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Recap of CH-200 2

The basics
- Using the terminal
- Git and Github
- Environments

Python
- Recap from last year
- Functions & classes 
- Pip install and use packages

Cheminformatics 
- Molecular representations
- RDKit as main framework

Advanced Practical 
Programming

- Make reusable code (Python 
packages)

- APIs/web scraping
- Testing your code
- Writing doc strings and 

documentation
- Creating applications with 

streamlit 

I hope everyone has learned sth useful for the future! 



Exercises gave you practice on different topics 3

Lecture 1:
Terminal

Lecture 2:
GitHub & Python 

recap

Lecture 3:
Conda

Lecture 5:
Numpy, Pandas, 

matplotlib

How many of you have done all exercises? 

Lecture 6:
RDKit input/output, 
descriptors and fps

Lecture 7:
RDKit substructure 

matching/conformers

Lecture 8:
Python packages

introduction

Lecture 9:
HTTP requests & 

web scraping

Lecture 10:
Copier templates, 
tests & coverage

Lecture 11:
Visualization & 

molecular analysis

Lecture 12:
Web apps with 

Streamlit

Lecture 4:
Functions, classes, 

files



▪ You have a local setup with environments
• Remember one environment per project (otherwise, you might have 

dependency issues!)

▪ Most open-source Python code is a pip install away from you
• Get inspired by blogpost, code repositories, and hopefully, don’t stop coding 
☺

▪ You all have encountered the most common issues with Github
• Everyone goes through that at the beginning
• In the future, you will overcome them more efficiently
• There is always a solution (→ Google, StackOverflow, and maybe LLMs)

Where to go from now? 4



▪ Pat Walter’s – Practical Cheminformatics Tutorials (highly 
recommended!) 
(https://github.com/PatWalters/practical_cheminformatics_tutorials)

▪ Greg Landrum’s RDKit blog (https://greglandrum.github.io/rdkit-blog/)
▪ https://github.com/hsiaoyi0504/awesome-

cheminformatics?tab=readme-ov-file#resources

Awesome sources of information 5

https://github.com/PatWalters/practical_cheminformatics_tutorials
https://greglandrum.github.io/rdkit-blog/
https://github.com/hsiaoyi0504/awesome-cheminformatics?tab=readme-ov-file
https://github.com/hsiaoyi0504/awesome-cheminformatics?tab=readme-ov-file


▪ https://volkamerlab.org/projects/teachopencadd/

Prof Andrea Volkamers TeachOpenCADD 6

Open course on
Computer Assisted
Drug Design

https://volkamerlab.org/projects/teachopencadd/


Or the AI for Chemistry course (EPFL, Master) 7

The rest of the lecture will be a whirlwind 
introduction into machine learning in chemistry.



9

Made possible through
Machine Learning...

• ChatGPT -> Text
• Midjourney -> Image
• elevenlabs.io

-> text to speech
• D-ID

-> image, speech to
video

Total time: 15 minutes!

http://elevenlabs.io/


Programming = machines following code instructions  10



11

Predefined human-
written rules
(knowledge base)

If grade 4 or higher (x >= 4),
student passes the course.

Input x Output y

5.5 Pass
3.5 Fail

Traditional programming
(“Expert system”)



Machine learning – ability for machines to learn 
without being programmed (from data)

12



13So, let’s make an example. 

Who is this? Marie Curie. 



Supervised learning – facial recognition 14

• Goal: learning from inputs to outputs
• Needs training data (!)
• Model => neural networks popular
• Classification task 
• How good is my model? Accuracy

Marie Curie

Input Output

Marie Curie

Training data

?Model
Albert Einstein



Several flavours of ML 15

Supervised learning
• learning from labelled data
• classification/regression

Unsupervised learning
• learning from unlabelled data
• patterns and structures

→ K-means clustering 
and PCA. 

Reinforcement learning 
• learning by taking actions
in an environment, and getting
rewards

Self-supervised learning
• learning by creating labels
from the data you have



Key ingredients for 
Machine Learning

16

Representations
(machine-readable)

Molecular fingerprints
000010000….0100

Text-based representations 
CN1C=NC2=C1C(=O)N(C(=O)N2C)C

Graph-based representations

3D coordinates
& surface

Data

Examples are:
• Molecules & properties
• Chemical reactions
• Synthesis procedures

(garbage in = garbage out) Models/algorithms

Linear regression model

Neural networks

And many more.. 



Deep Learning (neural network-based ML) – why 
did it take off in the last decade?

18

Immense datasets Cheap compute Open research
& frameworks



Main difference... 19

Stevens et al., Deep Learning with PyTorch, 2020

Texture, colour, 
… as tabular data

Or for molecules:
Molecular weight,
HOMO-LUMO gap,
number of H-donors

Raw pixel 
values

Traditional machine learning
(requires tabular data)

Deep learning
(requires a lot of data)

Learning
directly
from structure:

SMILES or
atomic coord.



Going beyond regression and classification tasks. 

20



One of the most important neural network 
architectures is the Transformer. 

21

- Learns translation from examples
- GPT → decoder part

encoder

input

output

decoder

Vaswani et al., Neural Machine Translation by Jointly Learning to Align and Translate. NeurIPS, 2017



22So, why should I care about all that as a chemist?
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Catalysis

Drug discovery

Synthesis optimization

Synthesis planning

Chemical design cycle
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Krenn, Mario, et al. "SELFIES and the future of molecular 
string representations.”, Patterns, 2023.

encoder

input

output

decoder C C ( C ) S c 1 n c c c c 1 F
Schwaller et al., Molecular Transformer – A Model for Uncertainty-Calibrated Chemical Reaction Prediction. 
ACS Central Science, 2019

E.g. reaction prediction task as machine translation task (Molecular Transformer – first transformer in Chem)

Text-based molecule representation – SMILES 

Language models
for chemistry



32

+ more, such as recipe prediction 

ML for chemical reactions
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Gao et al. ACS Cent. Sci. 2018
Schilter et al. ACS Fall Meeting  2023 

Schwaller et al. ACS Cent. Sci. 2019
Pesciullesi et al. Nature Comm.  2020

Vaucher et al. Nature Comm.  2020
Vaucher et al. Nature Comm.  2021

Jablonka et al. NeurIPS ML for Materials, 2022 Bran and Cox et al. ACS Fall Meeting, 2023

Schwaller et al. Chem. Sci., 2020 
Thakkar et al. ACS Cent. Sci. 2023

1. MAKESOLUTION with trifluoromethanesulfonic 
acid 3,5,8,8-tetramethyl-7,8-dihydronaphthalen-2-yl 
ester (0.41 g, 1.2 mmol) and Pd(OAc)2 (0.027 g, 0.12 
mmol) and BINAP (0.11 g, 0.18 mmol) and Cs2CO3 (0.56 
g, 1.72 mmol) and ethyl 4-aminobenzoate (0.25 g, 1.5 
mmol) and toluene (5 mL)

2. ADD SLN
3. STIR for 48 hours at 100° C
4. SETTEMPERATURE room temperature
5. CONCENTRATE
6. PURIFY
7. YIELD product

Chemical 
tools

LLM 
reasoning

Automatic 
synthesis
Assistant for 
chemical synthesis

Materials design
Drug discovery
Chemical reasoning 
Data analysis

Classification

Regression

LLM-powered 
chemical

predictions

I nverse 
design

Excels in 
low data
regime

Fine-tuned large language models LLMs augmented with chemical tools

Single modality

Multiple modalities

General task solvers

Reaction prediction Retrosynthetic planning Reaction condition prediction

Reaction to synthesis procedure

Trends in Language Models for Chemical Synthesis

Gao et al. ACS Cent. Sci. 2018
Schilter et al. ACS Fall Meeting  2023 

Schwaller et al. ACS Cent. Sci. 2019
Pesciullesi et al. Nature Comm.  2020

Vaucher et al. Nature Comm.  2020
Vaucher et al. Nature Comm.  2021

Jablonka et al. NeurIPS ML for Materials, 2022 Bran and Cox et al. ACS Fall Meeting, 2023

Schwaller et al. Chem. Sci., 2020 
Thakkar et al. ACS Cent. Sci. 2023

1. MAKESOLUTION with trifluoromethanesulfonic 
acid 3,5,8,8-tetramethyl-7,8-dihydronaphthalen-2-yl 
ester (0.41 g, 1.2 mmol) and Pd(OAc)2 (0.027 g, 0.12 
mmol) and BINAP (0.11 g, 0.18 mmol) and Cs2CO3 (0.56 
g, 1.72 mmol) and ethyl 4-aminobenzoate (0.25 g, 1.5 
mmol) and toluene (5 mL)

2. ADD SLN
3. STIR for 48 hours at 100° C
4. SETTEMPERATURE room temperature
5. CONCENTRATE
6. PURIFY
7. YIELD product

Chemical 
tools

LLM 
reasoning

Automatic 
synthesis
Assistant for 
chemical synthesis

Materials design
Drug discovery
Chemical reasoning 
Data analysis

Classification

Regression

LLM-powered 
chemical

predictions

I nverse 
design

Excels in 
low data
regime

Fine-tuned large language models LLMs augmented with chemical tools

Single modality

Multiple modalities

General task solvers

Reaction prediction Retrosynthetic planning Reaction condition prediction

Reaction to synthesis procedure

Gao et al. ACS Cent. Sci. 2018
Schilter et al. ACS Fall Meeting  2023 

Schwaller et al. ACS Cent. Sci. 2019
Pesciullesi et al. Nature Comm.  2020

Vaucher et al. Nature Comm.  2020
Vaucher et al. Nature Comm.  2021

Jablonka et al. NeurIPS ML for Materials, 2022 Bran and Cox et al. ACS Fall Meeting, 2023

Schwaller et al. Chem. Sci., 2020 
Thakkar et al. ACS Cent. Sci. 2023

1. MAKESOLUTION with trifluoromethanesulfonic 
acid 3,5,8,8-tetramethyl-7,8-dihydronaphthalen-2-yl 
ester (0.41 g, 1.2 mmol) and Pd(OAc)2 (0.027 g, 0.12 
mmol) and BINAP (0.11 g, 0.18 mmol) and Cs2CO3 (0.56 
g, 1.72 mmol) and ethyl 4-aminobenzoate (0.25 g, 1.5 
mmol) and toluene (5 mL)

2. ADD SLN
3. STIR for 48 hours at 100° C
4. SETTEMPERATURE room temperature
5. CONCENTRATE
6. PURIFY
7. YIELD product

Chemical 
tools

LLM 
reasoning

Automatic 
synthesis
Assistant for 
chemical synthesis

Materials design
Drug discovery
Chemical reasoning 
Data analysis

Classification

Regression

LLM-powered 
chemical

predictions

I nverse 
design

Excels in 
low data
regime

Fine-tuned large language models LLMs augmented with chemical tools

Single modality

Multiple modalities

General task solvers

Reaction prediction Retrosynthetic planning Reaction condition prediction

Reaction to synthesis procedure

Other examples:
- Clairify (Skreta 

et al. )
- Coscientist 

(Boiko et al.)



LIAC Highlights 
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Augmenting  language models with chemistry tools
• Large language models (GPT4/ChatGPT) are bad at chemistry
• There are excellent chemistry tools (but in isolation)

So can what do we do? → ChemCrow

35

What tools for ChemCrow?
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• RDKit: Open-source cheminformatics. https://www.rdkit.org
• PubChem Compound Database https://pubchem.ncbi.nlm.nih.gov/
• Synspace: https://github.com/whitead/synspace
• Molbloom: https://github.com/whitead/molbloom
• Chem-space: https://chem-space.com/

https://www.rdkit.org/
https://pubchem.ncbi.nlm.nih.gov/
https://github.com/whitead/synspace
https://github.com/whitead/molbloom
https://chem-space.com/
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• RDKit: Open-source cheminformatics. https://www.rdkit.org
• PubChem Compound Database https://pubchem.ncbi.nlm.nih.gov/
• Synspace: https://github.com/whitead/synspace
• Molbloom: https://github.com/whitead/molbloom
• Chem-space: https://chem-space.com/
• paper-qa: https://github.com/whitead/paper-qa/tree/main

https://www.rdkit.org/
https://pubchem.ncbi.nlm.nih.gov/
https://github.com/whitead/synspace
https://github.com/whitead/molbloom
https://chem-space.com/
https://github.com/whitead/paper-qa/tree/main


ChemCrow’s toolset
P

hi
lip

pe
 S

ch
w

al
le

r (
@

S
ch

w
al

le
rG

ro
up

)

38

• RDKit: Open-source cheminformatics. https://www.rdkit.org
• PubChem Compound Database https://pubchem.ncbi.nlm.nih.gov/
• Synspace: https://github.com/whitead/synspace
• Molbloom: https://github.com/whitead/molbloom
• Chem-space: https://chem-space.com/
• paper-qa: https://github.com/whitead/paper-qa/tree/main
• IBM RXN for Chemistry: https://github.com/rxn4chemistry/rxn4chemistry/

https://www.rdkit.org/
https://pubchem.ncbi.nlm.nih.gov/
https://github.com/whitead/synspace
https://github.com/whitead/molbloom
https://chem-space.com/
https://github.com/whitead/paper-qa/tree/main
https://github.com/rxn4chemistry/rxn4chemistry/
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• RDKit: Open-source cheminformatics. https://www.rdkit.org
• PubChem Compound Database https://pubchem.ncbi.nlm.nih.gov/
• Synspace: https://github.com/whitead/synspace
• Molbloom: https://github.com/whitead/molbloom
• Chem-space: https://chem-space.com/
• paper-qa: https://github.com/whitead/paper-qa/tree/main
• IBM RXN for Chemistry: https://github.com/rxn4chemistry/rxn4chemistry/
• ClinTox: Substance Toxicity Dataset: https://www.clintox.org/
• GHS Classification: https://pubchem.ncbi.nlm.nih.gov/ghs/

https://www.rdkit.org/
https://pubchem.ncbi.nlm.nih.gov/
https://github.com/whitead/synspace
https://github.com/whitead/molbloom
https://chem-space.com/
https://github.com/whitead/paper-qa/tree/main
https://github.com/rxn4chemistry/rxn4chemistry/
https://www.clintox.org/
https://pubchem.ncbi.nlm.nih.gov/ghs/
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• Yao, S.; React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 2022, 
• Karpas,E. et al. MRKL Systems: A modular, neuro-symbolic archi- tecture that combines large language models, external 

knowledge sources and discrete reasoning. arXiv preprint arXiv:2205.00445 2022, 



Task: Plan and execute the synthesis of an insect repellent

Use case: Automatic synthesis
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Thought: I need to know which insect repellent to synthesize. I will do a literature search to find a 
common insect repellent.
Action: LitSearch
Action input: common insect repellent

Observation: DEET, picaridin, …

Thought: I will choose DEET as the insect repellent to synthesize. First I need to get the SMILES 
of DEET.
Action: Name2SMILES
Action input: DEET

Observation: CCN(CC)C(=O)c1cccc(C)c1

O

N
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Use case: Automatic synthesis
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Thought: Now that I have the SMILES of DEET, I will plan the synthesis.
Action: RXNPlanner
Action input: CCN(CC)C(=O)c1cccc(C)c1
Observation: 
To make CCN(CC)C(=O)c1cccc(C)c1, follow these steps:

1. Add 0.3 mL of diethylamine to the reaction vessel.
2. Add 15 mL of dichloromethane to the reaction vessel.
3. Add 3.2 mmol of 3-methylbenzoyl chloride to the reaction vessel at 0°C.
4. Stir the mixture at 25°C for 1 hour […]

Thought: I have a synthesis plan for DEET. Now I will execute the synthesis.
Action: RXNExecute
Action input: CCN(CC)C(=O)c1cccc(C)c1

Observation: Synthesis procedure completed!

RXN4Chemistry: 
Recipe prediction

RoboRXN



4



▪ Find and synthesize a thiourea 
organocatalyst which 
accelerates a Diels-Alder 
reaction.

Use case: Automatic synthesis
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Schreiner’s Ricci’s Takemoto’s
Organocatalysts
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• Supply chain/robotics challenges
• Weak synthesis planning models 

Is automated synthesis a solved problem? No… 55

Typical output of unnamed system More strategic synthesis plan (including reagents)

Complexity that an
chemist would like to target: 
Vitamin B12
• 12 year
• ~90 postdocs, 12 PhD 
students 

• Eschenmoser, Woodward

https://www.slideshare.net/EngelbertZass1/of-a-landmark-total-synthesis-yet-unpublished-in-full-experimental-detail-vitamin-b12

Daniel Armstrong  & Zlatko Jončev

https://www.slideshare.net/EngelbertZass1/of-a-landmark-total-synthesis-yet-unpublished-in-full-experimental-detail-vitamin-b12


Benchmarking LLMs in Chemistry – ChemBench 56

Collaboration led
by Kevin Jablonka

https://arxiv.org/abs/2404.01475, Are large language models superhuman chemists?

19 human experts
https://www.chembench.org

https://arxiv.org/abs/2404.01475
https://www.chembench.org/


Benchmarking beyond multiple choice questions. 

57



LLMs as chemical reasoning engines 58

Chemical reasoning in LLMs unlocks steerable synthesis 
planning and reaction mechanism elucidation
AM Bran, TA Neukomm, DP Armstrong, Z Jončev, P Schwaller
arXiv preprint arXiv:2503.08537

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Tz0I4ywAAAAJ&sortby=pubdate&citation_for_view=Tz0I4ywAAAAJ:JoZmwDi-zQgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Tz0I4ywAAAAJ&sortby=pubdate&citation_for_view=Tz0I4ywAAAAJ:JoZmwDi-zQgC


Steerable synthesis planning 59



60



Reaction mechanism elucidation 61

Expert reaction description
in prompt helps weaker
models. 



Gold standard would be 
experimental validation.

But it takes time… 

62



▪ Bayesian Optimization (using ML model to guide experiments) is 
currently popular for optimizing chemical reaction conditions/procedures

I have 5 different parameters to adjust for my 
reaction – how should I tune them?

63
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64ML for linking synthesis to outcome

Can we design Cu nanocrystals with a particular shape (=> reactivity)? 

A holistic data-driven approach to synthesis predictions of colloidal nanocrystal shapes
LEF Zaza, B Rankovic, P Schwaller, R Buonsanti (JACS) Bojana Ranković

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Tz0I4ywAAAAJ&sortby=pubdate&citation_for_view=Tz0I4ywAAAAJ:wbdj-CoPYUoC
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65Multiple syntheses lead to the same outcome
(ground truth not unique)

cubes

tetrahedral

Elton Pan (NeurIPS 2024, 
AI4Mat workshop)
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66Discovering a new shape (rhombic dodecahedral)
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Generating novel molecules with desired properties 68

Distribution learning Goal-directed learning

Key Consideration

How correlated is your

in silico predictor with the 

desired end-point?

Grisoni, 2023



Oracle: Computational prediction or simulation

Sample Efficiency: How few oracle evaluations are required to optimize the objective?

Increasing predictive accuracy but also computational cost

Drug Discovery

Materials and 
Catalyst Design

Predictive Models
Molecular Docking MMPB(GB)SA Free Energy Calculations

Semi-empirical 
QM

Single-point DFT DFT – Varying Functionals / MD

*Can be accurate but may have 

narrow domain of applicability

Towards Direct Optimization of High-fidelity Oracles 



70

Augmented Memory & Saturn

• State of the art in sample efficiency

Guo, J. & Schwaller, P. JACS Au, 2024.
Guo, J. & Schwaller, P. ArXiv, 2024.

Sample efficiency benchmark (PMO, NeurIPS `22) 

Approaches
from big
machine 
learning 
conferences.

Tackling sample efficiency for high-fidelity 
feedback

RNN-based

10k oracle calls, 23 tasks



Designing a catalyst for the Morita-Baylis-Hillman Reaction

71Seumer et al., Angew. Chem. 2023

Sarina Kopf
(with Nevado group)_

• Better score than best-known catalyst.
• 1k oracle budget, compared to 10k 
• Using Saturn (Jeff Guo)

• 2D SMILES generator → 3D function



72

Guo, J. & Schwaller, P. ArXiv, 2024.

Towards de novo molecular design with experimental validation

- Upgrading bio-based
building blocks

- Improving hits
- Starting from available 

building
blocks in lab

Jeff Guo

Synthesisability & experimental validation is the bottleneck
Saturn’s sample efficiency enables directly optimizing for synthesizability using retrosynthesis models 
(https://arxiv.org/abs/2407.12186)



74

Guo, J. & Schwaller, P. ArXiv, 2024.

It takes two to TANGO – enforcing building blocks in synthesis routes



Learning to make materials with targeted property profiles

Crystal
Unit cell

3D Diffusion
model

Property 
calculation

Reinforcement learning

Lattice

Atom types

Atom positions Rewards:
band gap,
Shear modulus,
formation energy,
etc.Finetuning: Policy gradient with KL regularization

Equivariant
denoising

Junwu Chen

Goal-directed learning for de novo crystal generation

(unpublished, preliminary work)



Crystal Property Optimization

TargetTarget

Target

Target: higher band gap Target: FE lower than -2.0 eV

Target: density = 12g/cm3 Target: Bulk module = 400GPa

Multiple properties

Target

Target

Target: 1) gap = 3.0 eV
2) FE < -1.8 eV



Open scientific agentic systems 
with experimental feedback

109

Query literature
(recent reviews,
publications)

Generate ideas,
hypotheses

Score for novelty
and feasibility

Run experiments
on robotic platform
(or as simulation)

Analyze 
results

Best experiments,
grounded findings.
detailed report.

LLM agent-centered
research system



Summary of whirlwind intro to ML
▪ Many flavours: supervised (examples with labels), unsupervised 

(example without labels), self-supervised (examples with artificial 
labels), reinforcement learning (reward from environment)

▪ Traditional ML (human expert features) → deep learning (features 
learned from data)

▪ You always need training data!
▪ Recent work goes beyond simple regression and classification task. ML 

enables you to generate ideas for novel molecules/materials, synthesis 
routes to never synthesised molecules, etc…

▪ Programming is needed to do ML in Chemistry. 
▪ If you are excited about this direction, this course was only the 

beginning of your journey. 

110



PhD students
Bojana Ranković
Oliver Schilter (IBM Research)
Andres CM Bran
Junwu Chen
Jeff Guo
Victor Sabanza Gil (Luterbacher)
Paulo Neves (Janssen)
Rebecca Neeser (Correia, VantAI)
Sarina Kopf (Nevado)
Daniel Armstrong
Joshua Sin (Roche)
Sacha Raffaud
Sandro Agostini (IBM Research)
Théo Neukomm (Intel/Merck)
Salomé Guilbert (Röthlisberger)
Matt Hart (Trospha)

LIAC Team

>15 nationalities — one team!
https://schwallergroup.github.io

Admin
Annick Delmonaco

Postdocs/Engineers
Zlatko Jončev
Edvin Fako
Jeremy Goumaz

Project students
Shai Pranesh
Octavian Susanu
David Segura
Vu Nguyen
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Funding:



Presentations on 26.05.25 (CM 1 4, 11.15-13h) and 28.05.25 (here, 
11.15-13h).
• 16 May 2025 (end of day, CET): Complete project information -> one 

entry per team in a Google form. We will share the form closer to that 
date. First come, first serve for date preference. 

• 23 May 2025 (end of day, CET): Code repository including Jupyter
notebook-based report. Changes after 23 May 2024 will not be 
considered for grading. The repository will have to be public. 

• 26 and 28 May 2025: Presentations during 2 lectures → more 
information on exact timing will follow, but roughly 4.5 minutes per team.

• Office hours: Thursdays 13h-14h, please write us beforehand
• Any email with project questions should contain CH-200 in the subject, 

and be sent to me and all TAs.
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