
Documentation,
testing, typing

Practical Programming
in Chemistry

Prof. Philippe Schwaller

▪ Documentation

• Sphinx

▪ Typing

• Mypy

▪ Automation

• Tox

▪ Testing

• pytest

This lecture
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

2

How to write beautiful and reusable code
–with help of tools

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

3

User documentation
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

4

https://www.youtube.com/watch?v=t4vKPhjcMZg - What nobody tells you about documentation

https://www.youtube.com/watch?v=t4vKPhjcMZg

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

5

For example, Jupyter notebooks
that use the code from your

package.

The exercises in this course
→ Learning-oriented

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

6

Analogy:

A cooking recipe
or synthesis procedure.

How to make this meal/
compound.

Step 1: …

Step 2: ...
→ Problem-oriented

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

7

What you put in a function
documentation string

in your code.

- Give you the facts (inputs,

outputs)
- Can include examples.

→ Information-oriented

API documentation

This is something you
should always do.

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

8

Background information on the project.

If you want your work/code to be used by others,
make it easy for them to get started and use it.

→Write a good documentation.

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

9

API documentation →docstrings for functions
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

10

Automatically, compiled using tools like Sphinx.

▪ Sphinx is a static-site generator. A static site generator is a tool that
creates html for a website based upon a set of templates. The html files are
then served “statically” which means that there is no generation or
modification of the files on the fly.

▪ Automated documentation generation from markdown files and
docstrings

▪ It might be a bit challenging to set up at first, but we set it up for you
in the copier-liac template (with the Furo theme).

Sphinx – tool for documentation
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

11

https://www.sphinx-doc.org/en/master/

https://www.sphinx-doc.org/en/master/

Docstring styles –Numpy vs Google
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

12

Numpy – more vertical space

Google – more horizontal space

Example of a beautiful documentation –Graphein
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

13

https://graphein.ai

https://graphein.ai/

▪ Install it with pip install -e “.[test,doc]”
(you need the optional dependencies)

▪ sphinx-build docs/source "docs/docs_out"

▪ Or just ”tox” (which runs tests and builds docs)

With copier-liac template
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

14

In the copier-liac-minimal pyproject.toml

▪ Automated Testing Across Environments (e.g., multiple Python
versions, not just the one you are using)

▪ Virtual Environment Management: Tox automatically creates separate
virtual environments to isolate testes Python package from other
dependencies/system-wide installed packages.

▪ Dependency Management: Tox can have separate dependencies for
each test/docs environment.

▪ Automation of Commands: Tox gives you a single command to check
code style, generate documentation, and tests.

▪ Configuration in ”tox.ini”, and run with “tox” in the project folder.

What is tox?
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

15

tox.ini

S
p

e
a

ke
r

16

Test Python 10, 11, 12, and then,
some special stuff for docs and coverage

Basic test environment setup Special commands for docs and coverage.

What tests to run using github actions
→ the workflows defined in .github

Tests for your code.

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

20

Test your code! (important)
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

21

What to test?
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

22

https://www.pyopensci.org/python-package-guide/tests/write-tests.html

https://www.pyopensci.org/python-package-guide/tests/write-tests.html

▪ Unit Tests: Verify the functionality of individual components in isolation.

▪ Integration Tests: Check the interactions between combined
components to ensure they work together correctly.

▪ End-to-End Tests: Evaluate the entire system’s performance and
functionality from start to finish in real-world scenarios.

Types of tests
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

23

We will focus on Unit Tests…

Unit tests → test your functions for expected
behaviour

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

24

https://www.pyopensci.org/python-package-
guide/tests/run-tests.html

Why pytest.approx?
→ Floating-point numbers often have small rounding errors

https://www.pyopensci.org/python-package-guide/tests/run-tests.html
https://www.pyopensci.org/python-package-guide/tests/run-tests.html

▪ https://docs.pytest.org/en/7.1.x/getting-started.html

▪ pip install pytest

▪ Then run “pytest /path/to/testfolder”

▪ In copier-liac template
with pip install –e ”.[test]”
→ just run “pytest”

Running tests using pytest
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

25

https://docs.pytest.org/en/7.1.x/getting-started.html

▪ What % is tested.

▪ pip install pytest-cov

Getting the coverage
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

26

More automation ☺

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

27

GitHub actions
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

28

Same in the liac copier template.

Github actions
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

29

How did I find the error?
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

30

TDD – Test driven development (ideal, but can be
slow)

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

31

What feature do I need? What should my function/program do?

Write a test with the
expected behaviour.

→ Fails

Code until the test passes.

Refactor = make the code
cleaner, better, faster.

As you have a test, you
can always evaluate that

the code is correct.

TDD = writing the tests before the code

Python Packaging Toolbox
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

32

Tools for
better code

Pre-commit hooks (advanced)
→ Ruff style checks

→ Check for too large files
→ Check for merge conflicts

.pre-commit-config.yaml

Type hints / typing (advanced)
→ mypy

pyproject.toml

Tests
→ pytest

pyproject.toml

Documentation
→ sphinx

tox.ini

Automation
→ tox

tox.ini

GitHub workflows
→ GitHub actions

.github/workflows/*

Example of us turning non-packaged code into a
python package.

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

33

https://github.com/mrodobbe/Rxn-INSIGHT

Last year
this was not

there yet.

https://github.com/mrodobbe/Rxn-INSIGHT

▪ First goal, get it to pip install (simple)

▪ Extended goal (make code nicer, more challenging)

Turning RXN-Insight into a package
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

34

Original repo

SchwallerGroup fork

▪ https://github.com/schwallergroup/Rxn-INSIGHT/pull/1/files (check out if
interested in details)

▪ Gitignore was missing,
got one from
gitignore.io

1st goal –what did I do?
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

35

https://github.com/schwallergroup/Rxn-INSIGHT/pull/1/files

1st goal –Created a pyproject.toml file.
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

36

For the baseline, I included minimal information.

Hatchling build backend

Dependencies (note: I forgot rdkit)

Changed the package location to “src/rxn_insight”

Note: by default it will only include the .py files into the packages,
The json folder contains crucial information for the package,

so I had to force-include it.

1st goal –Moved rxn_insight and json into a src
folder

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

37

Did the same with the json files, as I wanted them in the package (more later)

1st goal –access the json files in the installed
package

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

38

This combined with the force-include in the
pyproject.toml, makes the json files available when

after you build the package.

1st goal – Fixed some pandas code that will be
depreciated in the future

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

39

▪ Had to adapt some paths in the notebook.

1st goal –moved demo.ipynb into notebooks folder
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

40

▪ Fixed >120 typing issues…
typing is nice,
but if you want to do it,
do it from the beginning

▪ Precommit checks with ruff
→ just too many to do the
complete refactoring…

Extended goal
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

41

▪ Go to https://github.com/schwallergroup/Rxn-INSIGHT

▪ Get the address to clone

• “git clone https://github.com/schwallergroup/Rxn-
INSIGHT.git”

• “cd Rxn-INSIGHT”

• Activate a conda environment

• “pip install –e .” or pip install –e “.[test,doc]” (for
additional dependencies)

▪ And then I can use the installed package in another
project, without being in the same folder.

What can I do with that?
N

A
M

E
 E

V
E

N
T

 /
 N

A
M

E
 P

R
E

S
E

N
T

A
T
IO

N

S
p

e
a

ke
r

42

https://github.com/schwallergroup/Rxn-INSIGHT
https://github.com/schwallergroup/Rxn-INSIGHT.git
https://github.com/schwallergroup/Rxn-INSIGHT.git

Project sign ups (deadline was yesterday!)
- 71/89

Please all register individually if you have not yet done
so…

N
A

M
E

 E
V

E
N

T
 /

 N
A

M
E

 P
R

E
S

E
N

T
A

T
IO

N

S
p

e
a

ke
r

43

	Slide 1: Documentation, testing, typing
	Slide 2: This lecture
	Slide 3: How to write beautiful and reusable code – with help of tools
	Slide 4: User documentation
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: If you want your work/code to be used by others, make it easy for them to get started and use it.  Write a good documentation.
	Slide 10: API documentation  docstrings for functions
	Slide 11: Sphinx – tool for documentation
	Slide 12: Docstring styles – Numpy vs Google
	Slide 13: Example of a beautiful documentation – Graphein
	Slide 14: With copier-liac template
	Slide 15: What is tox?
	Slide 16: tox.ini
	Slide 20: Tests for your code.
	Slide 21: Test your code! (important)
	Slide 22: What to test?
	Slide 23: Types of tests
	Slide 24: Unit tests  test your functions for expected behaviour
	Slide 25: Running tests using pytest
	Slide 26: Getting the coverage
	Slide 27: More automation 
	Slide 28: GitHub actions
	Slide 29: Github actions
	Slide 30: How did I find the error?
	Slide 31: TDD – Test driven development (ideal, but can be slow)
	Slide 32: Python Packaging Toolbox
	Slide 33: Example of us turning non-packaged code into a python package.
	Slide 34: Turning RXN-Insight into a package
	Slide 35: 1st goal – what did I do?
	Slide 36: 1st goal – Created a pyproject.toml file.
	Slide 37: 1st goal – Moved rxn_insight and json into a src folder
	Slide 38: 1st goal – access the json files in the installed package
	Slide 39: 1st goal – Fixed some pandas code that will be depreciated in the future
	Slide 40: 1st goal – moved demo.ipynb into notebooks folder
	Slide 41: Extended goal
	Slide 42: What can I do with that?
	Slide 43: Project sign ups (deadline was yesterday!) - 71/89 Please all register individually if you have not yet done so…

