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=PFL  Recap of CH-200

The basics Python Advanced Practical
Using the terminal Recap from last year Programming
Git and Github Functions & classes Make reusable code (Python

Environments Pip install and use packages packages)
APls/web scraping

Testing your code

Writing doc strings and
documentation

Creating applications with
streamlit

Cheminformatics
Molecular representations
RDKit as main framework

| hope everyone has leamed sth useful for the future!



=L Exercises gave you practice on different topics

Lecture 1:
Terminal

Lecture 5:
Numpy, Pandas,
matplotlib

Lecture 2:
GitHub & Python
recap

Lecture 3:
Conda

Lecture 7:
RDKIit substructure
matching/conformers

Lecture 6:
RDKIit input/output,
descriptors and fps

Lecture 10:
Copier templates,
tests & coverage

Lecture 9:
HTTP requests &
web scraping

How many of you have done all exercises?

Lecture 4:
Functions, classes,
files

Lecture 8:
Python packages
introduction

Lecture 11:
Visualization &
molecular analysis

Lecture 12:

Web apps with
Streamlit




=PrL

Where to go from now?

= You have a local setup with environments
« Remember one environment per project (otherwise, you might have
dependency issues!)
= Most open-source Python code is a pip install away from you
» Get inspired by blogpost, code repositories, and hopefully, don’t stop coding
©
= You all have encountered the most common issues with Github
» Everyone goes through that at the beginning
* In the future, you will overcome them more efficiently
* There is always a solution (= Google, StackOverflow, and maybe LLMs)



=PFL  Awesome sources of Information

= Pat Walter’s — Practical Cheminformatics Tutorials (highly
recommended!)
(https://github.com/PatWalters/practical cheminformatics tutorials)

= Greg Landrum’s RDKit blog (https://greglandrum.qgithub.io/rdkit-blog/)

» https://github.com/hsiaoyi0504/awesome-
cheminformatics?tab=readme-ov-file#resources



https://github.com/PatWalters/practical_cheminformatics_tutorials
https://greglandrum.github.io/rdkit-blog/
https://github.com/hsiaoyi0504/awesome-cheminformatics?tab=readme-ov-file
https://github.com/hsiaoyi0504/awesome-cheminformatics?tab=readme-ov-file

=PrL  Prof Andrea Volkamers TeachOpenCADD

» https://volkamerlab.org/projects/teachopencadd/

TOO1 Query ChEMBL Query target (£GFr) Query ligand (imatinib) TO11 Query online API TO12 Query KLIFS
webservices
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https://volkamerlab.org/projects/teachopencadd/

7L Qrthe Al for Chemistry course (EPFL, Master)

The rest of the lecture will be a whirwind
Introduction into machine leaming in chemistry.



=PrL

Made possible through
Machine Learning...

* ChatGPT -> Text
* Midjourney -> Image
* elevenlabs.io
-> text to speech
*D-ID
-> image, speech to
video

Total time: 15 minutes!


http://elevenlabs.io/

EPFL i
Programming = machines following code instructi
ons-

o | 80
TG I""" 3 gnad yeopd 4.

P o btk 22
P ean] 1éns).

il sl wiriochuledS




=rrL  Traditional programming
(“Expert system”)

Input x { <>} Outputy

5.5 If grade 4 or higher (x >=4),
3.5 student passes the course. Fail

Predefined human-
written rules
(knowledge base)



=rrL.  [Machine leaming - ability for machines to leam *
without being programmed (from data)

|I||"u||"h,




=PrL S0, let’s make an example.

Whoisthis? Marie Cunrie.




=P7L  Supervised leaming - facial recognition )

Input Output

Goal: learning from inputs to outputs
Needs training data (!)

Marie Curi
TETE e Model => neural networks popular
» Classification task
 How good is my model? Accuracy
Marie Curie

Albert Einstein

Training data



=PrL

Several flavours of ML

Supervised learning
* learning from labelled data
* classification/regression

TYPES OF MACHINE LEARNING

SUPERVISED
LEARNING

H 0O
1
AUD o=
ot aoB
 SELF-SUPERVISED
LEARNING

CH: AV o0
)\H QI% -

Self-supervised learning
* learning by creating labels
from the data you have

» Predict any part of the input from any
other part.
» Predict the future from the past.

» Predict the future from the recent past. T
» Predict the pasi from the present. ﬁ
» Predict the top from the bottom. ﬂ ﬁ
» Predict the occluded from the visible

» Pretend there is a part of the input you «Past Future —

don’t know and predict that. Fresent Slide: LeCun

UNSUPERVISED
LEARNING %

(3
000 »
%L HCI g

REINFORCEMENT
LEARNING

o
OV

\ ><]

Tox

15

Unsupervised learning
* learning from unlabelled data
* patterns and structures

- K-means clustering
and PCA.

Reinforcement learning

* learning by taking actions

in an environment, and getting
rewards



=PrL

Key ingredients for
Machine Leaming

Molecular fingerprints
000010000....0200

Text-based representations
CN1C=NC2=C1C(=0)N(C(=0)N2C)C

Graph-based representations

3D coordlnates
& surface , { Pad

Representations
(machine-readable)

Examples are:

« Molecules & properties
« Chemical reactions

« Synthesis procedures

Data
(garbage in = garbage out)

Linear regression model

Neural networks

And many more..

Models/algorithms

16



=PFL  Deep Learning (neural network-based ML) - why "
did it take off in the last decade?
X

PyTorch
Keras

© PyTorch Lightning

MMMMMMMMMMMMMM

Open research

Immense datasets Cheap compute & frameworks



=PrL

Mam difference...

Traditional machine learning
(requires tabular data)

Texture, colour,

HAND-
.. as tabular data CRAETED
FEATURES m \ 0& @
Or for molecules: \ N
Molecular weight, ﬁﬁ&? &
HOMO-LUMO gap, \L
number of H-donors ouTCcome
42
THE PARADIGM SHIFT

m  Stevens et al., Deep Leaming with PyTorch, 2020

19

Deep learning
(requires a lot of data)

lw/

Raw pixel
values
(o]
\—" Learning
DEEP %W directly
LEARNING from structure:
MACHINE ‘“\3\") - ‘; Het
Qoo A SMILES or
0 P 0 A atomic coord.
REPRESENTATIONS ~ \L

OUTCOME U2



=PrL

Going beyond regression and classification tasks.



=PrL

m Vaswanietal, Neural Machine Translation by Jointly Learning to Align and Translate. NeurIPS, 2017

- Learns translation from examples
- GPT - decoder part

One of the most important neural network "
architectures is the Transformer.
= Google Translate = (@

output X Text B Documen ts @ Websites

- DETECT LANGUAGE ENGLISH SPANISH v & GERMAN FRENCH SPANISH v
|

Models learn the language of X Modelle lernen die Sprache der ¢

cocee organic chemistry. organischen Chemie.
inpu
encoder decoder U a/5000 mm v @) o % <




=PrL  So, why should | care about all thatas achemist? -

Ben Blaiszik
dma " Ben Blaiszik
ﬂq%b Does it feel like you are seeing more impactful #ML and for science i i
" publications? This probably explains it. /7 Computing the YoY growth rates and CAGR (details available in the repo)

’ : - - shows the following.
We've seen strong continued growth in #Al and for science

across a broad set of domains including materials science, chemistry,
physics and more. Percentage Gains in # of matching articles for 2022:

@ Materials Science: 39% more articles than 2021
Domain Chemistry: 27% more articles than 2021
—— Materials Science @ Physics: 29% more articles than 2021
Chemistry
Physics

Domain CAGR-1 (%)

Materials Science 39.1
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=PFL - Chemical design cycle "

What molecule to make? How to make it?

g o s @ ¥
o Design , . Make <

cbo“ ' \ -
Catalysis | ~\ | | Q
A rd Y
Test .
Drug discovery Synthesis planning

Experimental validation
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=<L  Text-based molecule representation - SMILES

SMILES, a Chemical Language and Information System. 1. Introduction to Methodology
and Encoding Rules

DAVID WEININGER
S Medicinal Chemistry Project, Pomona College, Claremont, California 91711

2 Received June 17, 1987

Krenn, Mario, et al. "SELFIES and the future of molecular
string representations.”, Patterns, 2023.

E.g. reaction prediction task as machine translation task (Molecular Transformer — first transformer in Chem)

recursors
P products

output
o0 00O

Language models

F F
\l O
+ | + + )
(0] n

K* K*
0_0000
CC(C)S.CN(C)C=0.FclcccnclkF. input
encoder decoder

O =C ([O-])[O-].[K+].[K+]

B P. Schwaller (@SchwallerGroup)

Schwaller et al., Molecular Transformer — A Model for Uncertainty-Calibrated Chemical Reaction Prediction.
ACS Central Science, 2019



=rrL ML for chemical reactions

reaction classification task yield prediction task PA(OA)2/BINAP,

NH; . O\E/o toluene, Cs2C03 ?
Triflyloxy Buchwald- 91% ~ Y bﬁ :
Hartwig amination \ / forward reaction prediction task

Pd(OAc)2/BINAP, ’p

N ) toluene, Cs2C03 N N .
TR T L O | —— L OX) = 7,

single-step retrosynthesis prediction task

example literature reaction

atom-mapping task l

13

H
N
5 s NH ™ o " Pd(OAC)2/BINAP, 5 % BB \ ~
LI LR N " toluene, Cs2C03 |, 7% OO
3 “ \b — O_18
N Fa/ 5 i N 2 S 5
8 b L

* ® v multi-step synthesis planning task

19
4 19

+ more, such as recipe prediction



=PFL  Trends in Language Models for Chemical Synthesis

33

Fine-tuned large language models LLMs augmented with chemical tools i
_ ) et Other examples: A
Regression Invgrse Chemical synthesis .
design tools Asaistantfor - Clairify (Skreta
chemical synthesis et al )
General task solvers Excels in ! @ Materials design '
Classification LLM-powered IrZ:' data J—) Drug dscovery _ Coscientist
chemical 5, Chemical r .
predictions reasoning * Data analysis (BOIkO et al)
Jablonka et al. NeurlPS ML for Materials, 2022 Bran and Cox et al. ACS Fall Meeting, 2023
Reaction to synthesis procedure 1. MAKESOLUTION with trifluoromethanesulfonic
acid 3,5,8,8-tetramethyl-7,8-dihydronaphthalen-2-yl
ester (0.41 g, 1.2 mmol) and Pd(OAc)2 (0.027 g, 0.12
mmol) and BINAP (0.11 g, 0.18 mmol) and Cs2CO3 (0.56
[ g, 1.72 mmol) and ethyl 4-aminobenzoate (0.25 g, 1.5
. age S Y toluene, Cs2C03 ) mmol) and toluene (5 mL)
MU'tIp'e mOda“tleS \/°\g/©/ - ;>f¥‘b - \/or@ _> 2. ADD SLN
3. STIR for 48 hours at 100° C
4. SETTEMPERATURE room temperature
Vaucher et al. Nature Comm. 2020 2 (P:SQI'?ENTRATE
Vaucher et al. Nature Comm. 2021 7. YIELD product
{ 3
Reaction prediction Retrosynthetic planning Reaction condition prediction
Ny ° Pd(OAC)2/BINAP, ? 3 ? N, o ? R
) toluene, Cs2C03 r(i«ﬁi; — 2 ”\H/@ Lk w,-,o T@/
. . o . . —_— o A LS e ~ Y — e
Single modality | ™ 7(©r e g ! 2 ~
Schwaller et al. ACS Cent. Sci. 2019 Schwaller et al. Chem. Sci., 2020 Gao et al. ACS Cent. Sci. 2018
Pesciullesi et al. Nature Comm. 2020 Thakkar et al. ACS Cent. Sci. 2023 Schilter et al. ACS Fall Meeting 2023
\ J




=PrL

LIAC Highlights



=PFL Augmenting language models with chemistry tools

 Large language models (GPT4/ChatGPT) are bad at chemistry
* There are excellent chemistry tools (but in isolation)

So can what do we do? = ChemCrow

What tools for ChemCrow?

9!

NS, A

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D. White &3 & Philippe Schwaller &3

Nature Machine Intelligence 6, 525-535 (2024) \ Cite this article

35



PFL - ChemCrow’s toolset

Molecule tools

« SMILES to Weight
« SMILES to Price

« SMILES to CAS

« Similarity

(0]
» Modify Mol
\©)LN/\ « Func Groups
K « Patent Check

« Name to SMILES

. RDKit: Open-source cheminformatics. https://www.rdkit.org
PubChem Compound Database htips://pubchem.ncbi.nlm.nih.gov/
. Synspace: hitps://github.com/whitead/synspace

. Molbloom: https://github.com/whitead/molbloom

. Chem-space: https://chem-space.com/

B Philippe Schwaller (@SchwallerGroup)
L]


https://www.rdkit.org/
https://pubchem.ncbi.nlm.nih.gov/
https://github.com/whitead/synspace
https://github.com/whitead/molbloom
https://chem-space.com/

=PrL

B Philippe Schwaller (@SchwallerGroup)

ChemCrow’s toolset

Molecule tools

General tools

« SMILES to Weight
« SMILES to Price
« SMILES to CAS
o « Similarity
» Modify Mol
\©)LN/\ « Func Groups
K « Patent Check
« Name to SMILES

. RDKit: Open-source cheminformatics. hitps://www.rdkit.org

. PubChem Compound Database htips://pubchem.ncbi.nlm.nih.gov/
. Synspace: hitps://github.com/whitead/synspace

. Molbloom: https://github.com/whitead/molbloom

. Chem-space: https://chem-space.com/

. paper-qa: htips://github.com/whit

- Literature Search
« Web Search
 Code interpreter
« Human expert

37


https://www.rdkit.org/
https://pubchem.ncbi.nlm.nih.gov/
https://github.com/whitead/synspace
https://github.com/whitead/molbloom
https://chem-space.com/
https://github.com/whitead/paper-qa/tree/main

=PrL

B Philippe Schwaller (@SchwallerGroup)

ChemCrow’s toolset

Molecule tools

General tools

(0]
» Modify Mol
\©)LN/\ « Func Groups
K « Patent Check

e o o o o o o

« SMILES to Weight
« SMILES to Price

« SMILES to CAS

« Similarity

« Name to SMILES

« Literature Search
« Web Search
 Code interpreter
« Human expert

« RXN to Name
« RXN Predict
« Synth Plan

RDKit: Open-source cheminformatics. https://www.rdkit.org

PubChem Compound Database htips://pubchem.ncbi.nlm.nih.gov/
Synspace: hitps://github.com/whitead/synspace

Molbloom: https://github.com/whitead/molbloom

Chem-space: https://chem-space.com/

paper-qa: htips://github.com/whit

IBM RXN for Chemistry: htips://github.com/rxn4chemistry/rxn4chemistry/

Reaction tools

38


https://www.rdkit.org/
https://pubchem.ncbi.nlm.nih.gov/
https://github.com/whitead/synspace
https://github.com/whitead/molbloom
https://chem-space.com/
https://github.com/whitead/paper-qa/tree/main
https://github.com/rxn4chemistry/rxn4chemistry/

=PrL

B Philippe Schwaller (@SchwallerGroup)

ChemCrow’s toolset

Molecule tools

General tools

« SMILES to Weight
« SMILES to Price

« SMILES to CAS

« Similarity

I « Modify Mol
\©)LN/\ « Func Groups
K « Patent Check
« Name to SMILES

« Safety Assessment
 Explosive Check

« Literature Search
« Web Search

« Code interpreter
« Human expert

« RXN to Name
« RXN Predict
« Synth Plan

Safety tools

. RDKit: Open-source cheminformatics. https://www.rdkit.org
. PubChem Compound Database htips://pubchem.ncbi.nlm.nih.gov/
. Synspace: hitps://github.com/whitead/synspace

. Molbloom: https://github.com/whitead/molbloom
. Chem-space: https://chem-space.com/
. paper-qa: htips://github.com/whi

. IBM RXN for Chemistry: htips://github.com/rxn4chemistry/rxn4chemistry/
. ClinTox: Substance Toxicity Dataset: htips://www.clintox.org/
. GHS Classification: https://pubchem.ncbi.nlm.nih.gov/ghs/

Reaction tools

39


https://www.rdkit.org/
https://pubchem.ncbi.nlm.nih.gov/
https://github.com/whitead/synspace
https://github.com/whitead/molbloom
https://chem-space.com/
https://github.com/whitead/paper-qa/tree/main
https://github.com/rxn4chemistry/rxn4chemistry/
https://www.clintox.org/
https://pubchem.ncbi.nlm.nih.gov/ghs/

=PrL

B Philippe Schwaller (@SchwallerGroup)

ChemCrow

Expert-designed ___
chemistry tools

User-defined

scientific tasks

40



=PrL

B Philippe Schwaller (@SchwallerGroup)

ChemCrow

Expert-designed ___
chemistry tools

Example prompt:
Plan and execute
the synthesis of an
insect repellent.

User-defined
scientific tasks

a1
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B Philippe Schwaller (@SchwallerGroup)

ChemCrow

Expert-designed ___
chemistry tools

Example prompt:
Plan and execute
the synthesis of an
insect repellent.

User-defined
scientific tasks

1. thought
reason, plan

ChemCrow

42
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B Philippe Schwaller (@SchwallerGroup)

ChemCrow

Expert-designed ___
chemistry tools

Example prompt:
Plan and execute
the synthesis of an
insect repellent.

User-defined
scientific tasks

1. thought
reason, plan

ChemCrow

2. action
select tool

43
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B Philippe Schwaller (@SchwallerGroup)

ChemCrow

Expert-designed ___
chemistry tools

Example prompt:
Plan and execute
the synthesis of an
insect repellent.

User-defined
scientific tasks

2. action
select tool

1. thought
reason, plan

ChemCrow

i
use tool

3. action input

4



=PrL

B Philippe Schwaller (@SchwallerGroup)

ChemCrow

Expert-designed ___
chemistry tools

1. thought
reason, plan

—>
Example prompt:
Plan and execute
the synthesis of an
B / analyse

insect repellent.

4. observation

2. action
select tool

ChemCrow

5

use tool
3. action input

User-defined
scientific tasks

45
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=PFL - ChemCrow

Expert-designed ___
chemistry tools 1. thought
reason, plan

2. action
select tool

—>
Example prompt:
Plan and execute
the synthesis of an
. p ana[yse use tool
insect repellent. 4. observation 3. action input

User-defined
scientific tasks

. Yao, S.; React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629 2022,
. Karpas,E. et al. MRKL Systems: A modular, neuro-symboalic archi- tecture that combines large language models, external
knowledge sources and discrete reasoning. arXiv preprint arXiv:2205.00445 2022,

B Philippe Schwaller (@SchwallerGroup)



=PrL

B Philippe Schwaller (@SchwallerGroup)

Use case: Automatic synthesis

Task: Plan and execute the synthesis of an insect repellent

Thought: | need to know which insect repellent to synthesize. | will do a literature search to find a
common insect repellent.

Action: LitSearch 3\
Action input: common insect repellent ) )
Observation: DEET, picaridin, ... <

Thought: | will choose DEET as the insect repellent to synthesize. First | need to get the SMILES
of DEET.
Action: Name2SMILES )

Action input: DEET  J ) \©)OLN/\
N

Observation: CCN(CC)C(=0)c1cccc(C)c1 4 e =

sect ,

a7



=PrL

B Philippe Schwaller (@SchwallerGroup)

Use case: Automatic synthesis

48

Thought: Now that | have the SMILES of DEET, | will plan the synthesis.
Action: RXNPlanner 3\
Action input: CCN(CC)C(=0O)c1cccc(C)c1 )

Observation: RXN4Chemistry:
To make CCN(CC)C(=0)c1cccc(C)c1, follow these steps: Recipe prediction
1. Add 0.3 mL of diethylamine to the reaction vessel.
2. Add 15 mL of dichloromethane to the reaction vessel.
3. Add 3.2 mmol of 3-methylbenzoyl chloride to the reaction vessel at 0°C.
4. Stir the mixture at 25°C for 1 hour [...]

Thought: | have a synthesis plan for DEET. Now | will execute the synthesis.
Action: RXNExecute
Action input: CCN(CC)C(=0)c1cccc(C)c1 J

Observation: Synthesis procedure completed! RoboRXN

Compound Spectra (overtaid)

Compound Summary 10® |G 1: C12 17 N O; 2,695: + FBF Spectrum (1t 2.943-2.954 min) 7a0c76c8b2.d Subtract
Cpd Name Formula CAS RT Mass Mass (Tgt) s it (o)

1 CI2HI7NO 2,695 191.1305 191.1310 6

2 C4HILN 3.405 73.0896 73.0891 L4

12

1
08
06
o4 193.1409

(M+H)+ 194.1426
02 I (MeH)+

197.

NN

[
T T T T T T T T T T T T
1905 191 1915 192 1925 193 1935 194 1945 195 1955 19 1965

Counts vs. Mass-to-Charge (m/z)

T T
198 1985



Synthesizing new molecule

Io
o

Started: Nov 30 2020, 6:49am PT

Live from IBM RoboRXN

fiction 2 Overview
Adding C,H,F.0.S

In this action, the molecule methyl trifluoromethane
sulfonate is added to Reactor 2.

Methyl trifluoromethane @ 3
C.H,F.0,S

Methyl trifluoromethane sulfonate is a brown liquid.
Insoluble in water. This material is a very reactive
methylating agent, also known as methyl triflate.

® NOow
10 mi of reagent containing methyl trifluoromethane

sulfonate is being moved from Vial 61 and added
to Reactor 2.

Position of the robot arm

Moving to Vial 61

00:06:00

-

* LIVE




=Pl Use case: Automatic synthesis IBM Research

= Find and synthesize a thiourea
organocatalyst which
accelerates a Diels-Alder

reaction.
v
F F NP F
Fo|_F F|LF F|LF
s BS F s
2 - NJ\N F W £F O\NJ\N F
3 F H H F @,OH YR N F
2 F F ~
AU

S

Schreiner’s Ricci’s Takemoto’s
Organocatalysts

B Philippe Schwaller (@SchwallerG
i
U
"1
=
@
>
oo



o200 & ChemCrow X I + v

&« > O QO A liacpelt.epfl.ch:8019 & s m® o

x 2. RUNNING... Stop

Find 3 psychedelic substances. what happens when they react with acetic chloride?

Chem Crow

Available tools: 18
Tool Description
# Name2SMILES Input molecule name, returns SMILES.
@ SMILES2Price Input SMILES, returns price of compound.
& Similarity Input two SMILES (sep by .), returns Tanimoto similarity.
# ModifyMol Input SMILES, returns list of modified molecules. Determinist
# PatentCheck Input SMILES, returns if molecule is patented.
# FuncGroups Input SMILES, returns list of functional groups.
@ SMILES2Weight Input SMILES, returns molecular weight.
2 mniacac Inniud CMILES Ar 1 la nama A h




PrL |s automated synthesis a solved problem?

« Supply chain/robotics challenges
« Weak synthesis planning models

Daniel Armstrong & Zlatko JoncCev

thiol group
thiol group - reactive
- reactive pnonty
SH = St SH OH
~o =[] o o= o o = o
. N
ﬁ)H/ i E <) 1,4 benzene
available - - stable 2° amide
- meta directing - stable

- deactivating

Complexity that an

chemist would like to target:

Vitamin B12

* 12 year

» ~90 postdocs, 12 PhD
students

« Eschenmoser, Woodward

alcohol group

- reactive
S OH Br
H,NJLNNZ = o sv}\sr
NaOH NJk(
H available

available

o

= Nk@g = A*@ :A)y@uk(

available

o ©\NH
/\)L 4
a \{H/ - |
AICl EDG )l\(
c
5 - ortho, para directing

Where to disconnect?

available - Friedel Crafts reaction

Typical output of unnamed system More strategic synthesis

available A
- activating

available

plan (including reagents)

https://www.slideshare.net/EngelbertZassl/of-a-landmark-total-synthesis-yet-unpublished-in-full-experimental-detail-vitamin-b12



https://www.slideshare.net/EngelbertZass1/of-a-landmark-total-synthesis-yet-unpublished-in-full-experimental-detail-vitamin-b12

=pFL. Benchmarking LLMs in Chemistry - ChemBench -

& (10&
& &
@’é\ @'b
. N (o S
~Data preparation—— = -Humans K0P 6, ~ Leaderboard —— et
, @ &7
2 . 3
. (>2700 total questions) 19 respondents automatically updated ,\°$ & y
E @ * o o — -
Knowledge Reasoning Intuition 236 diverse questions O;[ @ 0.61 Claude-3.5 (Sonnet) - || ®
GPT-40 | *
semantic annotation M) é chembench.oxg Q«‘ 0.57 Llama-3.1-405B-Instruct |y [
I‘l curation -y g J Q 0.51 Mistral-Large-2 - | ®
. — |
_ 0::9 ~Models @ N PaperQA2 f [ |
peer-reviewed Ve ) Llama-3.1-70B-Instruct == ®
closed-source models topic leaders  overall leaders Llama-3.1-8B-Instruct - | — °
» del @ @ ® @ GPT-3.5 Turbo - | °®
) open-weight models s
=~ corpusin BIG-bench format o) ficd L . .
5 | y 0.0 0.2 0.4 0.6 0.8
diverse settings X
8 J AN ), fraction of correct answers
‘ e e without tools
Analytical o 0.4 5 - °
Chemistry I o1 g ° with tools ° ° Ravia
General ‘i Claude-3.5 (Sonnet) ] i
Fie Toxicity/Safety
Chemistry B GPT-40 g 0.3 o : ° ! ! °
2 . Llama-3.1-405B-Instruct 6 o ° ) i
- ) BN PaperQA2 © 0.2 ° "
el C=
Inorganic Technical : Mistral-Large-2 L 1 L 1 |
Chemistry Chemistry N Llama-3.1-70B-Instruct 0.0 2.5 5.0 7.5 10.0
Llama-3.1-8B-Instruct . . ' et
— e experience in chemistry / y
e, el Il Human (Average)
Materials - Physical
Science Chemistry 19 human experts
Collaboration led Organic https://www.chembench.org

Chemistry

by Kevin Jablonka

= hitps://arxiv.org/abs/2404.01475, Are large language models superhuman chemists?
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Benchmarking beyond multiple choice questions.



ePFL LLMs as chemical reasoning engines

State of LLMs in Chemistry

Chemical  |prompting
research — & in-context %
tasks learning

General-purpose LLMs

Strengths

« Property prediction (Jablonka, 2024)
« Multiple choice questions (Mirza, 2024)
« Agentic workflow (Boiko, 2023; Bran, 2024)

Weaknesses

All chemistry-specific generative tasks,
due to invalid SMILES (Christofidellis, 2022)
and lack of diversity (Jang, 2024).

Discovery: Latest LLMs reason about chemistry
(functional groups & reactions)

¢ LLM as chemical reasoning engines

— Expert query —

< Chemical

N\ Lon Lo « Reactions _— oy =] reasoning LLM
—N " =N « Disconnections ‘ ' k
N s > Boc N N/ - Strategic patterns
N N - Starting materials \
o . oy
» Desired conditions + .
<analysis> <mechanism> ) Y, LLM score: x/10 ®

Protection reaction, o Nucleophilic attack of the

specifically an amine to primary amine on the Boc Traditional ‘ . . .
carbamate conversion anhydride [...] search [ ) v —— LLM-guided strategic solutions
using a Boc protection. o Elimination of tert- algorithm The proposed synthetic route shows excellent

alignment with the query requirements
for several reasons: [...] <score>9</score>

butoxide leaving group [...]
</mechanism>

</analysis>

many solutions

Chemical reasoning in LLMs unlocks steerable synthesis

planning and reaction mechanism elucidation

AM Bran, TA Neukomm, DP Armstrong, Z JonCev, P Schwaller
= arXiv preprint arXiv:2503.08537

N7 '@ .



https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Tz0I4ywAAAAJ&sortby=pubdate&citation_for_view=Tz0I4ywAAAAJ:JoZmwDi-zQgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Tz0I4ywAAAAJ&sortby=pubdate&citation_for_view=Tz0I4ywAAAAJ:JoZmwDi-zQgC
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Steerable synthesis planning

Top-ranked synthetic route

Me

—

= OH Expert query: 15 8 =N\__Br
T e . steps last ste {
H N 9/% Brealk P!tll'imi:i';e U; t’;le p . ) « Natural language
N = early stage but get a = : . i
/©/ \Nr\ /" 7 otherrings from > | \) \I& N L{‘" ;UuthtT ar:.aly5|s
N(\N commercially available Me OHC * Route selection
Me~ \) materials. available available
Weel kinase inhibitor by Merck LLM score: 9/10
Task complexity >
1.0, model ‘
random L
0.8 gpt-4o-mini -
gpt-4o BE

o
o

Corr. of ranks with GT Scores
(=) (=)
N H

Target 1

Target 2

Target 3

deepseek-v3
claude-3-5-sonnet
claude-3-7

Target 4







ePFL Reaction mechanism elucidation

61

claude-3-7-sonnet
l [ l I m claude-3-5-sonnet
. B deepseek-3
Actions: elementary steps g8 - pt-do
-?3’ I gpt-4o0-mini
» Ionization moves « Attack moves g6
. ® o) . o
I, X, i, X, 7]
o (i, x, y) °® P (i, x, y) o 24
; ) ) ; B2
I, X, L X,
. U (i, x,y) ‘@ X (i, x,y) S §
0
u #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11
Nu. attacks Acetalizations Task Michael add. Miscellaneous
Task #1: Task #2: Task #3:
Nu attack of NH, on cyclohexanone: Selective Nu attack of NH, on dione: Selective Nu attack of NH, on dione: 7

== Nucleophilic additions

== Acetalizations == Michael addit

o o © O  4mov. HN OHO o o  4mov. o o
e O¢ 4 mos OLNHZ NH3+MQ\)U]\MQ - MeMMa NH + Me we Ma\)J\)<r:‘|:2
Task #4: Task #5: Task #6:
Hemiacetal formation: Hemiacetal to Acetal: Intramolecular acetal formation:
OH 4 mov. Me H,0 ° 8 °
+ w 4mov. U, Mo + P e e mov. Mo  H0
M"/FO H Me)\O’Me H Me)\O Mo_on ——= Mo Ao Me T M Ho\/\:H AL EO></M° o
Me —OH
Task #7: . X i Task #9: Task #11:
Enolate Formation + Michael Additon: Borohydride reduction of ketone: Wittig Reaction:
Moo O 12 MoV, Meoc OH o 8 mov.
c> . go A 2—@' Cr A 4 mov. O\ 4w =0+ =PH — + HP=0
MeO, T Meoy NaBH o-BHe
OH" laBH,
Task #8: Task #10 Task #12
Tautomerisation + Michael Addition: : :
Acyl chloride formation with SOCl.: Transformation of molozonide to ozonide:
o o o
8 mov. b
Ph/\)J\OH 14 mov. Fn/\)l\m , Hel d‘o_> - d\}
*  socl, S0,

ions Miscellaneous reactions

Prompt I I

R Without expert description
Il With expert description

gpt-do
mini

gpt-4o deepseek-3 claude-3.5 claude-3.7

Sonnet Sonnet
Model

Expert reaction description
in prompt helps weaker
models.
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Gold standard would be
experimental validation.

But it takes time...



=PFL | have 5 different parameters to adjust for my "
reaction - how shouild | tune them?

= Bayesian Optimization (using ML model to guide experiments) is
currently popular for optimizing chemical reaction conditions/procedures

o°°

Article | Published: 03 February 2021 A
. o ° . . . Obtaln

Bayesian reaction optimization as a tool for chemical D

L3
synthesis Q Q‘
Benjamin J. Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus |. Martinez Alvarado, Until convergence x O

] iaai & (Re)/Train the Select the
Jacob M. Janey, Ryan P. Adams ™ & Abigail G. Doyle surrogate model next experiment

—\

Nature 590, 89-96 (2021) | Cite this article

65k Accesses | 372 Citations | 183 Altmetric | Metrics

Optimise the acquisition function
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=L ML for linking synthesis to outcome

Can we design Cu nanocrystals with a particular shape (=> reactivity)?

@ Surface Energy
Previous N - ® Initial Training Points ‘
e ——— ————- v s oo e e - . 8 .o nitial Traini oinf
lab experiments %, Literature LE % Model Suggestions
00, ® Known Cubes
Electronic Lab X - lterations 1-6
Notebooks °{'; ? ‘ B |
O] % g =
> & r r
; . L ) ==
: Bayesian optimization 4 % 8 ‘ -
ﬂ approach for Y
. @ machine-learning @ . -
= based control of )
Experimental Machine-Learning °
= Validation nanocrystal shapes Readable Data IS 1, .
3 5 ® - o . y
5 $, b 8
g &\«\‘ $0 Ld
s & .
3 2 # -
o (2
® Ong Machine @ y t-SNE map Iterations
- Learning Models
2
E:
S
()
o . . . _— .
A holistic data-driven approach to synthesis predictions of colloidal nanocrystal shapes . "
- Bojana Rankovic

LEF Zaza, B Rankovic, P Schwaller, R Buonsanti (JACS)


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Tz0I4ywAAAAJ&sortby=pubdate&citation_for_view=Tz0I4ywAAAAJ:wbdj-CoPYUoC
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B P. Schwaller (@SchwallerGroup)

Multiple syntheses lead to the same outcome ”
(ground truth not unique)

Time Temp. Heat. ramp CuBr TOPO Structure Synthesis
(min) (°C) (°C/min) (mmol) (mmol) * One-to-many °
285 161 o= mmmm e e e
0 065 3B &H
15 3.00
280 / \
/0.60 275
o /“‘“ ’ il Elton Pan (NeurlPS 2024,
" 225 Al4Mat workshop)
* 270 12 2.00
5 3 1 4 1.75
4 \ s
\\\ 265 10 l(, 1 50
\ / 045 25
30 b1 o 917 %

Time Temp. Heat.ramp CuBr CuCl Cul TOA TMP TOP

(min) (°C) (°C/min) (mmol) (mmol) (mmol) (mmol) (mmol) (mmol)
1 1.4 .
320 /\ 0 ‘ 515 1.0 | %
60 1.2
/ 13 e 6 0.10 5 /
200 ~ ; 0.8 !
50, |\ 1o 5- ' | tetrahedral
1280 12 0.08 4.0 /
‘ 08 0.4 06 4 /
40 260+ 0.06
06 35
1 03 oo 04 |
30 40 04 \
0.2 3.0
2%0 10 02 ob2 0.2-
B . 0.0 669 R 0.0M

------- Unseen Syntheses from Dataset = ——— BO Discovered Syntheses



=P7L  Discovering a new shape (rhombic dodecahedral)

B P. Schwaller (@SchwallerGroup)

a Observed Shape

@ £ k‘
® & @

Initial Suggestions

- . O
b T = &% O
e 9P@®

- ; & - -
:‘*h 3 h £ ‘zﬁl

TEM '

= L .
v
5
4
XRD
Cu (111)
5 ’ ‘ ‘
s
& Cu (200) ‘ ‘ ‘
s I | } | | ! ‘
E Cu (220) ; ‘ , | (
~.._~J'...._.._)L.... | e T O | Y S S M"m MWW ...JL..MJL..-J I e——
40 45 50 75 | 40 45 50 75 |40 45 50 75 |40 45 50 75 |40 45 50 75 40 45 50 75 |40 45 50 75
26 (deg) 26 (deg) 26 (deg) 26 (deg) 26 (deg) 26 (deg) 26 (deg)
1-2 3 4 5 6 7-8 9 -
Iterations
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What molecule to make? How to make it?

Design , . Make

' Q
'
~

Test

Experimental validation



=L Generating novel molecules with desired properties -

Transfer learning

C, ChEMBL 2.7M molecules

1. pre-training  _-----=-~__

Focused
training data

Distribution learning
= Grisoni, 2023

Reinforcement learning

design

(o]
1. de novo ><ji)j)(on (‘N)”
N
@
N\

o~ L0

OH

2. score
designs

scoring function

3. update
model

Goal-directed learning

Key Consideration
How correlated is your
in silico predictor with the

desired end-point?



=L Towards Direct Optimization of High-fidelity Oracles *l}g

Oracle: Computational prediction or simulation

Sample Efficiency: How few oracle evaluations are required to optimize the objective?

Increasing predictive accuracy but also computational cost |

Drug Discovery Molecular Docking MMPB(GB)SA Free Energy Calculations

Predictive Models “ A g’,\'\\;@é“jig &8
m /\ @ O Opentye RS
@) Schrodinger
narrow domain of applicability

*Can be accurate but may have

Materials and Semi-empirical Single-point DFT DFT - Varying Functionals / MD
Catalyst Design am

KN @




=P7LTackling sample efficiency for high-fidelity

rugme RERARARK o

- State of the art in sample efficiency

Reinforcement
Learning

Genetic Algorithm

Crossover
Mutate

Replay

o
)
9]

Oracle Cache

SMILES
Augmentation
0=C(C1=CNC=C1)C2=CC=CN=C2

Compute
Reward
Canonicalized Cached

SMILES Rewards

0=C(c1c[nH]cc1)clecencl
clence(C(c2¢[nH]ee2)=0)c1
€1(C(=0)c2ccenc2)ce[nHcl

o o
¥ 0851

Generate

m Guo, J. & Schwaller, P. JACS Au, 2024.
Guo, J. & Schwaller, P. ArXiv, 2024.

¥

Sample efficiency benchmark (PMO, NeurlPS “22)

Model

Augmented Memory
REINVENT [4]

SynNet [8] [ICLR "22]
DoG-Gen [9] [NeurIPS "20]
DST [10] [ICLR “22]

MARS [11] [ICLR “21]
MIMOSA [12] [AAAL "21]
DoG-AE [9] [NeurIPS "20]
GFlowNet [13] [NeurIPS "21]
GA+D [14] [ICLR 20]
GFlowNet-AL [13] [NeurIPS "21]

JT-VAE [15] [ICML "18]

Rank (/30) Score

1 15.002
RNN-based
2 14.016
12 11.498 N\
13 11.456
15 10.989
Approaches
16 10.989 .
from big
17 10.651 machine
20 9.790 > learning
21 9.131 conferences.
22 8.964
27 8.406
28 8.358

10k oracle calls, 23 tasks

70



EPFL Designing a catalyst for the Morita-Baylis-Hillman Reaction

= Seumer et al,, Angew. Chem. 2023

* 1k oracle budget, compared to 10k
* Using Saturn (Jeff Guo)

( N
Morita-Baylis-Hillman Reaction
(@) @) OH O
U MeOH
OMe + Ar —»  Ar OMe
NR3
\ J
o SN
( ts_scoring L \ Mg;efl\‘?:s:cl’alytﬁs L~ JJ\ | _
Rate limiting 100 ey e va NN
4 transition state i3 By SN N
) | H-bond Donor
> H Amine to stabilize TS
S . for MBH Rigidified linker
qc, reaction to position H-bond donor
()]
L ( - = we *2D SMILES generator - 3D function
Reactants i
Y Reaction coordinate « Better score than best-known catalyst. @ Sarina Kopf
(with Nevado group)

n



EPFL Towards de novo molecular design with experimental validation N %

Synthesisability & experimental validation is the bottleneck
Saturn’s sample efficiency enables directly optimizing for synthesizability using retrosynthesis models
(https://arxiv.org/abs/2407.12186)

Case 1: Starting-material constrained Node legend
o Generated O Non-purchasable
Molecule Intermediate . .
- Upgrading bio-based
O Commercial D Enforced bUIIdlng blocks

Building Block Building Block
- Improving hits
- Starting from available

O building
O do o blocks in lab
of
af 0 o° @

Case 2: Intermediate constrained Case 3: Divergent synthesis {} A Q,d
Jeff Guo

]
Guo, J. & Schwaller, P. ArXiv, 2024.



EPFL It takes two to TANGO - enforcing building blocks in synthesis routes 3 %

Commonly | Divergent
Enforced Blocks | Enforced Blocks
I NH; F. HN
N-NH2 2] 0
| @Cuﬁ \©\/‘LNI°HO muwu K/"\@/Q Y\(Q
° ":C‘ 7 | 3 H _N NN
NN‘QJ)LOH Q & ’(E\/O I H o
N.
o 0. Nj/.@ )/O
LG oY o Y g
----------- I--—-----—----------—-----
Starting-material
) Divergent Synthesis
Constrained 8 Y
- DS:-10.8 (A =-2.3)
i oy o (0 S
i /@VO ] QED: 069(A=-019) \Q\)L IH ()"Q
DN ° SRR TS

uoo

I

|

I

I

1

I

o |
DS: 0.3 DS: 0.1 |

QED:0.85 QED: 0.87 | O O | OO
o | Bsezn \ A@ SR,

I

|

|

|

|

|

I

I

I

I

o D Jk
o ek, ii) ~— V0o el &
ﬂ\/{) v O 1§ 3 H o u,((}—%

DS: -8.5 QED: 0.88 (—n NJ\

/ Y\
HN HN

DS:-10.2 (A=-1.7
DS:-10.1 (A = -1.6) % QED: 0,91((A = 0.0)3)

QED: 0.91 (A =0.03)
O
W s

DS:-9.3 DS:-9.1
QED: 0.76 QED: 0.90

N
T

o§/[}\

P .
U\/KH J W \O\ju gum

DS:-10.4 (A =-1.9)
QED: 0.73 (A = -0.15)

74
Guo, J. & Schwaller, P. ArXiv, 2024.



=PFL  Goal-directed leaming for de novo crystal generation

Learning to make materials with targeted property profiles

Equivariant Crystal Junwu Chen
denoising Lattice Unit cell
) @ o
3D Diffusion >  Atom types :> | |:> Propeﬁy
model | Paw calculation
A -
Atom positions Rewards:
band gap,
Shear modulus,
formation energy,
Finetuning: Policy gradient with KL regularization etc.
Reinforcement learning
@ @ e of® »
K2NaYCl6 DyMo6S8 Cs2Fe2Ni2F12 HoMn4Cu3012 LiCeHg2

® (unpublished, preliminary work)
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Density (g/cm3)

Band gap (eV)

—_
N
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()]

Target: higher band gap

(e}
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LOOP

Target: density = 12g/cm3
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Crystal Property Optimization
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Open scientific agentic systems
with experimental feedback

Generate ideas,
hypotheses

Score for novelty
and feasibility

Query literature

(recent reviews,

publications) ’

Analyze \Y .

results I I l
B

Best experiments,
grounded findings.
detailed report.

Run experiments
on robotic platform
(or as simulation)

LLM agent-centered
research system

109
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Summary of whirlwind intro to ML

= Many flavours: supervised (examples with labels), unsupervised
(example without labels), self-supervised (examples with artificial
labels), reinforcement learning (reward from environment)

= Traditional ML (human expert features) - deep learning (features
learned from data)

= You always need training data!

= Recent work goes beyond simple regression and classification task. ML
enables you to generate ideas for novel molecules/materials, synthesis
routes to never synthesised molecules, etc...

= Programming is needed to do ML in Chemistry.

= If you are excited about this direction, this course was only the
beginning of your journey.
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LIAC 7eam

PhD students

Bojana Rankovic

Oliver Schilter (IBM Research)
Andres CM Bran

Junwu Chen

Jeff Guo

Victor Sabanza Gil (Luterbacher)
Paulo Neves (Janssen)

Rebecca Neeser (Correia, VantAl)
Sarina Kopf (Nevado)

Daniel Armstrong

Joshua Sin (Roche)

Sacha Raffaud

Sandro Agostini (IBM Research)
Théo Neukomm (Intel/Merck)
Salomé Guilbert (Réthlisberger)
Matt Hart (Trospha)

Funding:

>15 nationalities — one team!
https: //schwallergroup github.io

\11% Catalysis 1* g, IBM Research Janssen)' - -

Admin
Annick Delmonaco

Postdocs/Engineers
Zlatko JonCev
Edvin Fako

Jeremy Goumaz

Project students
Shai Pranesh
Octavian Susanu
David Segura

Vu Nguyen



=PrL Presentations on 26.05.25 (CM 1 4, 11.15-13h) and 28.05.25 (here, '

11.15-13h).

- 16 May 2025 (end of day, CET): Complete project information -> one
entry per team in a Google form. We will share the form closer to that
date. First come, first serve for date preference.

- 23 May 2025 (end of day, CET): Code repository including Jupyter
notebook-based report. Changes after 23 May 2024 will not be
considered for grading. The repository will have to be public.

« 26 and 28 May 2025: Presentations during 2 lectures - more
information on exact timing will follow, but roughly 4.5 minutes per team.

« Office hours: Thursdays 13h-14h, please write us beforehand

« Any email with project questions should contain CH-200 in the subject,
and be sent to me and all TAs.
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