S am

- Debugging,
= dimesionality
.- reduction,
-, clustering

Practical Programming
in Chemistry - .

Prof. Philippe Schwaller

[=

=PrL

B NAME EVENT/NAME PRESENTATION

Impact of this course beyond EPFL ©

«b Philippe Schwaller (he/him)

This is an awesome package!

Fun fact: When first released, it was not a Python package, so | took it as
a perfect example for my Practical Programming in Chemistry course at

EPFL_CHEM Tweet, and walked my Bachelor students through the
changes to make it a pip installable package. Those changes were later
merged into the official Rxn-INSIGHT 4

Keep up the excellent work, Dobbelaere!

-"ﬁ‘? Maarten Dobbelaere

Rxn-INSIGHT 0.1.2 is out now, and the reaction analysis package is slowly
growing! #

The new version includes two new modules, ord and molecule, which enable
direct integration with OpenReactionDatabase and PubChem. Plus new
tutorials in the docs! ...

" Maarten Dobbelaere

Thanks for the shoutout, @ vlir! Indeed, the GitHub repository was a
supporting information code dump rather than something useful, just
because we had never made or considered making packages. Like this,
your course definitely taught me things, too. The power of open source!

Pushkar Ghanekar

Thank you! This is indeed a lovely package and world is a better place to

have it as a pip installable :)

Speaker

=PrL

B NAME EVENT/NAME PRESENTATION

This lecture

= | have an error, what do | do - debugging

= Back to more chemistry and cheminformatics-related examples.
* Visualizing chemical space
* Clustering

Speaker w

<

=PrL

19xeads

Debugging code

NOILVYLNIS3dd INVN / LNIAT IANVN B

=PrL

B NAME EVENT/NAME PRESENTATION

Python Debugger (pdb) or ipdb

= Python comes with a built-in debugger called PDB (Python Debugger).

It allows you to pause the execution of your Python code, inspect
variables, and step through your code line by line to find and fix
ISsues.

import pdb

def example_function(x, y):
pdb.set_trace()
result = x + y
return result

https://www.freecodecamp.ora/news/python-debugging-
handbook/#:~:text=Python%20comes%20with%20a%20b
uilt,t0%20find%20and%20fix%20issues.

Speaker

https://www.freecodecamp.org/news/python-debugging-handbook/
https://www.freecodecamp.org/news/python-debugging-handbook/
https://www.freecodecamp.org/news/python-debugging-handbook/

B NAME EVENT/NAME PRESENTATION

Setting breakpoints

(x, y):

pdb.set_trace()
result = x + y

urn result

[In [2]: example_function(1, 2)

> <ipython-input-1-ef9c75f1e903>(5)example_function()
-> result = x + y

(Pdb) B

Speaker L

=PrL

B NAME EVENT/NAME PRESENTATION

Basic commands

= Once you have stopped at a breakpoint, how can you navigate around
In your code.

= n (next): Continue execution until the next line in the current function is
reached. If the current line contains a function call, it will not step into
the called function.

= ¢ (continue): Continue execution until the next breakpoint is
encountered.

= S (step): Execute the current line of code and stop at the first possible
occasion (either in a function that is called or at the next line in the
current function).

= g (quit): Exit the debugger and terminate the program.

Speaker ~

B NAME EVENT/NAME PRESENTATION

Debugging a Jupyter notebook in VSCode

Run by Line

Run by Line lets you execute a cell one line at a time, without being distracted by other VS Code debug
features. To start, select the Run by Line button in the cell toolbar:

> 5= Dy Dy B - W
=5
O L f multiply by two(x):
print(f"multiplying {str(x)} by 2")
eturn x*2
print(multiply by two(x))
< Python

Use the same button to advance by one statement. You can select the cell Stop button to stop early, or
the Continue button in the toolbar to continue running to the end of the cell.

Speaker

https://code.visualstudio.com/docs/datascience/jupyter-notebooks
https://code.visualstudio.com/docs/datascience/jupyter-notebooks

B NAME EVENT/NAME PRESENTATION

Debug cell or .py code

If you want to use the full set of debugging features supported in VS Code, such as breakpoints and the
ability to step in to other cells and modules, you can use the full VS Code debugger.

Start by setting any breakpoints you need by clicking in the left margin of a notebook cell.
Then select the Debug Cell button in the menu next to the Run button. This will run the cell in a

debug session, and will pause on your breakpoints in any code that runs, even if it is in a different
cell ora .py file.

D v

e

Debug Cell Ctrl+Shift+Alt+Enter

LLLA S = N L-LtJ.Ly—L/y_LVV\J\/\/ B
print('multiplying ' + str(x) + ' by 2'")

return x*2

print(multiply by two(x))

=Pr

B NAME EVENT/NAME PRESENTATION

Youtube video (11 min) on Debugging Python with
VSCode - easy steps to follow (optional)

teSt.py X

C test.py
a = 33

b = 200

J' Breakpoint > a:
4 print("b is gr

Setting a breakpoint in VSCode is equivalent to writing a line with “pdb.set_trace()”

Spe

https://www.youtube.com/watch?v=b4p-SBjHh28

=PrL

Accessing the documentation in Jupyter notebooks

16

Spe

=PFL Accessing the documentation in Jupyter notebooks

help(Chem.MolFromSmiles)
Help on built-in function MolFromSmiles in module rdkit.Chem.rdmolfiles:
MolFromSmiles(...)
MolFromSmiles((object)SMILES, (SmilesParserParams)params) -> Mol :
Construct a molecule from a SMILES string.
ARGUMENTS:
— SMILES: the smiles string
- params: used to provide optional parameters for the SMILES parsing

RETURNS:

a Mol object, None on failure.

C++ signature :
RDKit::ROMolx MolFromSmiles(boost::python::api::object,RDKit::SmilesParserParams)

Alternative: Chem.MolFromSmiles(+ "TAB”
This will also open the documentation.

B NAME EVENT/NAME PRESENTATION

[=%
-~

Speaker

=PFL Accessing the documentation in Jupyter notebooks

B NAME EVENT/NAME PRESENTATION

MolFromSmiles((object)SMILES [, (bool)sanitize=True [, (dict)replacements={}]]) —> Mol :
Construct a molecule from a SMILES string.

ARGUMENTS:
— SMILES: the smiles string

- sanitize: (optional) toggles sanitization of the molecule.
Defaults to True.

- replacements: (optional) a dictionary of replacement strings (see below)
Defaults to {}.

RETURNS:

a Mol object, None on failure.
The optional replacements dict can be used to do string substitution of abbreviations
in the input SMILES. The set of substitutions is repeatedly looped through until
the string no longer changes. It is the responsibility of the caller to make sure
that substitutions results in legal and sensible SMILES.
Examples of replacements:

cc{qQ}C with {'{Q}':'0CCO'} —> cCCOCCOC

C{A}C{Q}C with {'{Q}':'0Cco', '{A}':'C1(CC1)'} —> CC1(CC1)COCCOC

c{Ayc{Q}C with {'{Q}':'{Xrcc{X}', '{A}':'c1cc1', '{X}':'N'} —> CCI1CC1CNCCNC

| learned something new - you can pass it a replacement dictionary.

=y
[

Speaker

=PrL

Visualization tools in chemistry

“Hey, this exists, check it out in more
details if interested.”

=PrL

B NAME EVENT/NAME PRESENTATION

pymol - https:// github.com/ schrodinger/pymol-
open-source

= Paid version maintained by Schrodinger,
but open source version available

* Pip installable

= Software for molecular and biomolecular
visualization

= Good for images

= Built on python
* Intuitive interface
» Easy scripting
« But... defaults aethetics not great
= Style guides:
. ?E)tepag/fgist.github.com/bobbypaton/lcdc4784f3f08374467bae58b4

« https://www.blopig.com/blog/2024/12/making-pretty-pictures-in-
pymol-v2/

N
>4

Speaker

https://gist.github.com/bobbypaton/1cdc4784f3fc8374467bae5eb410edef
https://gist.github.com/bobbypaton/1cdc4784f3fc8374467bae5eb410edef
https://www.blopig.com/blog/2024/12/making-pretty-pictures-in-pymol-v2/
https://www.blopig.com/blog/2024/12/making-pretty-pictures-in-pymol-v2/
https://3dmol.org/
https://3dmol.org/

=PrL

B NAME EVENT/NAME PRESENTATION

3Dmol - https://3dmol.org/doc/Index.htmi

= JavaScript library for molecular
visualization

= Render molecular visualizations in
webapps

Spe

https://github.com/schrodinger/pymol-open-sourc

=PrL

B NAME EVENT/NAME PRESENTATION

py3Dmol - https://3dmol.org/doc/index.htmi

= Embed 3Dmol in Jupyter notebook
* And streamlit (see tomorrow)

 We've seen a brief overview in the
exercises

* pip install py3Dmol

= Tutorial:
https://colab.research.google.com/d
[1T2zR59TXYWRCcNXxRgOAigVPJIW
83NV ?usp=sharing

N
[

Speaker

https://colab.research.google.com/drive/1T2zR59TXyWRcNxRgOAiqVPJWhep83NV_?usp=sharing
https://colab.research.google.com/drive/1T2zR59TXyWRcNxRgOAiqVPJWhep83NV_?usp=sharing
https://colab.research.google.com/drive/1T2zR59TXyWRcNxRgOAiqVPJWhep83NV_?usp=sharing
https://github.com/schrodinger/pymol-open-sourc

=PFL Xsmiles - displaying atom-wise properties

B NAME EVENT/NAME PRESENTATION

o r

*

File Edit View Run Kernel Tabs Settings Help
+ c [introduction.ipynb °
B + XD O » m C » Code v
Filter files by name Q
-/ «[6]: molecules = [molecule, molecule]
Name i Last Modified w = xsmiles.XSmilesWidget(molecules=json.dumps(molecules), gradient_config=json.dumps(gradient_config))

© W] introductio... 3 minutes ago

{:} molecules.... 17 minutes ago

w
N\
X Br
Br
llllnlllllllln_ -0 _-II-_,-.
CCCCCCCC(=0)0c1c (Br)cc (C#N)cc1Br
: el L loboeiooLBi0LD
T EET AT RIS A SR T
BHURR3308ReRN2232%83838833283¢8
8388 g=%
prod_log prod_logB max_bel_a max_od_a logD
Compound ID Atom scores
[} CF tr_perturb tr_perturb logBCF
bro I
53 2.02 0.39 1.06 3.28 Aoty logBCF perturb
octanoate

Br

pred_log pred_logB max_bef_a max_lod_a logD:

Color domain Compound ID
D CF ttr_perturb ttr_perturb logBCF
bromoxynil
[-05,0,05] 53 202 039 106 3.28
octanoate

Example: https://github.com/Bayer-Group/xsmiles-jupyterlab/tree/main

https://bayer-group.qithub.io/xsmiles/dist/web/

Atom scores

10gBCF perturb

Python 3 (ipykemel) O

Color domain

[-0.5,0,0.5)

N
&

Speaker

https://github.com/Bayer-Group/xsmiles-jupyterlab/tree/main
https://bayer-group.github.io/xsmiles/dist/web/

7L Mol2grid

Speaker

» https://mols2grid.readthedocs.io/en/latest/contents.html

1 34 36 57 Sort: Index v Search Text SMARTS

613 614 i > 615 i » 616 i » 617

612 i > i »
HO. HN. -~ oH DQN,sO
Name: dinoseb Hi
.0 .0 SMILES: CCC(C)clca([N+](=0)[0-])cc([N+](=0)[0-])c10
" =~ Class’ (A) low O
I &
O

« an SDFile

Solubility: -3.38
import mols2grid

-2.49 0.74 -1.74 -1.01 -3.38
mols2grid.display("path/to/molecules.sdf")
618 i » 619 i > 620 i » 621 i »> 622 1 » 623 »
Ow'foi /O NH, H2 H
(0]
~ ,‘;D OﬁN @ +-f,0 sz
& ! & ° "
T mols2grid.display(df, smiles_col="Smiles")
-1.96 -2.41 -2.19 -2.37 -1.51
624 i [Ees ‘ 628 i]| [Je */ « alist of RDKit molecules:

i
Oy
’ Z
-1.68
i
a
N/©/ e a pandas.DataFrame :
-1.66
> 626 i > 627 1 »> i
cl F ' .
Cl I F c “ cl
C
d ! mols2grid.display(mols)
H :
HZ H: Hy H
-3.24 -1.47 -4.55

-1.52 -4.92 -4.24

B NAME EVENT/NAME PRESENTATION

https://colab.research.google.com/qgithub/rdkittUGM_2021/blob/main/Notebooks/Bouysset_mols2grid.
ipynb

https://mols2grid.readthedocs.io/en/latest/contents.html
https://colab.research.google.com/github/rdkit/UGM_2021/blob/main/Notebooks/Bouysset_mols2grid.ipynb
https://colab.research.google.com/github/rdkit/UGM_2021/blob/main/Notebooks/Bouysset_mols2grid.ipynb

=PrL

B NAME EVENT/NAME PRESENTATION

molplotly

= hitps://github.com/wim41/molplotly (plotly add on for molecules)

Q i
ESOL PCA of morgan fingerprints

Measured Solubility

.
.
. e
a 244 . 0
L
o
o‘.
.
= .
3 o o 2
.
.
.
-4
o 2
g
. - ¢ K
g &2 N . -6
] .
z .
o
. $
% X0 T -8
. ~L
- .
0 e S mene
.2 .
: . w'y OH ’
< - an -)“1 " o s "
¢ F = 2
swet o0 28 3
.e

4-Methyl-2-pentanol

Measured Solubility : -0.80 o 05 1 15 2

Speaker

https://github.com/wjm41/molplotly

=PrL

B NAME EVENT/NAME PRESENTATION

molplotly is based on plotly

Plotly Open Source Graphing Library for Python

Plotly's Python graphing library makes interactive, publication-quality graphs. Examples of how to make line plots, scatter plots, area charts,
bar charts, error bars, box plots, histograms, heatmaps, subplots, multiple-axes, polar charts, and bubble charts.
Plotly.py is free and open source and you can view the source, report issues or contribute on GitHub.

More Fundamentals »

Fundamentals Interactive Visualizations:

Plotly is best known for its

5 ability to create interactive
S8 e plots. This feature is handy for
: hll - web applications or any
environment where user
The Figure Data Creating and Updating Displaying Figures Plotly Express Analytical Apps with . .
Structure Figures Dash interaction can enhance data
Basic Charts More Basic Charts » eXp|0ratI0n.

0 == Seaborn -> aesthetics (static)

el ¥ Matplotlib -> customizability
- ©

Scatter Plots Line Charts Bar Charts Pie Charts Bubble Charts

N
~

Speaker

=PrL

B NAME EVENT/NAME PRESENTATION

molplotly

= https://github.com/wjm41/molplotly

ESOL PCA of morgan fingerprints 4-—/

.o
.
. 0
4 se o‘o
.
. s e e
D
%
.
.
3 o ° o
o .
o .
.
.
.
2 .

PCA-2

4-Methyl-2-pentanol

Measured Solubility : -0.80 o 05 1 15 2

PCA-1

Measured Solubility

Speaker

https://github.com/wjm41/molplotly

=PrL

Dimensionality reduction

= high-dimensional space into a low-dimensional space

= How to display molecules described with a 1024-dimensional fingerprint

(e.g., morgan fingerprint) in 2D?

Reality:

Examples
(for simplicity)

x1 4

High-dimensional
chemical data sets

2D-Embedding

=PFL Principal Component Analysis (PCA) "
- PCl 7 PC1
o6 ° PC2 o
o © © «fj ~ ° &
e 2 N 2’
o 0O © 9~ AN
o) f o © AN
00° % 00.2 % 0 9,5 o
o 70 7O
® ® °
0%, o /O, o © & o©
> > >
X2 X2 X2

* PCA finds directions of
maximum variance

* principal components are
orthogonal

7L Principal ComponentAnalysis (PCA)

PC1

=PrL

[1]:

COde eXﬂI'I'Iple New library: scikit-learn ®

Import Necessary Libraries

import numpy as np

import matplotlib.pyplot as plt

from sklearn.decomposition import PCA

from sklearn.preprocessing import StandardScaler
from rdkit import Chem

from rdkit.Chem import AllChem

Generate Molecular Fingerprints

smiles_list = ['CCO', 'Oclcccccl', 'CCN(CC)CC', 'CC(C)Br', 'CIC@H]I(N)C(=0)0'] # Example SMILES
molecules = [Chem.MolFromSmiles(smile) for smile in smiles_list]

fingerprints = [Al11Chem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=1024) for mol in molecules]
fp_array = np.array([list(fp) for fp in fingerprintsl)

fp_array.shape

(5, 1024)

=PrL

Apply PCA and reduce the dimensionality to 2D

pca = PCA(n_components=2) # Using 2 components for 2D visualization
transformed_values = pca.fit_transform(data_scaled)

transformed_values

array([[-1.09952156, -1.80960721],
[6.98993992, -0.04067157],
[-2.31701547, -4.14022696],
[-1.67530037, ©.324116 1,
[-1.89810252, 5.66638974]1)

You will do a better plot than that
in the exercises ©

Visualization

plt.
plt.
plt.
plt.
plt.
plt.
plt.

Principal Compeonent 2

figure(figsize=(8, 6))
scatter(principalComponents|[:, @], principalComponents[:, 1], alpha=0.8)
xlabel('Principal Component 1')

ylabel('Principal Component 2')

title("'PCA of Molecular Fingerprints')

grid(True)

show()

PCA of Molecular Fingerprints
6 -
©
4 +
2 -
[

01
_2 - .
414

-2] 2 4 6

Principal Component 1

=prL Qther dimensionality reductions algorithms "

- PCAlinearly projects data onto axes of maximum variance
- - t-SNE (t-Distributed Stochastic Neighbor Embedding) and UMAP (Uniform Manifold

Approximation and Projection) are advanced dimensionality reduction techniques that focus
on preserving local neighborhood structures in the data, making them particularly effective for

complex datasets with nonlinear relationships.
- TMAP (tree map) is another approach, that produces tree-like 2D maps.

High-dimensional
chemical data sets

I: Indexing
C >
\—/ Il: kNN Graph Generation >
ll: MST Computation
__/ >
IV: Layout

TMAP 2D-Embedding

Developed by
Daniel Probst
(at Reymond group)

>

https://tmap.gdb.tools/

=PrL

Example TMAP

NP_Atlas
MW
>=1000

36

https://github.com/reymond-group/MAP4-Chemical-Space-of-NPAtlas
https://tm.gdb.tools/map4/npatlas_map_tmap/

=PrL

How do we find similar molecules in a dataset and
assign group labels?
—> clustering

=prL Clustering — whatls it?

= Grouping unlabelled examples

= Typically you have a large collection of molecules, and you would like to
divide them into small groups of similar molecules (clusters)

= This can help you analyse outcomes of high-throughput screening or
virtual screening, but also pick diverse molecules (1 from each cluster)

O\N'/©\N-40 D\N\//O Q\,\//O
! $ w b b
HN \o \o

AN N NN \O/Lk/\/ /\)1\0/

=rrL K-Means clustering (centroid-based)

https:/www.naftalihar ris com/blog/visualizing -k-means-clustering/

Initial data K randomly chosen centroids (C) Assign points to Cs Assign new Cs

Reassign points to closest C Reassign Cs Iterate until centroids do not change anymore

» Centroid == center of the cluster

How do you define K (the number of clusters)?

=PrL

= A good model has low inertia and low K.

Find the elbow in the inertia plot

® ® .
10 12 14

0 12 14
Clusters

Clusters

Inertia measures how well a dataset was clustered by K-Means.
It is calculated by measuring the distance between each data point and its centroid,

squaring this distance, and summing these squares across one cluster.

=rrL Density-based spatial clustering of "
applications with noise (DBSCAN)

iﬁptﬁ oogﬂﬂ & @S °s e 2 o, .;.
Lot & 0% "' % B 2 2l S
w0 aGgooéngo oo 2 o8 o o °%.0 00 % % o
&8 Rl Bpods o feeia s o$o% o N0 XA
s % § & og%e 3 'if @ﬁ; L TS
© ° %0 ° o e’
P 3°o%§% QEPoodnam oo.' ®eg GDC"o°°° 'o?'.. o/ gl %% 0iiel b o
Oo&ogg_fc e8ge T g0 o Se® o8e ® o 8 o 30%.q 200 S 8
o B0l o BLED 2 Boo A A e EX O U Rt
%8 I b oa:d:dj%oq,o oomgo %E’DOZ 8‘900&;0 o Qc;?oogo %82%, ":"uﬂ' °e a ”' 8
o O o
8%0 @0 o® ° »% o mg 0% & 2 ?,9%0@:8 . %:‘g,qow ®6°, @ g ®e !'f‘ © & e 3
® o & e de) o 26 o0 ¥ o!‘
@ OOO CXCN R ‘%ao o o go%§ 008 %0 o © o%
5,5° 8 o 592 5 5 5 %50 s a9
gg:D TR “b; %OODO‘;%?% @ @gﬁ?ﬁg @ Q;bmgs §Q%%‘§° ®
Fetp "o 5% 2%%° R0 o D 6 8
PSp o §Resd 5%, © oUsEse °%e°, ¢

= Point belonging to cluster is near lots of points in that cluster
= Start by picking random point, min points in distance => add to cluster
= \WWhen no more point can be added, pick the next arbitrary point

m https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

7L Comparison between k-Means and
DBSCAN

= Advantage: You don’t have to specify the number of clusters in advance
in DBSCAN

DBSCAN

k-means

=PrL

Butina Clustering method

43

(centrold-based, with Tanimoto similarity exclusion)

= Generation of Fingerprints.

e

= |dentifying Potential Cluster Centroids (rank them by number of

neighbors)

= Assign all molecules in the neighborhood to the centroid (within a given

Tanimoto similarity)

= Repeat until no molecule with neighbors are left.

https://projects.volkamerlab.org/teachopencadd/talktorials/TO05_compound_clustering.html

Unsupervised data base clustering based on daylight's fingerprint and Tanimoto
similarity: A fast and automated way to cluster small and large data sets

D Butina - Journal of Chemical Information and Computer ..., 1999 - ACS Publications

One of the most commonly used clustering algorithms within the worldwide pharmaceutical

industry is Jarvis— Patrick's (J- P){Jarvis, RAIEEE Trans. Comput. 1973, C-22, 1025- 1034).

The implementation of J- P under Daylight software, using Daylight's fingerprints and the

Tanimoto similarity index, can deal with sets of 100 k molecules in a matter of a few hours.

However, the J- P clustering algorithm has several associated problems which make it

difficult to cluster large data sets in a consistent and timely manner. The clusters produced ...

Y7 Save 99 Cite Cited by 424 Related articles All 3 versions

7L From TeachOpenCADD (Prof. Andrea Volkamer))

1. Claade fingrprnks
1014 011 ...
1100 040 ...
1010001, ..
1110110 ...
1011001 ...
1011111. ..
0100040. ..
1001111, ..
1010000.-.

PebmRoemep»

= Sock molecules by # neghboss

2 .TO\P\‘L(\\‘D‘O S}M{b«’f{'}j (mdewes wika simﬂw&—g i.})

Madux
fhreshold= .2 Pheigheors Bneghlors

A oROBAG® A Al 4 ® s
A 334 73.2.5.7 ol A ;
° 28469332
W 443269 . 2 f§§ ol B
° S6.33 .6 ® s |
= 33%.8 Aly mfa
a 4.3 .¢ |z Ay
@ 2 Als ®3
A 7 Y ez

= https://projects.volkamerlab.org/teachopencadd/talktorials/TO05_compound_clustering.html

https://projects.volkamerlab.org/teachopencadd/talktorials/T005_compound_clustering.html

CPEL 4 (+erofion : mole cule M

N elghloors
AoRoEALS LA

PebReBO >

3.7 .'-r..% 2. 5.7

2. Heraion:

molecnie @

N e:,%\«\bors '

45

> R
RF v

> @

Termination,
All molecules
assigned or
Singletons.

=PrL

We have 26 groups. Thanks for signing up!

Final presentation slot:
~10% voted for not changing the slot, and finding a large
enough room during the day is challenging (according to

the Section).

Hence, we will keep the original slot.

=PFL Feedback on the course)

The running of the course enables my learning and an appropriate class climate

10

13
5

0 _- —

0% 17% 33% 43% 7%

No opinion Strongly disagree Disagree Agree Strongly agree

At least some of you highlighted my enthusiasm for the
course, and the helpfulness of the assistants.

=PrL

Frequent points

= Condensed Schedule: The 7-week condensed format (instead of 14
weeks) has created significant pressure with 6 hours of programming
per week

= Exercise vs. Lecture Relationship:

 Some students find exercises well-structured but disconnected from
lectures

« Others note redundancy between lecture content and exercise materials
« Many feel exercises contain too much reading and not enough active
coding

= Project Concerns: Some anxiety about support during the upcoming
project phase (= sent an email to class delegate, we will organise a
slot for office hours during the rest of the semester)

48

=PrL

Improvements to be implemented "

= Exercise Format: Shorter exercises with more hands-on coding and
less explanatory text, inclusion of pointers to more advanced exercises
(next year). Would it make sense to “collapse” the additional
explanations?

= Documentation: Reference materials for commands and functions (last
year: https://schwallergroup.qgithub.io/practical-programming-in-
chemistry/ = but students thought the information was too widespread
across platforms | moodle, github, webpage)

= Project Support: Office hours in the remaining weeks. What about
Thursday 1-2 pm?

= Any other spontaneous suggestions?

https://schwallergroup.github.io/practical-programming-in-chemistry/
https://schwallergroup.github.io/practical-programming-in-chemistry/

=PrL

Today’s exercises are about PCA,
molplotly, and clustering.

Tomorrow, will be on making an app with
Streamlit.

Next week (last lecture), no exercises, but
time for the project.

	Slide 1: Debugging, dimesionality reduction, clustering
	Slide 2: Impact of this course beyond EPFL 
	Slide 3: This lecture
	Slide 4: Debugging code
	Slide 5: Python Debugger (pdb) or ipdb
	Slide 6: Setting breakpoints
	Slide 7: Basic commands
	Slide 8: Debugging a Jupyter notebook in VSCode
	Slide 9: Debug cell or .py code
	Slide 10: Youtube video (11 min) on Debugging Python with VSCode – easy steps to follow (optional)
	Slide 16: Accessing the documentation in Jupyter notebooks
	Slide 17: Accessing the documentation in Jupyter notebooks
	Slide 18: Accessing the documentation in Jupyter notebooks
	Slide 19: Visualization tools in chemistry “Hey, this exists, check it out in more details if interested.”
	Slide 21: pymol - https://github.com/schrodinger/pymol-open-source
	Slide 22: 3Dmol - https://3dmol.org/doc/index.html
	Slide 23: py3Dmol - https://3dmol.org/doc/index.html
	Slide 24: Xsmiles – displaying atom-wise properties
	Slide 25: Mol2grid
	Slide 26: molplotly
	Slide 27: molplotly is based on plotly
	Slide 28: molplotly
	Slide 29: Dimensionality reduction
	Slide 30: Principal Component Analysis (PCA)
	Slide 32: Principal Component Analysis (PCA)
	Slide 33: Code example
	Slide 34
	Slide 35: Other dimensionality reductions algorithms
	Slide 36: Example TMAP
	Slide 37: How do we find similar molecules in a dataset and assign group labels?  clustering
	Slide 38: Clustering — what is it?
	Slide 39: K-Means clustering (centroid-based)
	Slide 40: How do you define K (the number of clusters)?
	Slide 41: Density-based spatial clustering of applications with noise (DBSCAN)
	Slide 42: Comparison between k-Means and DBSCAN
	Slide 43: Butina Clustering method (centroid-based, with Tanimoto similarity exclusion)
	Slide 44: From TeachOpenCADD (Prof. Andrea Volkamer)
	Slide 45
	Slide 46: We have 26 groups. Thanks for signing up!
	Slide 47: Feedback on the course
	Slide 48: Frequent points
	Slide 49: Improvements to be implemented
	Slide 50: Today’s exercises are about PCA, molplotly, and clustering. Tomorrow, will be on making an app with Streamlit. Next week (last lecture), no exercises, but time for the project.

