What to do

and what not to do
A plea from the sanity of your TAs

How to project - 1

As a general guide - we are looking for something “cool and useful”

e [t should not be trivial
e Complexity for its own sake WILL NOT win you marks

Set out a clear goal before starting to code. Time spent researching helpful
packages and data sources at the beginning of the project prevents wasted time

coding!

How to project 2 - Chemical Boogaloo

Before starting a project you should satisfy these conditions

e Do the data source and packages required actually exist?
o If not, how quickly can you implement the required features?

e \What happens if you can’t complete the whole project?
o You should aim to have a Minimum Viable Product to which you can add functionality for a
better grade

e Is the proposed project actually useful or new... If you can easily find the
functionality via Google search, don’t make that your project.

How to structure packages

my_package/

— .github/
L— workflows/

— tests.yml
L— publish.yml

my_package/
I— __init__.py
— core.py

IS utiis . py

init__.py
est_core.py
est_utils.py

GitHub-specific configurations
CI/CD configuration

Source code directory
Main package directory
Package initialization
Core functionality
Utility functions

Test directory

You should broadly follow this
structure

All non-test code should be
under src/my_package/

Don’t name your package
my_package or any other
generic placeholder name

How to structure packages

my_package/

— .github/
| L— workflows/

F—— tests.yml
L— publish.yml

SEE/
L my_package/

F— __init_ .py

L— utils.py

tests
init_ .py
est_core.py

|

|

|
il
|

| — core.py
|

|
N
|

|

F__
F__
==

1t
test_utils.py

GitHub-specific configurations

CI/CD configuration

Source code directory
Main package directory
Package initialization
Core functionality
Utility functions

Test directory

__init__.py

from .core import calculate_distance,
from .utils import format_output

VERSION = "1.0.0"

def get_version()
return VERSION

How structuring code works

it How to use this code from outside
—Init_.py the package

import my_package

from .core import calculate_distance, Point

my_package.calculate_distance(pointl, point:
my_package. format_output(result)

from .utils import format_output

m ackage.get version
VERSION = "1.0.0" y_p ge.get_ ()

def get_version(): from my_package import Point, calculate_dist

return VERSION

Accessing code in sub folders

src/

L— my_package/

__init__.py

COre.py from .core import calculate_distance, Point

utils.py

advanced/ from .advanced.algorithms import find_optimal_path
[— _iﬂit_. py from .advanced.visualization import plot_results

—— algorithms.py
L visualization.py

Accessing code in sub folders

__init__.py

from my_package.advanced import algorithms
algorithms.find_optimal_path(graph)

from my_package.advanced.visualization import plot_results

plot_results(data)

Accessing the code

from .core import calculate_distance, Point

1 .advanced.algorithms import find_optimal_path
.advanced.visualization import plot_results

Where to put data

Under the root directory of the package, you should put your data in a data/

directory like so.

my_package/

F—— pyproject.toml
|— README.md

|— src/

|
— data/

|
|

L my_package/

— raw/

L processed/

Modern package configuration
Project documentation

Source code directory

Actual package code

Data directory

Raw data files

Processed data files

Here is the example structure for
non-code files.

README: This documents how
to install the package, what data
users might need to download etc

data: Stores all smallish data files
needed for the code to run.

If you need large files - speak to
us about how to implement it!

How to present

e A presentation tells a story
o Introduce
o Motivate
o Approach/methods

m lllustrate with flowcharts and diagrams
o Results
o Discussion

e Assume your audience is a goldfish

Don'’t get stuck in the details
o NOT a description of every function

e Use visuals to support your statements

o If you include screenshots of only code, you will fail the presentation
e Speak clearly, make eye-contact with the audience

o If you read entirely from notes, you will fail the presentation

INTRODUCTION
1. Character: Research topic
H OW to re po rt 2. Setting: Niche

\ 3. Problem ’
e \Written in a jupyter notebook (.ipynb) N—e 7
o Look up markdown for formatting the text MATERIAL
e Structure it like a scientific report &

METHODS

o Explain the relevant chemistry (Intro)
o Complete sentences

o Use titles, subtitles etc.

o Include references if needed RESULTS

e Communicate what you did and what your
package solves

o Itis not a diary (“then we did this, then this, ...”)
o Implementation details only if necessary

e Import functions only
o Don’t show the function but show what it achieves

Your TAs

Rebecca Sarina

Daniel

o Drugs
o Proteins
o 3D representations

@)
@)

Transition metal complexes Reaction prediction
Catalysis o Retrosynthesis
QM calculations o Large Language Models

O

@)

