
Machine-
actionable
data & GUIs

Practical Programming
in Chemistry

Prof. Philippe Schwaller

- Motivation for this course

- Machine-readable data

- Interactive applications

This lecture
2

▪ This course prepares you for the future.

▪ The earlier you get in touch with practical programming in chemistry
the better (you might not realise, yet), but even if you don’t program
yourself, you will work with people who do.

▪ Even if you do a purely experimental degree, programming will help
you do more structured data analysis. A handful of experiments are
also chemical data.

▪ Github, code, programming – all scary if you have never done it. But
once you get into it (with a proper local setup), it’s not that difficult to
learn more.

▪ With what you’ve seen and done so far, you are more advanced than
90% of graduated chemistry students.

The Age of Digital Chemistry
3

▪ “It is not that machines are going to replace chemists,” said Derek
Lowe, a longtime drug discovery researcher and the author of In the
Pipeline, a widely read blog dedicated to drug discovery. “It's that the
chemists who use machines will replace those that don’t.”

▪ This practical programming course gives you the basic tools and
knowledge to be able to use machines and computers efficiently.

The Age of Digital Chemistry
4

At the end of this course, some of you (hopefully all)
will be much better at programming than I was in my
Bachelor.

5

Code from my Bachelor (→ it looks terrible)
6

Even as experimental chemists – you’ll plot graphs and
analyze your data →Programming empowers you!

7

https://pythoninchemistry.org/reproducible-analysis

https://pythoninchemistry.org/reproducible-analysis

Fully reproducible project reports
8

Reproducible figures and
data analysis – that’s awesome!!

- Everything you learned in terms of

plotting, analyzing chemical data,

streamlining data processing will
help you throughout your degree.

- If you have to process multiple data files

(e.g. excel tables), why not write the code

ones and apply it to them, and get much
more appealing plots.

https://github.com/arm61/lipids_at_airdes/

https://github.com/arm61/lipids_at_airdes/

The same principles for programming hold true for
chemistry.

– the more reusable/reproducible your experiment,
the more impactful will be.

9

▪ Chemistry data is published in non-
machine-actionable formats (pdfs
and ChemDraw are not fully
machine-actionable)

▪ Not machine-actionable, means you
need to extensive human
intervention extract the
information.

▪ Knowledge is lost or tedious to get
back

▪ No negative data is published,
We learn better by having access
to positive and negative examples.

▪ Electronic lab notebooks are super
valuable, if you capture all
information.

Open Science Challenges in Chemistry
10

▪ If the information is incomplete or badly referred from the beginning, the
best extraction model cannot recover the information.

Failed project: Automatically extracting
information on total syntheses from pdfs.

11

FAIR data
12

Adding all reaction information and metadata as
.csv file

13

Can easily be created, if you are using an
electronic laboratory notebook and saving

all the information.

Change of topic.

Making your Python code into an app.
→Creating a graphical user interface (GUI)

14

▪ Desktop applications are software programs that are installed on a
specific computer or workstation and run on the operating system of
that machine.

▪ Web applications are hosted on local/remote servers and accessed
(over the internet) using a web browser.

▪ VS Code (desktop) / Jupyter lab (browser-based)

Desktop vs Web applications
15

https://realpython.com/python-gui-tkinter/

https://realpython.com/python-gui-tkinter/

▪ Tkinter: This is the standard GUI toolkit for
Python. It is simple to use for small
applications and comes pre-installed with
Python, making it a great choice for
beginners.

▪ Other libraries

• PyQt or PySide: These are set of bindings for
the Qt application framework. They are more
powerful than Tkinter and suitable for complex
applications but have a steeper learning curve.

• wxPython: This is another option for creating
cross-platform desktop applications, known for
having native look and feel.

Desktop GUIs with Python
16

https://github.com/TomSchimansk
y/CustomTkinter/blob/master/exa
mples/complex_example.py

https://github.com/TomSchimansky/CustomTkinter/blob/master/examples/complex_example.py
https://github.com/TomSchimansky/CustomTkinter/blob/master/examples/complex_example.py
https://github.com/TomSchimansky/CustomTkinter/blob/master/examples/complex_example.py

▪ Temperature converter app

Example of Tkinter
17

https://realpython.com/python-gui-tkinter/#building-a-
temperature-converter-example-app

https://realpython.com/python-gui-tkinter/
https://realpython.com/python-gui-tkinter/

CMD + V for chemistry: Image to chemical
structure conversion directly done in the clipboard

18

Based on rumps: https://rumps.readthedocs.io/en/latest/
https://github.com/O-Schilter/Clipboard-to-SMILES-Converter

(I’m not claiming this is a well designed repository)

(for the moment Mac only, windows version in the making)

https://rumps.readthedocs.io/en/latest/
https://github.com/O-Schilter/Clipboard-to-SMILES-Converter

▪ What is more common to demonstrate simple Python projects are web-
based apps.

▪ Advantage: Platform Independence. They can be accessed from any
device or operating system that supports a compatible web browser.

Web-based GUIs in Python
20

https://towardsdatascience.com/gradio-vs-streamlit-vs-dash-vs-flask-d3defb1209a2

https://towardsdatascience.com/gradio-vs-streamlit-vs-dash-vs-flask-d3defb1209a2

▪ Gradio is specifically built with machine learning models in mind. So if
you want to create a web UI specifically for a machine learning model
that you built, Gradio’s simple syntax and setup is the way to go.

▪ Streamlit is useful if you want to get a dashboard up and running
quickly, and have the flexibility to add lots of components and controls.
As well, Streamlit allows you to build a web UI or a dashboard much
faster than Dash or Flask. → what we will use in the exercises

▪ Dash if you want to be a production-ready dashboard for a larger
company, since it’s mainly tailored for enterprise companies.

▪ Flask if you have knowledge of Python/HTML/CSS programming and
you want to build your own solution completely from scratch.

More details
21

https://towardsdatascience.com/gradio-vs-streamlit-vs-dash-vs-flask-d3defb1209a2

https://towardsdatascience.com/gradio-vs-streamlit-vs-dash-vs-flask-d3defb1209a2

▪ Mainly coded by a chemistry undergrad in 24h

Example from last year’s LLM in
Chemistry/Materials Hackathon

23

https://github.com/mlederbauer/glossagen/blob/feat/4-gui/src/glossagen/app.py

Magdalena Lederbauer

Made with Gradio.

https://github.com/mlederbauer/glossagen/blob/feat/4-gui/src/glossagen/app.py

Streamlit

24

https://streamlit.io

https://streamlit.io/

▪ Create an app.py file with

▪ And run `streamlit run app.py`

▪ Use st.write(any variable) to show in text, dataframes, images, ... in the
app → it’s like a print(), just for streamlit webapps

Streamlit – probably the fastest way of getting a
browser-based UI

25

st.write(matplotlib_figure)st.write(“Hello world”) st.write(df)
https://www.youtube.com/wat
ch?v=vIQQR_yq-8I

https://www.youtube.com/watch?v=vIQQR_yq-8I
https://www.youtube.com/watch?v=vIQQR_yq-8I

st.write is simple, but for more control there are
more specific functions

26

Reasonably good looking JSON viewer.

Instead of having to write HTML/Javascript code,
you get this out of the box.

27

https://docs.streamlit.io/develop/api-reference

https://docs.streamlit.io/develop/api-reference

Status elements
28

Streamlit-ketcher (molecule drawing frame)
30

https://github.com/mik-laj/streamlit-ketcher --> pip install streamlit-ketcher

https://github.com/mik-laj/streamlit-ketcher

31

https://chemplot.streamlit.app https://github.com/mcsorkun/ChemPlot-web

This week’s exercises
34

▪ To get a starting project structure, you can do it yourself, but if you want
some help use https://github.com/schwallergroup/copier-liac-minimal

Recommendation for the project
35

Best in a separate environment (e.g. copier), as you don’t want the copier dependencies to
interact with your project dependencies.

https://github.com/schwallergroup/copier-liac-minimal

36

License → How the code can be reused (e.g. MIT, default).

Readme → Your landing page, quick intro, how to install,

example usage of core functionality

data → If not too large, directly in the repository. Otherwise,

exact instructions how to get the data.

docs → You can compile a documentation from the doc strings

if you want. Uses sphinx.

notebooks → There can be multiple notebooks, but it should be

clear which one is the project report.

pyproject.toml → Define the dependencies, make sure the

package is pip installable.

src/package_name → one .py file per module (a single module

package is fine, if it makes sense)

tests → one test_*.py file per module, try to test all the functions

in the module

tox.ini → automation settings to run the tests

If you create an app.py, either in root folder or create app folder.

Use google/stackoverflow/… (or your favourite
language model)

But make sure you understand what you are
copying.
→programming is learned by doing mistakes
and iterating

37

	Slide 1: Machine-actionable data & GUIs
	Slide 2: This lecture
	Slide 3: The Age of Digital Chemistry
	Slide 4: The Age of Digital Chemistry
	Slide 5: At the end of this course, some of you (hopefully all) will be much better at programming than I was in my Bachelor.
	Slide 6: Code from my Bachelor ( it looks terrible)
	Slide 7: Even as experimental chemists – you’ll plot graphs and analyze your data  Programming empowers you!
	Slide 8: Fully reproducible project reports
	Slide 9: The same principles for programming hold true for chemistry. – the more reusable/reproducible your experiment, the more impactful will be.
	Slide 10: Open Science Challenges in Chemistry
	Slide 11: Failed project: Automatically extracting information on total syntheses from pdfs.
	Slide 12: FAIR data
	Slide 13: Adding all reaction information and metadata as .csv file
	Slide 14: Change of topic. Making your Python code into an app.  Creating a graphical user interface (GUI)
	Slide 15: Desktop vs Web applications
	Slide 16: Desktop GUIs with Python
	Slide 17: Example of Tkinter
	Slide 18: CMD + V for chemistry: Image to chemical structure conversion directly done in the clipboard
	Slide 20: Web-based GUIs in Python
	Slide 21: More details
	Slide 23: Example from last year’s LLM in Chemistry/Materials Hackathon
	Slide 24: Streamlit
	Slide 25: Streamlit – probably the fastest way of getting a browser-based UI
	Slide 26: st.write is simple, but for more control there are more specific functions
	Slide 27: Instead of having to write HTML/Javascript code, you get this out of the box.
	Slide 28: Status elements
	Slide 30: Streamlit-ketcher (molecule drawing frame)
	Slide 31
	Slide 34: This week’s exercises
	Slide 35: Recommendation for the project
	Slide 36
	Slide 37: Use google/stackoverflow/… (or your favourite language model) But make sure you understand what you are copying.  programming is learned by doing mistakes and iterating

