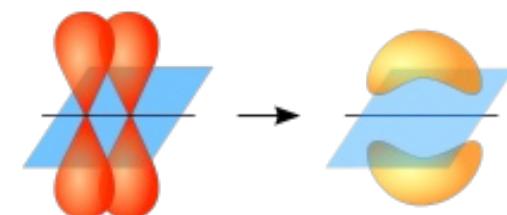
Early Transition Metals
low electronegativities
higher oxidation states
“harder” metal centers


Late Transition Metals
higher electronegativities
lower oxidation states
“softer” metal centers

Some Important Ligand Nomenclature

Chelate Effect (See Queen Course): “chelate” is from the Greek meaning “claw” or to grab on to. Since most metal-ligand bonds are relatively weak compared to C-C bonds, M-L bonds can often be broken rather easily, leading to dissociation of the ligand from the metal. Higher stability conferred by polydentate ligands.

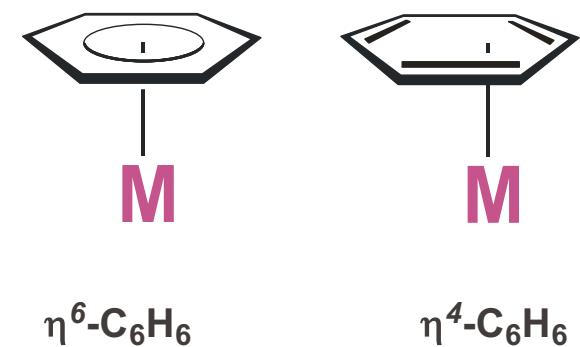
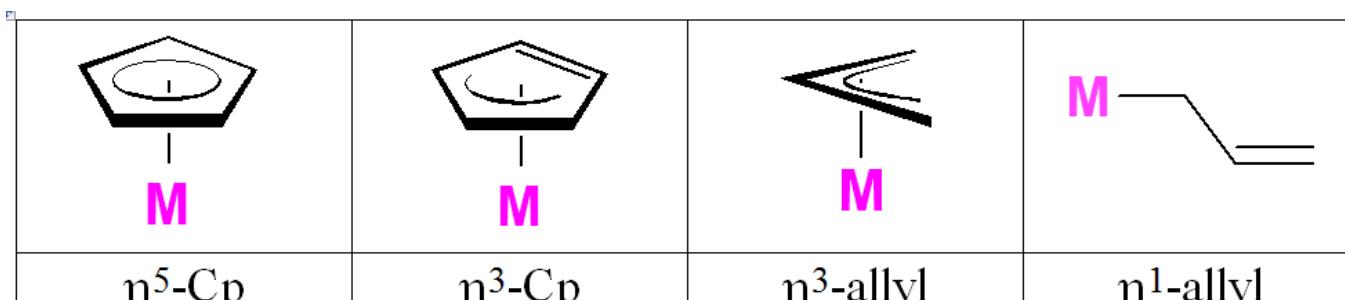


From a ***kinetic viewpoint***, if one of the ligands dissociates, it will remain close enough to the metal center to have a high probability of re-coordinating before another ligand can get in and bind.

From a ***thermodynamic viewpoint***, by tethering two donor ligands together, one removes most of the entropic driving force for dissociating a ligand and thus making more particles in solution (more disorder).

Some Important Ligand Nomenclature

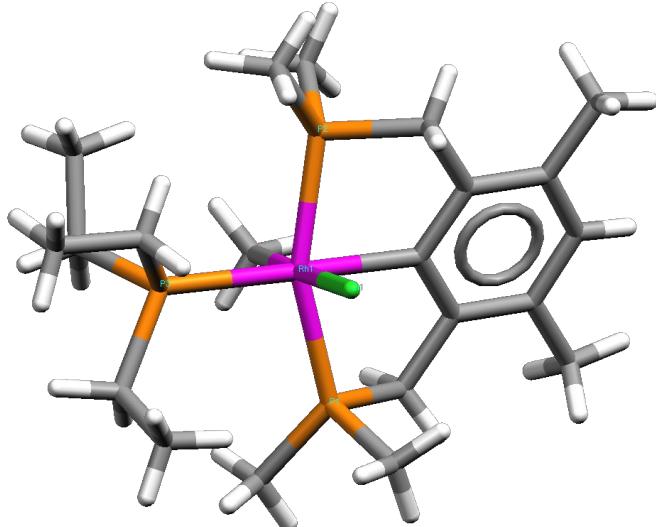
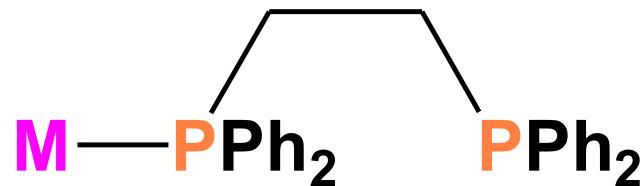
The designations σ , π , and δ bond are defined as follows:



Overlap	Number of nodal planes including the bond axis	Bond type	Example
	0	σ	$\text{B}-\text{CH}_3$
	1	π	$(\text{CO})_5\text{Cr}=\text{CR}_2$
	2	δ	$[\text{R}_4\text{Re}\equiv\text{ReR}_4]^{2-}$

η^x

“eta-x” was originally developed to indicate how many contiguous donor atoms of a π -system were coordinated to a metal center. **Hapticity** is another word used to describe the bonding mode of a ligand to a metal center. An η^5 -cyclopentadienyl ligand, for example, has all five carbons of the ring bonding to the transition metal center.

η^x values for all-carbon based ligands where the x value is **odd** usually indicate **anionic** carbon ligands (e.g., η^5 -Cp, η^1 -CH₃, η^1 -allyl or η^3 -allyl, η^1 -CH=CH₂). The # of electrons donated (ionic method of electron counting) by the ligand is usually equal to $x + 1$. **Even** η^x values usually indicate **neutral** carbon π -system ligands (e.g., η^6 -C₆H₆, η^2 -CH₂=CH₂, η^4 -butadiene, η^4 -cyclooctadiene). The # of electrons donated by the ligand in the **even (neutral)** case is usually just equal to x .

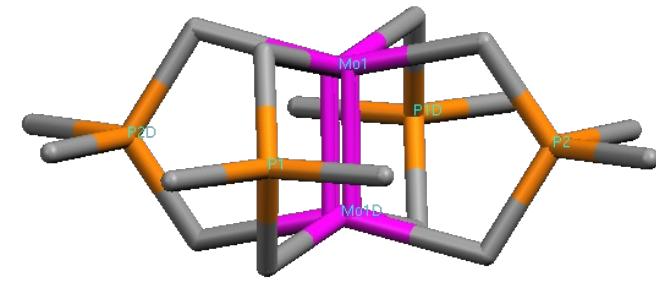
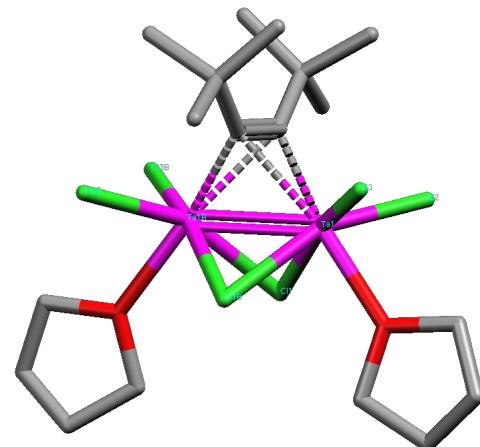
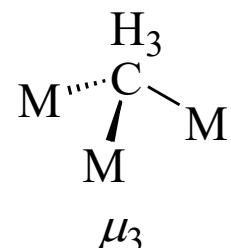
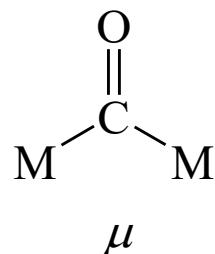



κ^x

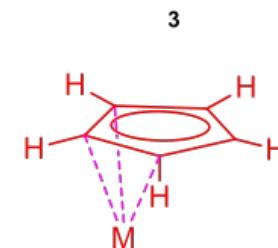
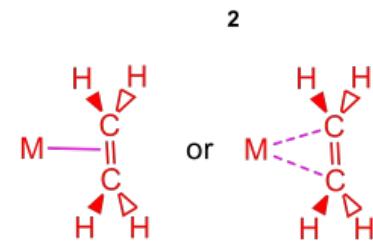
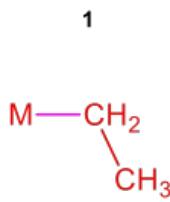
“kappa-x” was developed to indicate how many non-contiguous donor atoms of a ligand system were coordinated to a metal center.

This usually refers to non-carbon donor atoms, but can include carbons.

A κ^1 -dppe ($\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2$) ligand, for example, has only **one** of the two phosphorus donors bonded to the transition metal center.

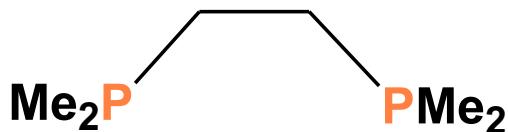




The bis-chelating (tridentate) ligand shown to the left almost always coordinates in a κ^3 -fashion. Because this is the normal coordination mode, most authors would not use the κ^3 -designation.

μ_x

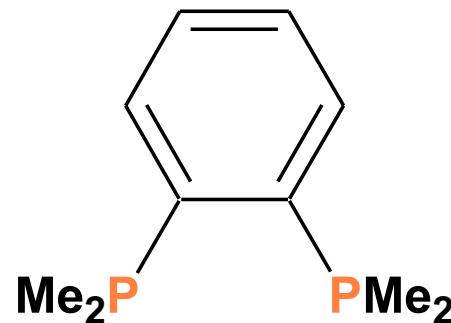



“mu-x” is the nomenclature used to indicate the presence of a **bridging ligand** between two or more metal centers. The x refers to the number of metal centers being bridged by the ligand. Usually most authors omit x = 2 and just use μ to indicate that the ligand is bridging the simplest case of two metals.

There are 3 different general classes of bridging ligands:

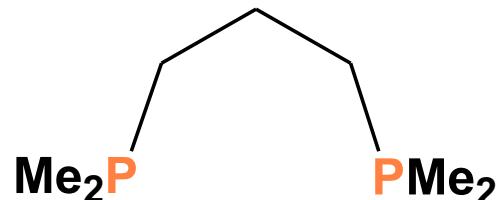
- 1) Single atom bridges
- 2) Two donor atoms separated by a bridging group (typically organic)
- 3) Two donor atoms bonded to one another (alkynes, O_2^{x-} , S_2^{x-} , allyl $^-$, etc)

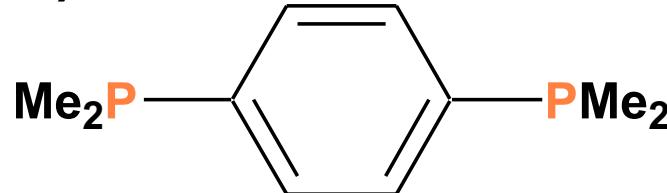


Problem: Use eta and mu in the following examples

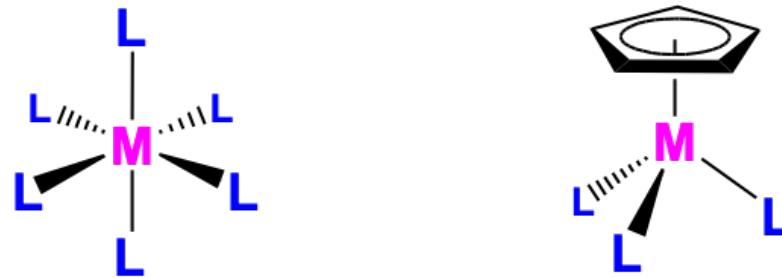


Problem: Which of the following ligands will chelate the *strongest* to a generic metal center? Why?

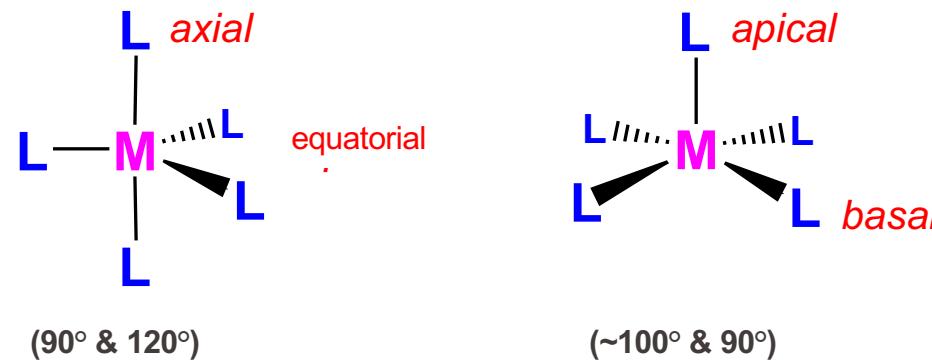

A)


B)

C)

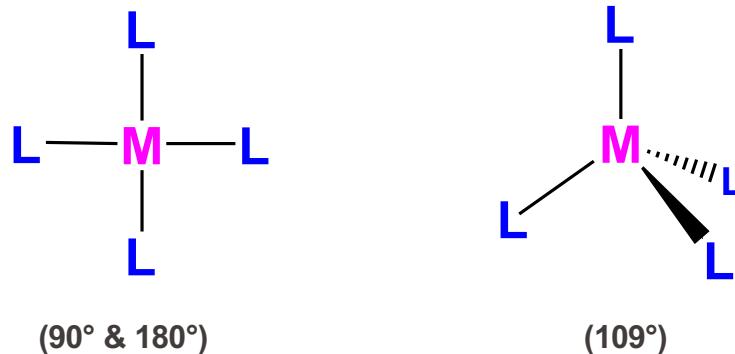


D)

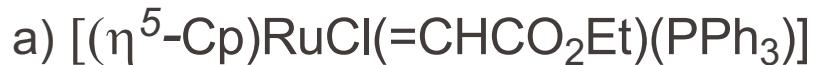


Common Coordination Geometries

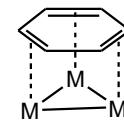
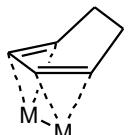
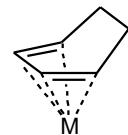
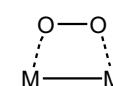
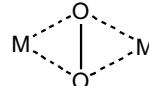
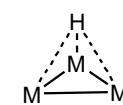
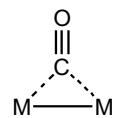
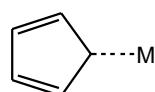
6-Coordinate: *Octahedral* (90° & 180° angles)



5-Coordinate: *Trigonal Bypyramidal* or *Square Pyramidal*


$(90^\circ \text{ & } 120^\circ)$

$(\sim 100^\circ \text{ & } 90^\circ)$









4-Coordinate: *Square Planar or Tetrahedral*

Square planar geometry is generally limited to **Rh, Ir, Ni, Pd, Pt, and Au** in the d^8 electronic state when coordinated to 2e- donor ligands.

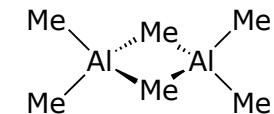
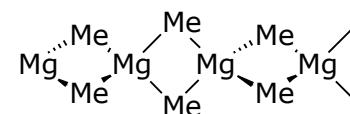
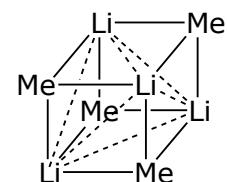
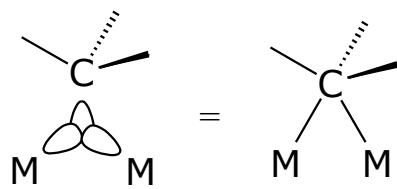
Problem: Sketch structures for the following:

Describe the following using η and/or μ

Overview of Types of Organometallic Complexes:

4 Main Types:

1) Ionic (charge separated)





Only with the most electropositive, early elements. Highly reactive and unstable. More stable if R can be stabilised by delocalisation or steric bulk.

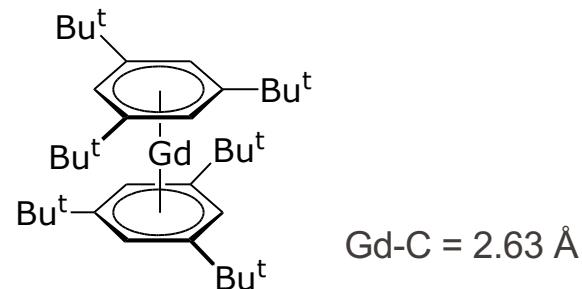
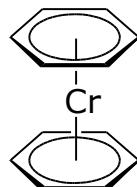
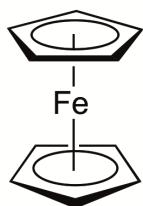
e.g. $\text{Na}^+\text{C}_5\text{H}_5^-$ charge is delocalised in aromatic ring

2) Electron deficient

Insufficient electrons to fill valence orbitals and form 2-centre-2electron bonds between all atoms. This results in multi-centre bonding between R and two or more metal centres.

e.g. 3-centre-2-electron bond.

Overview of Types of Organometallic Complexes:




3) σ -Bonding only

Occurs with closed-shell transition metal and main group centres, often leading to volatile compounds.

e.g. ZnR_2 , PbEt_4 , InMe_3 , SnR_4 .

4) π -Bonding

This is the interaction of π and π^* orbitals of organic ligands with metal-based orbitals. This is especially prevalent with transition metals and zero-valent lanthanides.

e.g. Ferrocene, *bis*-benzene chromium, *bis*-(1,3,5- $\text{Bu}^t_3\text{C}_6\text{H}_3$)-gadolinium

Formal Oxidation State (O.S.) of a Metal:

O.S. = charge on complex – [sum of formal ligand charges]

N.B. these are the charges formally assigned to the ligands on removal from the metal centre.

Examples:

To assign charges and electron counts it is important to know how organics bind to the metal. For organic ligands, the electrons in a shared bonding electron pair are assigned to the more electronegative atom.

The accessible oxidation states of the transition elements. Blue are less commonly observed oxidation states and yellow are those which dominate.

Oxidation state	Ti	Zr	Hf	V	Nb	Ta	Cr	Mo	W	Mn	Tc	Re	Fe	Ru	Os	Co	Rh	Ir	Ni	Pd	Pt	Cu	Ag	Au
-2							d ⁸	d ⁸	d ⁸	d ⁹			d ¹⁰	d ¹⁰	d ¹⁰									
-1	d ⁵			d ⁶	d ⁶	d ⁶	d ⁷		d ⁷	d ⁸	d ⁸	d ⁸	d ⁹			d ¹⁰	d ¹⁰	d ¹⁰	s ¹			s ²		
0	d ⁴	d ⁴		d ⁵			d ⁶	d ⁶	d ⁶	d ⁷	d ⁷	d ⁷	d ⁸	d ⁸	d ⁹	d ⁹	d ⁹	d ¹⁰	d ¹⁰	d ¹⁰	s ¹		s ¹	
+1				d ⁴	d ⁴	d ⁴	d ⁵	d ⁵		d ⁶		d ⁶	d ⁷		d ⁷	d ⁸	d ⁸	d ⁸	d ⁹			d ¹⁰	d ¹⁰	
+2	d ²	d ²	d ²	d ³	d ³	d ³	d ⁴	d ⁴	d ⁴	d ⁵		d ⁵	d ⁶	d ⁶	d ⁶	d ⁷	d ⁷		d ⁸	d ⁸	d ⁹	d ⁹	d ⁹	
+3	d ¹	d ¹	d ¹	d ²	d ²	d ²	d ³	d ³	d ³	d ⁴		d ⁴	d ⁵	d ⁵	d ⁵	d ⁶	d ⁶	d ⁶	d ⁷		d ⁸	d ⁸	d ⁸	
+4	d ⁰	d ⁰	d ⁰	d ¹	d ¹	d ¹	d ²	d ²	d ²	d ³	d ³	d ³	d ⁴	d ⁴	d ⁴	d ⁵	d ⁵	d ⁵	d ⁶	d ⁶	d ⁷			
+5				d ⁰	d ⁰	d ⁰	d ¹	d ¹	d ¹	d ²	d ²	d ²		d ³	d ³		d ⁴	d ⁴			d ⁵		d ⁶	
+6						d ⁰	d ⁰	d ⁰	d ¹	d ¹	d ¹	d ²	d ²	d ²	d ²	d ³	d ³			d ⁴				
+7									d ⁰	d ⁰	d ⁰		d ¹	d ¹										d ⁴
+8													d ⁰	d ⁰										

Common Ligands

Ligands with Charge 0

Ligand			
hydride $M—H$	halide $M—X$ $X = F, Cl, Br, I$	cyanide $M—C≡N$	nitrosyl $M—N=O$ (bent)
alkyl $M—C(R)R$	aryl $M—C_6H_4R_2$	All the ligands in this section have a formal charge of 1-	
carbonyl $M—C≡O$	isonitrile $M—C≡N—R$	nitrile $M—N≡C—R$	
amine $M—N(R)R$	phosphine $M—P(R)R$	thio $M—S(R)R$	
alkene $M—C(R)C(R)=C(R)R$	alkyne $M—C(R)C(R)≡C(R)R$	carbene $M=C(R)R$	

Ligand			
allyl $M—C(R)C(R)C(R)R$	nitrosyl (linear) $M—N=O$	$1+$	μ -bridging halide $M—X—M$ $X = F, Cl, Br, I$
carbyne $M\equiv C—R$		$3-$	
diene $M—C(R)C(R)=C(R)C(R)R$	cyclobutadienyl $M—C_4R_4$	0	
cyclopentadienyl $M—C_5R_5$	μ_3 -bridging halide $M—X—M—M$ $X = F, Cl, Br, I$	$1-$	
arene $M—C_6H_4R_6$	Charge 0		

d^n Electron Count in Transition Metal Compounds:

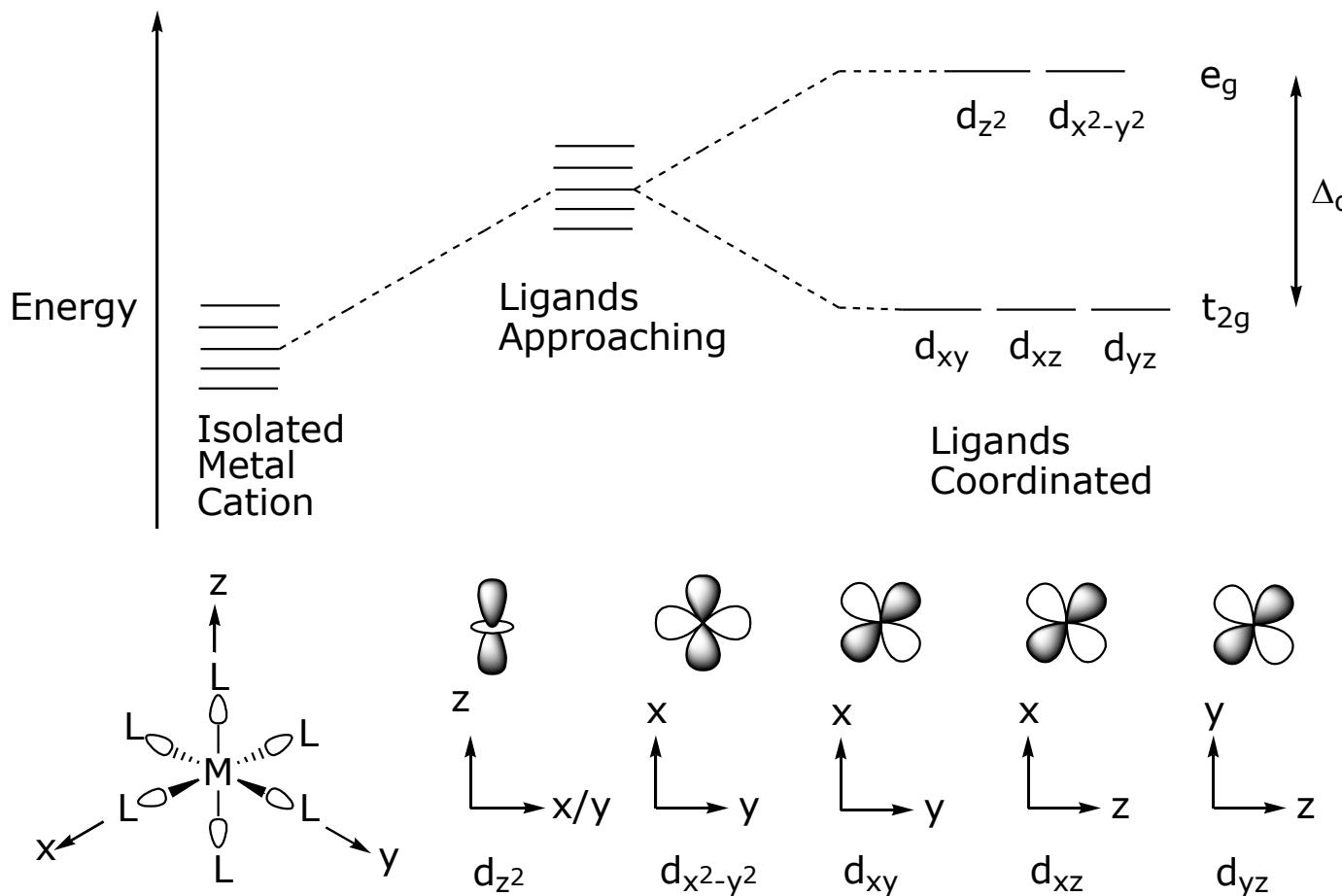
d^n gives you the number of electrons formally associated with metal-centred (i.e. d) orbitals in a transition metal compound:

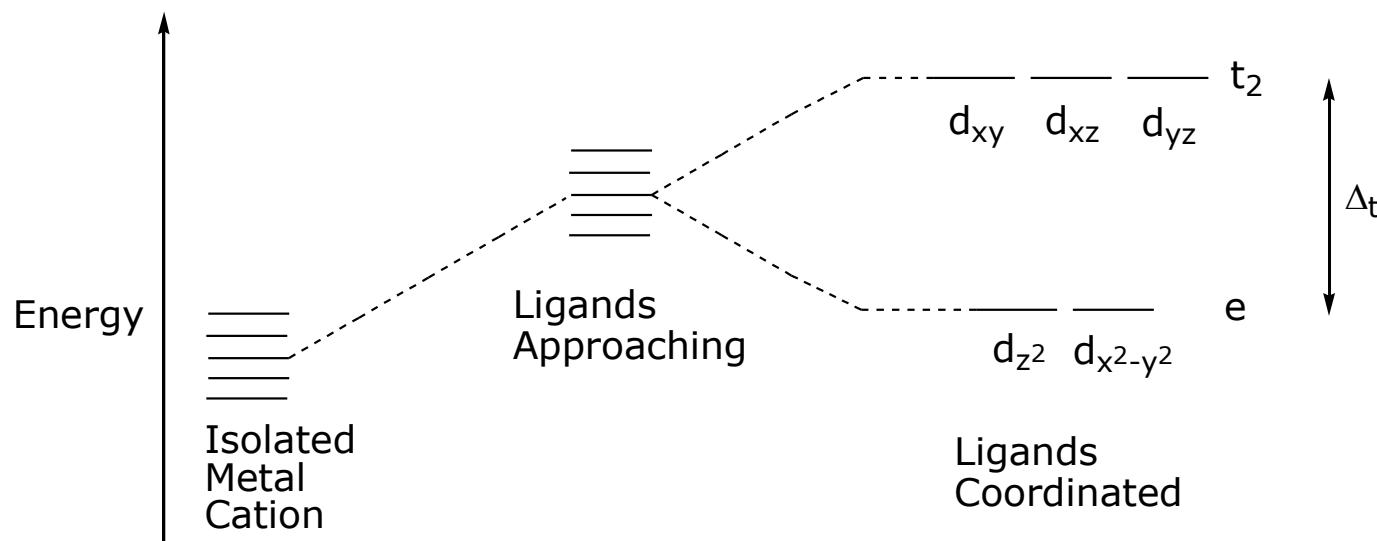
$$\mathbf{d^n = \text{metal group number} - \text{O.S.}}$$

Examples:

Do not confuse ion configurations in *complexes* with *atomic* configurations.

d^n Electron Count in Transition Metal Compounds:

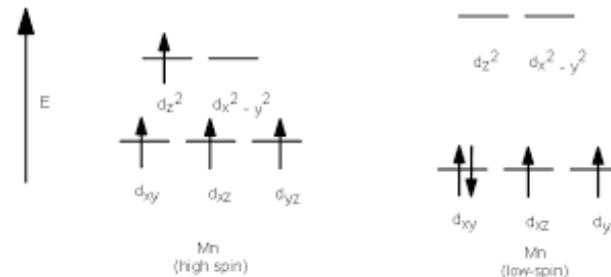

d^n gives you the number of electrons formally associated with metal-centred (i.e. d) orbitals in a transition metal compound:


$$d^n = \text{metal group number} - \text{O.S.}$$

Do not confuse ion configurations in *complexes* with *atomic* configurations.

d^3										d^{10}
21 Sc 3d ¹ 4s ²	22 Ti 3d ² 4s ²	23 V 3d ³ 4s ²	24 Cr 3d ⁵ 4s ¹	25 Mn 3d ⁵ 4s ²	26 Fe 3d ⁶ 4s ²	27 Co 3d ⁷ 4s ²	28 Ni 3d ⁸ 4s ²	29 Cu 3d ¹⁰ 4s ¹	30 Zn 3d ¹⁰ 4s ²	
39 Y 4d ¹ 5s ²	40 Zr 4d ² 5s ²	41 Nb 4d ³ 5s ²	42 Mo 4d ⁵ 5s ¹	43 Tc 4d ⁵ 5s ²	44 Ru 4d ⁷ 5s ¹	45 Rh 4d ⁸ 5s ¹	46 Pd 4d ¹⁰ 5s ⁰	47 Ag 4d ¹⁰ 5s ¹	48 Cd 4d ¹⁰ 5s ²	
57 La 5d ¹ 6s ²	72 Hf 5d ² 6s ²	73 Ta 5d ³ 6s ²	74 W 5d ⁴ 6s ²	75 Re 5d ⁵ 6s ²	76 Os 5d ⁶ 6s ²	77 Ir 5d ⁷ 6s ²	78 Pt 5d ⁹ 6s ¹	79 Au 5d ¹⁰ 6s ¹	80 Hg 5d ¹⁰ 6s ²	
89 Ac 6d ¹ 7s ²	104 Rf 6d ² 7s ²	105 Db 6d ³ 7s ²	106 Sg 6d ⁴ 7s ²	107 Bh 6d ⁵ 7s ²	108 Hs 6d ⁶ 7s ²	109 Mt 6d ⁷ 7s ²	110 Ds 6d ⁹ 7s ¹	111 Rg 6d ¹⁰ 7s ¹	112 Cn 6d ¹⁰ 7s ²	

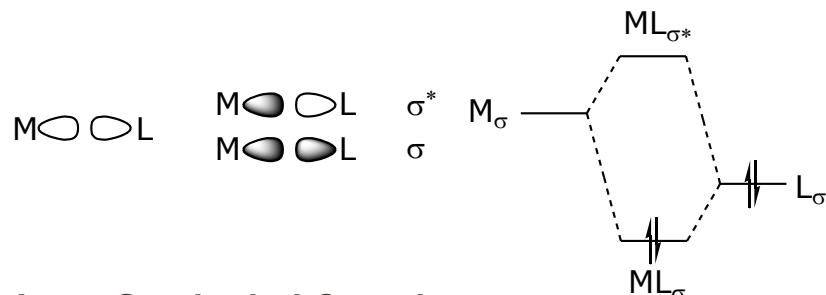
Crystal Field Theory of Coordination Complexes – Octahedral (see Prof Queen course)


Crystal Field Theory of Coordination Complexes – Tetrahedral

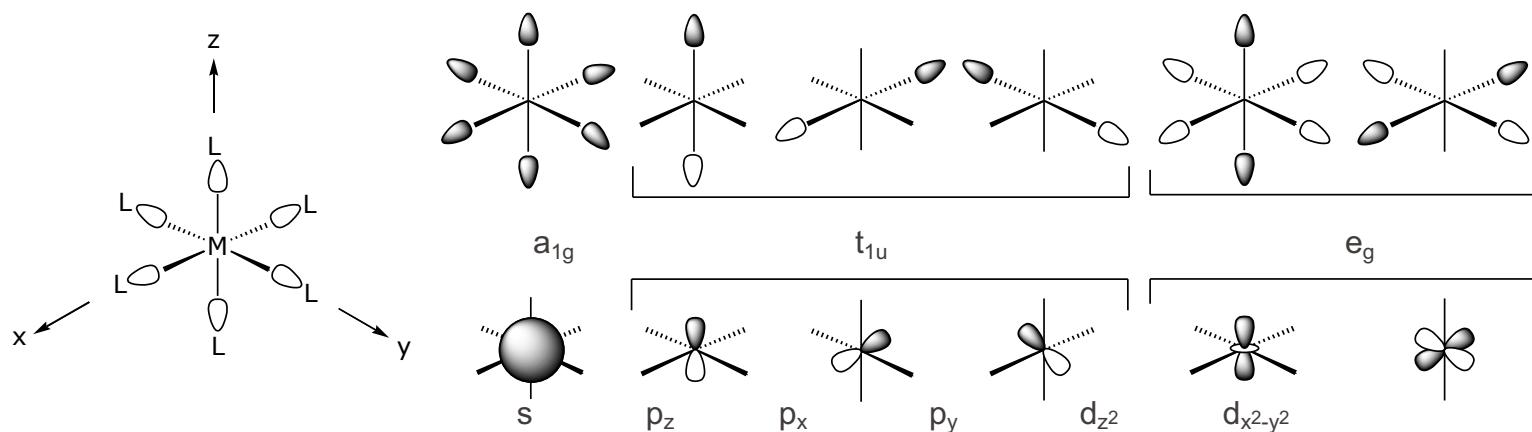
$$\bullet \Delta_t \approx \frac{4}{9} \Delta_o$$

Crystal Field Theory of Coordination Complexes (see Prof. Queen Course)

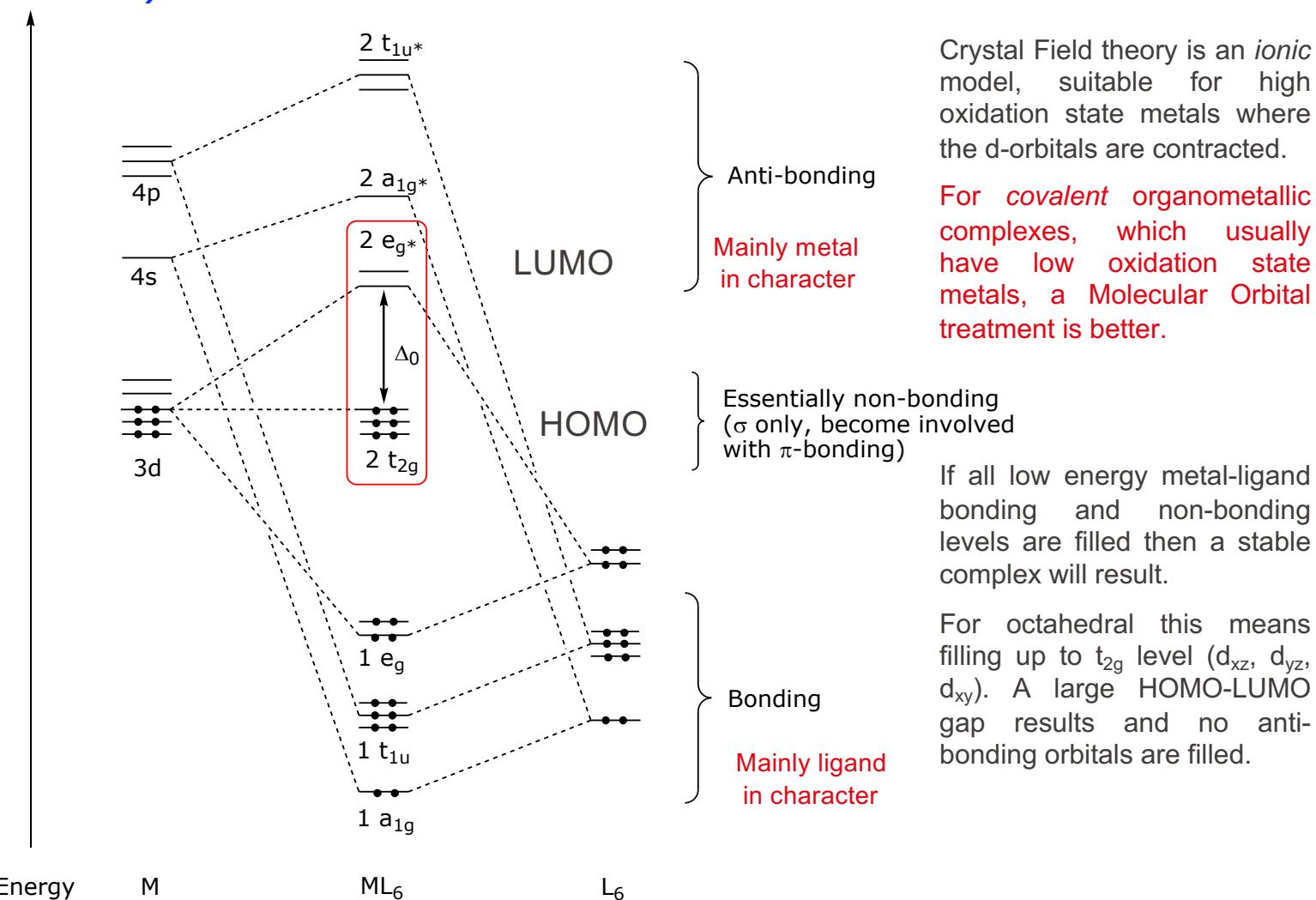
Factors that affect Δ :


- Metal oxidation state - higher O.S. bigger Δ .
- Nature of M^+ - $5d > 4d > 3d$.
- Number and geometry of ligands.
- Nature of ligands – strong vs weak field ligands.
- $I^- < Br^- < SCN^- < Cl^- < NO_3^- < N_3^- < F^- < OH^- < H_2O < SCN^- < py < NH_3 < en < bipy < phen < NO_2^- < PPh_3 < CN^- < CO$
- Larger Δ_o leads to low spin complex

But: Crystal field theory is an *ionic* model, but for *covalent* compounds we need molecular orbital theory.


Molecular Orbital Theory for Coordination Complexes – Octahedral (course Queen)

For Single M–L σ -Bond:



In an Octahedral Complex:

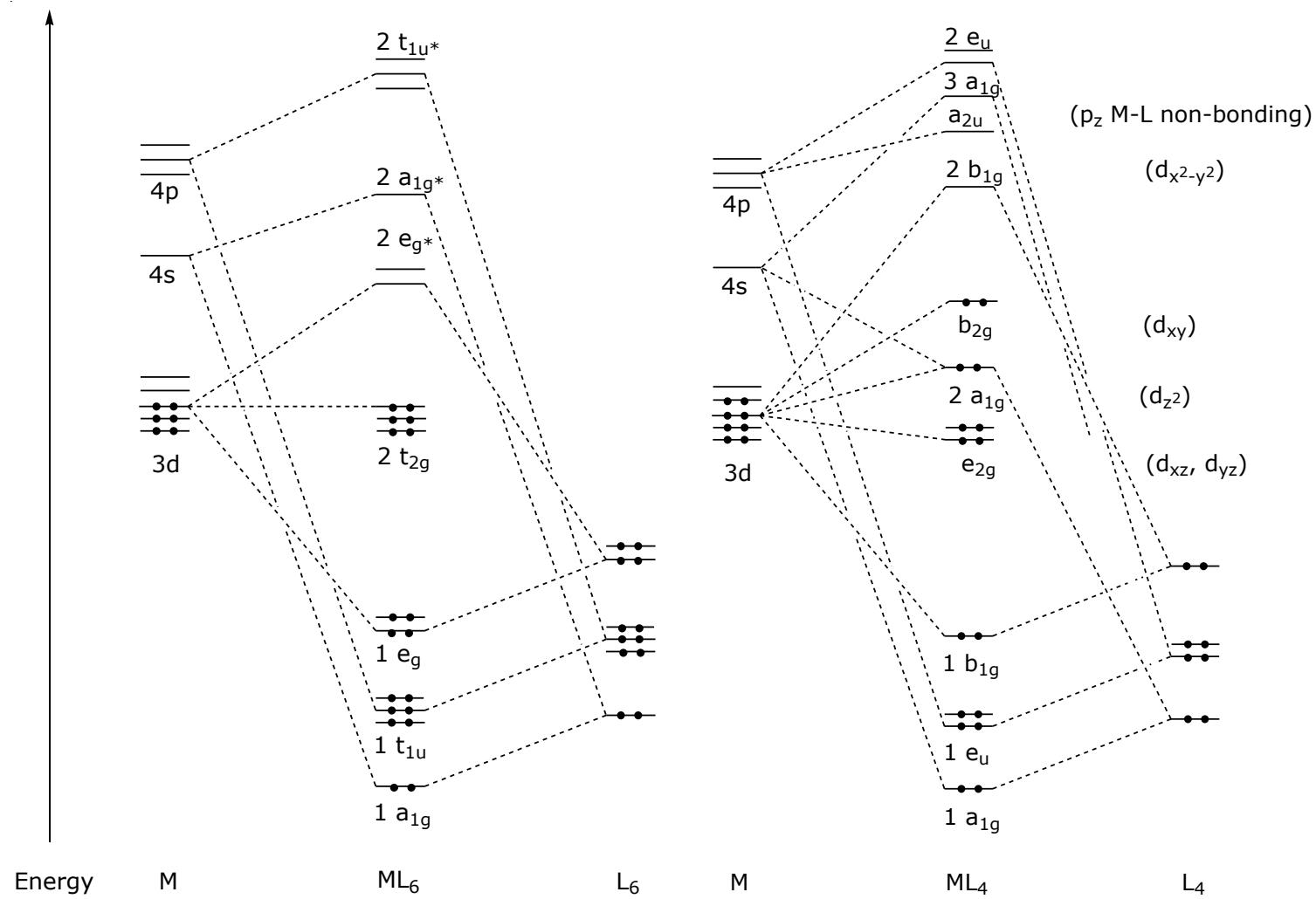
Six L_σ orbitals treated as a group and need to match various combinations to symmetry of metal orbitals to get overlap leading to σ -bonds (LCAO approach).

Molecular Orbital Theory for Coordination Complexes – Octahedral (see course Queen)

The Eighteen- (and Sixteen-) Electron Rule:

Stable organometallic complexes are formed when the sum of the (neutral) metal valence electrons plus the sum of the electrons considered to be donated by the ligands (taking into account any net charge) equals 18.

For square planar complexes an analogous sixteen-electron rule is used.


Note that it is complexes with $d^n > 2$ and strong π -acceptor ligands that most faithfully obey this rule.

Why Eighteen? (or sixteen electrons for d8 metals with fours ligands)

- Octet rule: $1s + 3p = 8$ electrons (closed shell)
- 18-electron rule: $1s + 3p + 5d = 18$ electrons (closed shell)
- **For 16 and 18 electron complexes the bonding and non-bonding orbitals are *full* and the anti-bonding orbitals are *empty*.**

There are examples where the 18 electron rule is violated. However, it serves as a useful rule-of-thumb in predicting stability and reactivity.

The Eighteen- (and Sixteen-) Electron Rule:

Lots of General Exceptions to the 18-Electron “Rule”

d^3	d^4	d^5	d^6	d^7	d^8	d^9	d^{10}	$d^{10}s^1$
21 Sc Scandium	22 Ti Titanium	23 V Vanadium	24 Cr Chromium	25 Mn Manganese	26 Fe Iron	27 Co Cobalt	28 Ni Nickel	29 Cu Copper
39 Y Yttrium	40 Zr Zirconium	41 Nb Niobium	42 Mo Molybdenum	43 Tc Technetium	44 Ru Ruthenium	45 Rh Rhodium	46 Pd Palladium	47 Ag Silver
57 La Lanthanum	72 Hf Hafnium	73 Ta Tantalum	74 W Tungsten	75 Re Rhenium	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au Gold

Early Transition Metals

16e- and sub-16e- configurations are common

Coordination geometries higher than 6 relatively common

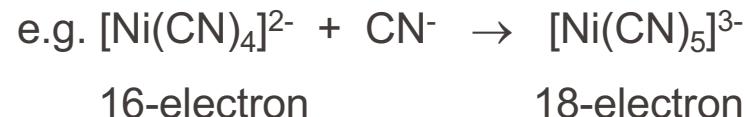
Middle Transition Metals

18e- configurations are common

Coordination geometries of 6 are common

Late Transition Metals

16e- and sub-16e- configurations are common


Coordination geometries of 5 and lower are common: d^8 = square planar

Coordinative Unsaturation:

This is a very important concept in organometallic chemistry.

Compounds which have less than an 18-electron count are said to be “coordinatively unsaturated” and there may be a tendency to add further ligands.

- This is because there must be one or more vacant orbital(s) available.

Conversely, complexes with an 18-electron count are said to be “*coordinatively saturated*” and will most likely lose a ligand in order for any reactivity to occur.

Pauling Electroneutrality Principle:

Neutral molecules, or those with a ± 1 or ± 2 charge are more likely to form than highly charged species.

- The greater the charge or polarisation the greater the tendency to react.

Stability and Preventing Decomposition:

Stability:

- In this context, stability refers to a lack of decomposition of the pure compound in the absence of a reaction partner, e.g. H_2O , O_2 .
- We must distinguish between thermodynamic stability (stable or unstable) and kinetic stability (inert or labile).
- Compared with M–N, M–O, and M-halide bonds, M–C must be considered *weak*.

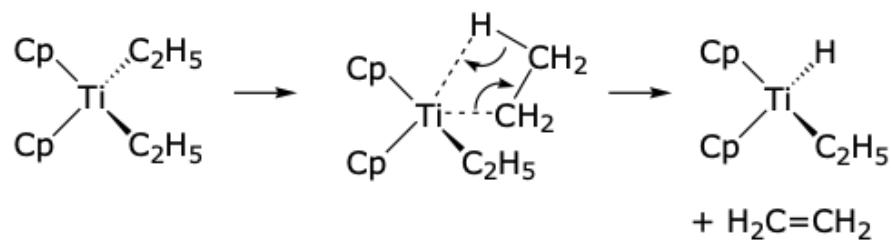
Main Group Alkyl	B.E./kJmol ⁻¹	T.M. Alkyl	B.E./kJmol ⁻¹
CMe_4	358	$\text{Ti}(\text{CH}_2\text{Bu}^t)_4$	198
SiMe_4	311	$\text{Zr}(\text{CH}_2\text{Bu}^t)_4$	249
GeMe_4	249	$\text{Hf}(\text{CH}_2\text{Bu}^t)_4$	266
SnMe_4	217		
PbMe_4	152		

General Trends:

M–C bond enthalpy (B.E., strength) *decreases* with increasing atomic number for main group elements but *increases* as a transition metal triad is descended.

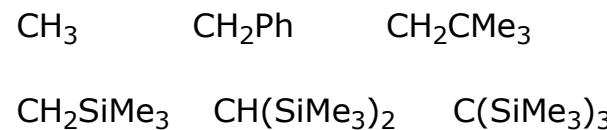
Therefore, transition metal alkyls should be more stable than lead alkyls, whose formation is endothermic and they possess only weak Pb–C bonds. But:

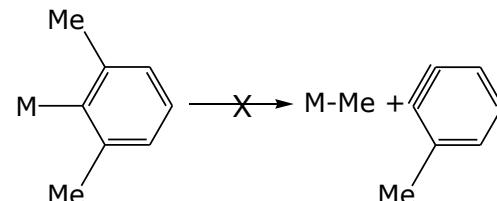
Compound	T_{dec}	Compound	T_{dec}
$TiMe_4$	$> -50^\circ C$	$PbMe_4$	$> 200^\circ C$ (b.p. $110^\circ C$)
$TiEt_4$	Existence doubtful	$PbEt_4$	$> 100^\circ C$


- The reason for the difference in stability is therefore not thermodynamic but *kinetic*.**

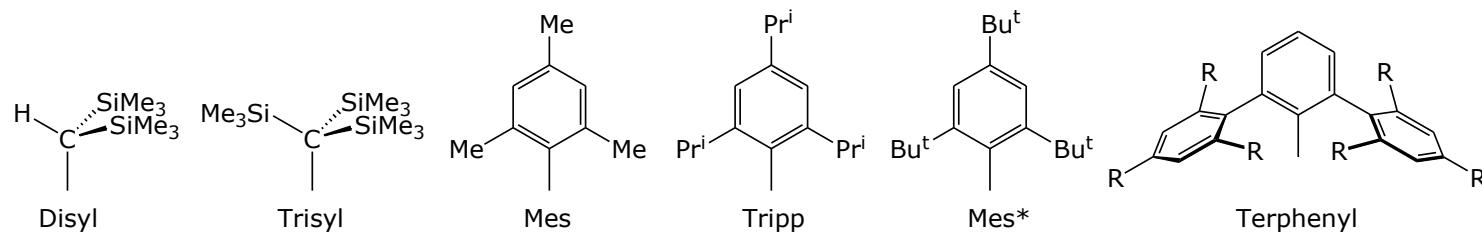
$PbEt_4$ decomposes by M–C bond homolysis (a high energy process) as Pb has a full octet, its 5d shell is filled, and the 6d and σ^* levels are energetically inaccessible.

This contrasts to transition metal organometallics with vacant d-orbitals that may decompose by (concerted, lower energy) β - or reductive-elimination.

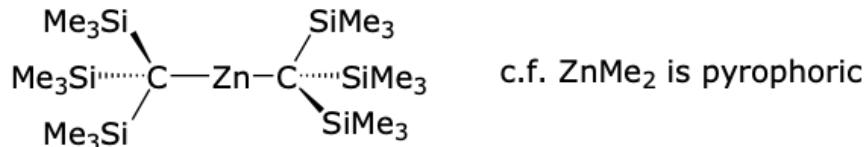

e.g.


Preventing Decomposition:

1) Use Ligands Stable to β -Hydride Elimination:


e.g.

2) Formation of arynes from arenes can be prevented by using *ortho*-substituents which are $\neq \text{H}$.


3) Use Bulky Ligands:

4) Saturate the Coordination Sphere:

By either:

- Using extra ligands, e.g. TiMe_4 unstable, but $\text{TiMe}_4(\text{Me}_2\text{PCH}_2\text{CH}_2\text{PMe}_2)$ is stable at RT.
- Ligands which occupy more than one coordination site, e.g. Cp .
- Use ligands with pendant coordinating groups, e.g. $\text{C}_6\text{H}_4\text{-2-CH}_2\text{NMe}_2$.
- Use sterically demanding ligands. e.g.

Stable to air and
boiling (!) HCl

5) Obey the Pauling Electroneutrality Principle:

The less charged a species, the less reactive it will be.

6) Make 18-electron Compounds:

Compounds obeying the 18(16) electron rule are inherently more stable.