all
‘9,
(eof)N
(e
(enptic) ogd
t)a (s (tco 2
ra) ullazial

..rlr:.r-o;))(t’:)

(Ctjotsd)

olee.) [
En) "
2)
,) {
.....)
(luy [e)
in ' sang

gtta)riome, 2)))

_bge(s,__es_-ldonmassnol/_

b b, Ul Sevel
(fbecibglhingy' gevedal_--in(e anus)
(pik-z—1 uedl " gDaSE -Les) .1)

" APIs, web
'f scraping, and
, more

Practical Programming
in Chemistry

Prof. Philippe Schwaller

=PFL This lecture

= Useful chemistry tools

= APIs (not active pharmaceutical ingredients, but application
programming interfaces)

= Web scraping
= More packaging

= For those who emailed me about the project, could you send me a
friendly reminder, and could you add “[CH200]” to the subject?

=PrL

APIs

= APIs, or Application Programming Interfaces, are a set of rules
and protocols that allow different software applications to
communicate with each other.

= |Instead of communicating with a database/webpage manually, an
API can provide a set of functions that facilitate
communications.

I A function with well-defined
inputs and outputs can be
’c ;\ an API.

https://www.danielleskosky.com/wp-content/uploads/media-uploads/what-is-an-api/api-with-outlets.jpg

=PrL

Let’s start with some useful chemistry tools,
and their Python APl.

=PFL OPSIN - Open Parser for Systematic IUPAC nomenclature

= [UPAC name to structure converter (https://opsin.ch.cam.ac.uk) made
by Daniel Lowe

OPSIN: Open Parser for Systematic IUPAC nomenclature
University of Cambridge : Department of Chemistry : Centre for Molecular Informatics

2,4,6-trinitrotoluene Submit
Updated 2024-01-28: Redirect API requests with no parameters to instructions page
If you have found OPSIN useful in your work citing our paper would be very much appreciated. Depiction courtesy of the Indigo Toolkit

https://opsin.ch.cam.ac.uk/

=PFL OPSIN output

2,4,6-trinitrotoluene Submit
Updated 2024-01-28: Redirect API requests with no parameters to instructions page
If you have found OPSIN useful in your work citing our paper would be very much appreciated. Depiction courtesy of the Indigo Toolkit

o 0
| Il
N* N*
~
0~ ~o
N
~,
0” o
StdInChl:

InChI=15/C7H5N306/c1-4-6(9(13)14)2-5(8(11)12)3-7(4)10(15)16/h2-3H,1H3 Copy

StdInChlKey:
SPSSULHKWOKEEL-UHFFFAOYSA-N (Click to search the internet for this structure) ~ Copy

SMILES:
[N+](=0)([0-])C1=C(C)C(=CC(=C1)[N+](=0)[O-])[N+](=0)[O-] = Copy

CML:

<cml xmlns="http://www.xml-cml.org/schema" convention="conventions:molecular" xmlns:conventions="http://www.xml-cml.org/convention/" xmlns
<molecule id="ml">
<name dictRef="nameDict:unknown">2,4,6-trinitrotoluene</name>
<atomArray>
<atom id="al" elementType="N" formalCharge="1" hydrogenCount="0">
<label value="N" dictRef="cmlDict:locant"/>
</atom>
<atom id="a2" elementType="0" hydrogenCount="0">
L <label value="0" dictRef="cmlDict:locant"/>

=PrL

It's ok to query the webpage manually if you want to
convert a few names, but what if you had 1M names?

=PrL

Let’s get the code..

= hitps://agithub.com/dan2097/opsin, found it! And it's MIT-licensed :D
= But it's in Java ... | don’'t want to learn another programming language.

Convert a chemical name to SMILES
java -jar opsin-cli-2.8.@-jar-with-dependencies.jar —osmi input.txt output.txt

where input.txt contains chemical name/s, one per line

NameToStructure nts = NameToStructure.getInstance(); i
String smiles = nts.parseToSmiles("acetamide");

= Luckily, there is there is Jackson Burns, who faced the same problem:
https://github.com/JacksonBurns/py2opsin/tree/main

https://github.com/dan2097/opsin
https://github.com/JacksonBurns/py2opsin/tree/main

PFL py2opsin - Simple Python interface to OPSIN: Open
Parser for Systematic IUPAC nomenclature

set +0 history; unset PROMPT COMMAND; export PS1="\[\e[38;2
;90;86;224m\ 1> \[\e[Om\]"; clear;

rll

https://github.com/JacksonBurns/py2opsin/tree/main

=PFL The Python package

£ JacksonBurns fix Cl status badge

. P .github/workflows
Documentation
» docs

examples

The source code ~

Tests _—

py2opsin

test

.gitignore

LICENSE

MANIFEST.in

README.md

py2opsin_demo.gif

EErENrERrENrERCEN BN N

setup.py

\

File to tell
pip how to install the package

88a02ca - 3 months ago @ 87 Commits

Update ci.yml 6 months ago
resort import in docs last year
add an example notebook last year
bump to latest OPSIN release, update readme with opsi... 6 months ago
Update performance test and README to include more... 9 months ago
Initial commit last year
Initial commit last year
small changes for distributiOon last year

fix Cl status badge

update demo gif

Better Type Hints in py2opsin (#9)

3 months ago

last year

9 months ago

10

=P*L Fun fact - he also changed pyproject.toml

Jackson Burns template for python projects

& blank-python-project Public template ©Watch 2~ % Fork 0 -

¥ main ~ ¥ 2 Branches 0 Tags Q Gotofile t Add file ~ <> Code ~

& JacksonBurns remove emoji for windows compatibility 35c696¢ - 5 months ago) 53 Commits
0 .githubjworkflows remove emoji for windows compatibility 5 months ago
9 blankpythonproject remove old files 2 years ago
M docs Automated Docs Update 2 years ago
9 examples rename with blankpythonproject 2 years ago
M test Script to auto-magically rename and fill in the template... 2 years ago
[.gitignore add base files for later fixing 2 years ago
[LICENSE add base files for later fixing 2 years ago
[README.md remove email, typo in readme 2 years ago
[blankpythonproject_logo.png rename with blankpythonproject 2 years ago
/ [pyproject.toml consolidate setup into pyproject.toml 7 months ago
pyprOJeCttom I 1 [start_project.py Update start_project.py 7 months ago

not setup.py

https://github.com/JacksonBurns/blank-python-project

https://github.com/JacksonBurns/blank-python-project

=PFL Let’s check out the package source of pyopsin "

The file that says:
“This is pal’t of the paCkageu def py2opsin(

chemical_name: Union[str, list],
output_format: Literall

- "SMILES",

"ExtendedSMILES",
"CML",
Ha T "InChI",
a —Init__.py "StdInChI”,
"StdInChIKey",
.] = "SMILES",

[opsin-cli-2.8.0-jar-with-dependencies.jar allow_acid: bool = False,
allow_radicals: bool = False,
allow_bad_stereo: bool = False,

. wildcard_radicals: bool = False

D py20p5|n.py jar_fpath: str = "default",

) —> str:

"nnSimple passthrough to opsin, returning results as Python strings.

Args:
chemical_name (str, list): IUPAC name of chemical as string, or list of strings.
output_format (str, optional): One of "SMILES", "ExtendedSMILES", "CML", "InChI", "StdInChI", or "StdInChIKey".
Defaults to "SMILES".
. . allow_acid (bool, optional): Allow interpretation of acids. Defaults to False.
1 Slngle funCtlon tha.t WrapS the allow_radicals (bool, optional): Enable radical interpretation. Defaults to False.

allow_bad_stereo (bool, optional): Allow OPSIN to ignore uninterpreatable stereochem. Defaults to False.

Java-baSEd OPSIN, and prOVIdeS a wildcard_radicals (bool, optional): Output radicals as wildcards. Defaults to False.
H L jar_fpath (str, optional): Filepath to OPSIN jar file. Defaults to "default", which causes py2opsin to use its included ja
clear interface to use it in Python.

Returns:

str: Species in requested format, or False if not found or an error ocurred. List of strings if input is list.

- local API

- https://github.com/JacksonBurns/py2opsin/blob/main/py2opsin/py2opsin.py

https://github.com/JacksonBurns/py2opsin/blob/main/py2opsin/py2opsin.py

=PrL

How itis done.

if jar_fpath == "default":
jar_fpath = pkg_fopen("opsin-cli-2.8.0-jar-with-dependencies.jar")

default arguments to start
arg_list = ["java", "-jar", jar_fpath]

format the output argument
if output_format == "SMILES":
arg_list.append("-osmi")
elif output_format == "ExtendedSMILES":
arg_list.append("-oextendedsmiles")
elif output_format == "CML":
arg_list.append("-ocml")
elif output_format == "InChI":
arg_list.append(“-oinchi")
elif output_format == "StdInChI":
arg_list.append("-ostdinchi")
elif output_format == "StdInChIKey":
arg_list.append("-ostdinchikey")
else:
possiblity = get_close_matches(
output_format,
[
"SMILES",
"CML™,
"InChI",
"StdInChI",
"StdInChIKey",
"ExtendedSMILES",
1
n=1,
)
addendum = (
" Did you mean ‘{:s}'?".format(possiblity[@])
if possiblity
else " Try help(py2opsin)."
)
raise RuntimeError(
"Qutput format {:s} is invalid.".format(output_format) + addendum
)

Defining the input to the java program

write the input to a text file
temp_f = "py2opsin_temp_input.txt"
with open(temp_f, "w") as file:
if type(chemical_name) is str:
file.write(chemical_name)
else:
file.writelines("\n".join(chemical_name) + "\n")

Creating a temporary input file

do the call
result = subprocess.run(
arg_list,
stderr=subprocess.PIPE,

stdout=subprocess.PIPE,

Running the java program
on the file, saving the output
in "result”

13
parse and return the result
try:
result.check_returncode()
if type(chemical_name) is str:
return (
result.stdout.decode(encoding=sys.stdout.encoding)
.replace("\n", "")
.replace("\r", "")
)
else:
return (

result.stdout.decode(encoding=sys.stdout.encoding)
.replace("\r", "")

.split("\n")[@:-1] # ignore newline at file end

except Exception as e:
warnings.warn("Unexpected error ocurred! " + e)
return False

finally:
os.remove(temp_f)

Parsing the result and
deleting the temporary file.

=PrL

PubChem)

= PubChem is a public chemical database aggregating various information on
mostly small molecules from multiple sources.

= PubChem provides broad annotations from more than 870 sources grouped
into data collections containing information about substances, bioassays,
protein targets, genes, pathways, cell lines, taxonomy, and patents.

= Currently, more than 111 million unique molecules are deposited in
PubChem.

» hittps://pubchem.nchi.nim.nih.gov

Explore ChemIStry Manual search is fine for a few

Quickly find chemical information from authoritative sources compou nds, but again what if you

- off vmeaevhee

Try covid-19 aspiin EGFR C9H804 57-27-2 C1=CC=C(C=C1)C=0 InChI=1S/C3H60/c1-3(2)4/h1-2H3

[use Entrez

https://pubchem.ncbi.nlm.nih.gov/

=PFL PubChemAPI '

PubChemPy documentation Features

PubChemPy provides a way to interact with PubChem in Python. |
name, substructure and similarity, chemical standardization, conve Search PubChem Substance and Compound databases b\/ name, SMlLES, InChl and SDF.
eI 20 2 Il G G e L o 2C » Retrieve the standardised Compound record for a given input structure.
Here's a quick example showing how to search for a compound by ® Convert between SDF, SMILES, InChl, PubChem CID and more.

o Retrieve calculated properties, fingerprints and descriptors.

for compound in get_compounds('glucose', 'name'): . Generate 2D and 3D Coordinates

print compound.cid
print compound.isomeric_smiles

« Get IUPAC systematic names, trade names and all known synonyms for a given Compound.
o Download compound records as XML, ASNT/B, JSON, SDF and depiction as a PNG image.
o Construct property tables using pandas DataFrames.

Here's how you get calculated properties for a specific compound:

i =C d.f d(5890 1
brint v?oi:?;;?ecu{:rp:;;r;ula) + A complete Python wrapper around the PubChem PUG REST web service.
Print viomcalogy e ent « Supports Python versions 2.7 - 3.4.

https://github.com/mcs07/PubChemPy

https://github.com/mcs07/PubChemPy

=PrL SmallWorld - https://sw.docking.org/search.html -~

SmallWorld

Query

Search Manage Datasets API

Q=] [=] O[O <]&{m
=El=I=[-2l0jclelolCIC]F 4l

[=Tz]e]~]=]o]z]o]

>

JSME Molecular Editor by Peter Ertl and Bruno Bienfait

Identifier

DataSet [ZINC-AIl-22Q2-1.6B

Search Type

Advanced Options Advanced Options

Distance
Anon Distance
Terminal

Mutation
Substitution
Hybridisation

Scoring Options

Multi-source

Scoring Methods

o

cocooooe

SmallWorld +

—
—

B 6 WL O mmm
1 2 Up o mam
1 2 Up I
O 6 Maior O
- ¢

- ¢

Advanced

Multiple companent query indicates multiple start points
Top only [Only the top resuits (iirst page) will be retrived

To start a search draw a qug

Version 5.6.4]

v ZINC-All-22Q2-1.6B

ChemSpace-SC-Stock-22Q1-346K
In-Stock-22Q2-14M
Informer-Set-22Q3-4M
Mcule-22Q1-8.7M
Mcule-Full-22Q1-60M
Mcule-On-Demand-23Q1-32M
Mcule-Ultimate-20Q2-126M
Mcule-V-22Q1-51M
REAL-Database-22Q1-4.5B
Wait-OK-22Q2-899M
Wuxi-23Q1-15B
ZINC-Interesting-22Q2-320K
ZINC20-ForSale-22Q1-1.6B

Blazing fast molecular similarity search in some of the world's most extensive molecule databases.

https://sw.docking.org/search.html

=PrL

Again, you find a inofficial Python APl

= https://github.com/matteoferla/Python SmallWorld APl (MIT)

Install -q is just an option for “quite”, less output in the terminal while installing

pip install -q smallworld-api

from rdkit import Chem
from rdkit.Chem import PandasTools
import pandas as pd # for typehinting below

from smallworld_api import SmallWorld

print(SmallWorld.base_url) # 'https://sw.docking.org'

aspirin = '0=C(C)OclcccceclC(=0)0"

sw = SmallWorld()

results : pd.DataFrame = sw.search{aspirin, dist=5, db=sw.REAL_dataset)

from IPython.display import display
display(results)

class Defaults: # Defaults —> Common -> Base -> Extras -> Searcher -> SmallWorld

routes to API endpoints

base_url = 'https://sw.docking.org’ Make Ca”S to the API endp0|nts

search_route = '/search/submit’
view_route = '/search/view'

18

https://github.com/matteoferla/Python_SmallWorld_API

=PFL CDK Depict CDK

DEPICT

/ Generate depictions of molecules and reactions from SMILES or SDF.
\ N CN1C=NC2=C1C(=0)N(C(=0)N2C)C caffeine
N [Cs+].[0-]C(=0)[0-].[Cs+] Cs2CO3
[Li+].[AI+3].[H-]).[H-]. [H-).[H-] LiAIH4
CI[Pt@SP1](CI)([NH3])[NH3) cis-platin
| /> O=[N+]([0-])[Co@]([NH3])([NH3])([NH3])(INH3]) [N+]([O-])(=0) trans-[Co(NH3)4(NO2)2]
Cl*Cl*clececel-cleeccee [m:1:4.5.6.7.8.9,3:10.11.12.13.14.15| dichlorobiphenyl
CCOCCOCCO |Sg:n:3,4,6:ht| PEGn
N *clcceeet [S_AP1$| phenyl
O N CC(C)[C@H](N*)C(*)=0 |$;;;;; _AP1;;_AP2;8$| valine monomer
| . . *)=0)* |$:Y;:X::R10;5:5Z;:R1 4

cl(:*:c2¢(:*:c1*)C(N(N2)*)=0: 1$] US 2007/0129374 (I
.
Im Black on Clear E) No Annotation B Chiral Hydrogens (smart) B Abbreviate Reagents and Groups B [— nter SMARTS pattern

] wee

[,
3 _ H
u | N> cs* OYO cs' uooH gy !
)\ V. ! AP HNT NH,
o |\|J N H H

LiAIH4 cis-platin

If we click on a molecule,
we get back the following URL.

caffeine Cs2C0O3

https://www.simolecule.com/cdkdepict/depict/bot/svg?smi=CN1C%3DNC2%3DC1C(%3DO)N(C(

%3D0O)N2C)C%20caffeine&w=-1&h=-
1&abbr=on&hdisp=bridgehead&zoom=1.3&annotate=none&r=0

=P7L How would we build an API to be able to requestthe -
CDK depict SVG in a Jupyter notebook?

https://www.simolecule.com/cdkdepict/depict/bot/svg?smi=CN1C%3DNC2%3DC1C(%3DO)N(C(
%3D0O)N2C)C%20caffeine&w=-1&h=-
1&abbr=on&hdisp=bridgehead&zoom=1.3&annotate=none&r=0

= Define: base_url - https://www.simolecule.com/cdkdepict/depict/

Make a function that takes the following parameters

+ style - default: bot

« format - default: svg

* smiles_string + description

+ abbreviation - default: on

» hydrogens - default: bridgehead

« annotations - default: none

* rotation - default: O

Make a dictionary out of the parameters

Encode them with params_str = urllib.parse.urlencode(params)
Create the URL: f'{base_url}/{style}/svg?{params_str}

Call that URL and return the SVG

https://www.simolecule.com/cdkdepict/depict/

EPFL

Getting data/information from webpages
using Python

=PrL

How do we connect from Python to webpages?

= urllib (standard Python library), requests (community-driven library)

= urllib is a Python module that allows you to interact with websites
by sending requests and handling responses. Think of it as a tool that
lets your Python script browse the internet, access web resources,
and even download data, much like you would with a web browser,
but programmatically.

= requests is a highly popular Python library designed to simplify the
process of making HTTP requests. It offers a more user-friendly and
intuitive approach compared to Python's standard library modules like
urllib.

=P

Basic concepts

« URLs (uniform resource locators): Just like web addresses you enter

In a browser to visit a webpage, urllib/requests use URLSs to locate and
access web resources.

- Requests: This is how you ask for data from a website. For example,

requesting the webpage’s source code or data for a molecule.

- Responses: After you make a request, the website sends back a

response, which includes the data you asked for, like the HTML of a
webpage or a file to download.

23

=PFL Basic example - PubChem

"urn": {
"label": "Topological",
"name": "Polar Surface Area",
"datatype": 7,
"implementation": "E TPSA",
"version": "3.4.8.18",
"software": "Cactvs",
"source": "Xemistry GmbH",
"release": "2021.10.14"
}
urllib.request "value": {
. "fval": 58.4
json }
b
{
"urn": {
"label": "Weight",
"name": "MonoIsotopic",
"datatype": 1,
"version": "2.2",
"software": "PubChem",
urllib.request.urlopen(url) response: "source": "ncbi.nlm.nih.gov",
"release": "2021.10.14"
e
raw_data = response.read() "value": {
"sval": "194.08037557"
}
}
]l
json_string = raw_data.decode("count": {
"heavy_atom": 14,
"atom_chiral": 0,
"atom chiral def": 0,
"atom chiral undef": 0,
"bond_chiral": 0,
"bond_chiral def": 0,
"bond_chiral undef": 0,
"isotope_atom": 0,
"covalent_unit": 1,
"tautomers": -1

data = json.loads(json_string)

This would give you the JSON dictionary in data

https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/caffeine/JSON
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/caffeine/JSON

=PrL

Same with requests

requests

response = requests.get(url)

data = response.json()

=PrL

Web scraping - an example

= https://www.organic-chemistry.org/Highlights/totalsynthesis.shtm

2024

01 April
04 March
05 Feb
01 Jan

2023
04 Dec
06 Nov
02 Oct
04 Sep
07 Aug
03 July
05 June
06 May
03 April

The White/Banwell/Lan Synthesis of Codeine
The Baran Synthesis of Cyclopamine
The Suzuki/Tanino Synthesis of Kamebanin

The Fan Synthesis of Trachinol

The Chen/Wang Synthesis of Retigeranic Acid
The Jia Synthesis of Aberrarone

The Garg Synthesis of Lissodendoric Acid A
The Renata Synthesis of Gedunin

The Barriault Synthesis of Ginkgolide C

The Carreira Synthesis of Aberrarone

The Trauner Synthesis of Tetrodotoxin

The Zhao/Ma Synthesis of Napelline

The Dai Synthesis of Peyssonnoside A

Douglass F. Taber
Douglass F. Taber
Douglass F. Taber
Douglass F. Taber

Douglass F. Taber
Douglass F. Taber
Douglass F. Taber
Douglass F. Taber
Douglass F. Taber
Douglass F. Taber
Douglass F. Taber
Douglass F. Taber
Douglass F. Taber

https://www.organic-chemistry.org/Highlights/totalsynthesis.shtm

=7l First step - check out page source

y Edit View History Bookmarks Tools Window Help @DCaII in 54 min

Downloads

B8 Total Synthesis Highlights

Add-ons and Themes

O E] Sign In

Firefox View

Organic Chemistry Portal Browser Tools Web Developer Tools
Organic Chemistry | Page Info Task Manager

] L
YB\O’"‘ Highlights

[Search Org. Chem. Highlights

Remote Debugging
Browser Console
Responsive Design Mode
Eyedropper

Page Source

Total Synthesis

Extensions for Developers

jhts (All Syntheses from A to Z)

URL: https://www.organic-chemistry.org/Highlights/totalsynthesis.shtm

Alternatively, you could also just use requests to get the page source.
- (the example above is with Firefox)

>
>

http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

rel="stylesheet" type="text/css" href="//cdn.organic-chemistry.org/navi/main.css">

async src="https://www.googletagmanager.com/gtag/js?id=G-GZ581E7RBX"></ >

>window.datalayer = window.datalayer || [];function gtag(){datalLayer.push(arguments);}gtag('js', new Date());gtag('config', 'G-GZ581E7RBX");</
target="_top">

name="viewport" content="width=device-width, initial-scale=1">

AAAAAAAR

A

rel="stylesheet" type="text/css" href="navi/style.css?version=2">
>Total Synthesis Highlights</ >
>
>
id="content">
id="z1">0rganic Chemistry Portal</div>
id="z2">
href="/Highlights/">
class="z2" src="/Highlights/LogoS.JPG" alt="0rganic Chemistry Highlights" width="280" height="28">
"GET" action="/search/search.php" style="margin: @">
zoom_sort" valu ""hidden">
zoom_cat" value:
zoom_query" size="23" type='"text" placeholder="Search Org. Chem. Highlights">
style="border-color: #ffffff; border-style: solid" type="submit" value=">>">
>

A
~

<!
<
<
<
<
<
3
<
<
<
<

id="top"></div>< id="info">
<hl>Total Synthesis</hl>
<p>(All Syntheses from A to Z)</p>
<p>URL: https://www.organic-chemistry.org/Highlights/totalsynthesis.shtm</p>
</div>
< cellpadding="5" cellspacing="0" width="100%">
<tr>
<td width="90%" valign="top" colspan="3">

2024</td>
</tr>
< >
width="10%" valign="top">01 April</td>
width="66%" valign="top">The White/Banwell/Lan
Synthesis of Codeine</td>
width="208%" valign="top">Douglass F. Taber</td>
</tr>
< >
width="10%" valign="top">04 March</td>
width="60%" valign="top">The Baran Synthesis
of Cyclopamine</td>
width="20%" valign="top">Douglass F. Taber</td>
</tr>

=P

-

L Ask ChatGPT for initial code (might not be perfect
in the first try, but a good way to start)

You
I would like to extract the table of total syntheses, the name, the year, and the link from the
following webpage. https://www.organic-chemistry.org/Highlights/totalsynthesis.shtm

Build a program in python using requests and beautifulsoup.

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<link rel="stylesheet" type="text/css" href="//cdn.organic-chemistry.org/navi/main.css">
<script async src="https://www.googletagmanager.com/gtag/js?id=G-GZ581ETRBX"></script>
<script>window.datalayer = window.datalayer || [J;function gtag()
{datalLayer.push(arguments);}gtag(js', new Date());gtag(‘config’, 'G-GZ581E7RBX");</script>
<base target="_top">

<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="stylesheet" type="text/css" href="navi/style.css?version=2">
<title>Total Synthesis Highlights</title>

</head>

<body>

<div id="content">

<div id="z1">0rganic Chemistry Portal</div>
<divid="z2">

Explanation:

. ChatGPT 1. Importing Libraries: The script uses "requests" to fetch the webpage and *BeautifulSoup" from
Here's a Python program using “requests’ and "BeautifulSoup’ to extract the table of total "bs4" to parse and navigate the HTML content.

syntheses, including the name of the synthesis, the year, and the link from the provided webpage. 2. Function Definition: The "extract_syntheses " function takes a URL as input. It fetches the webpage

content, parses it, and initializes a list to store the extracted synthesis data.

FEETIT Q0 Copy code Extracting Table Rows: The function iterates through each table row (“tx *). For each row, it checks if

requests there are three table data elements (" td"). If yes, it processes further to extract date, name, and link:

bs4 BeautifulSoup * Date: Extracted directly from the first “td".
* Name and Link: Extracted from the anchor tag in the second “td". The link is appended to the base

(url): URL to form the complete URL.

response = requests.get(url) Storing Data: For each synthesis, a dictionary containing the date, name, and link is appended to the
soup = BeautifulSoup(response.content, .
‘syntheses” list.

syntheses = [] . Output: The function returns the list of dictionaries, each representing a total synthesis record.

<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
tr soup.find_all(: <link rel="stylesheet" type="text/css" href="//cdn.organic-chemistry.org/navi/main.css">
- <script async sre="https://www.googletagmanager. con/gtag/is?id=G-GZ5B1ETRBX"></script>
tds = tr.find_all(<script>window.datalayer = window.datalayer || [];function gtag(){datalayer.push(arguments);}gtag('js"', new Date());gtag('config', 'G-GZ581E7RBX');</script>
- <base target="_top">
len(tds) == . <meta name="viewport" content="width=device-width, initial-scale=1"s>
€ E 5
= : <link rel="stylesheet" type="text/css" href="navi/style.css7version=2">
date = tds[0].text.strip() <title>Total Synthesis Highlights</title>
: N </head>
name_link = tds[1].find(=
name link: id="content">
q q id:
name = name_link.text.strip()
. . class="22" sre="/Highlights/LogoS.JPG" alt="Organic Chemistry Highlights" width="200" height="28">
link = name_link[] method="GET" action="/search/search.php" style="margin: ">
<input name="zoom_sort" value="0" type="hid: >
syntheses.append({ : date, g <input name="zoom_cat" value="2" type="hidde
<input name="zoom_query" size="23" type="text" placeholder="Search Org. Chem. Highlight
<input style="border-color: #ffffff; border-style: solid" type="submit" value=">>

Syﬂtheses <div id="top"></div><div id="info">
<h1>Total Synthesis</hl>
<p>(All Syntheses from A to Z)</p>
<p>URL: https://www.organic-chemistry.org/Highlights/totalsynthesis.shtm</p>
</div>
_ <table cellpadding="5" cellspacing="0" width="100%">
url = 35
<td width="90%" valign="top" L n="3">

results = extract_syntheses(url) <;~,zgz4</h,</m: 2 P cotspal
. </tr>
synthesis results: <tr>
X <td width="10%" valign="top">81 April</td>
print(synthesis) <td width="60%" valign="top">The White/Banwell/Lan
Synthesis of Codeine</td>
<td width="20%" valign="top">Douglass F. Taber</td>
</tr>
<tr>
<td width="10%" valign="top">84 March</td>
<td width="6@%" valign="top"sThe Baran Synthesis
of Cyclopamine</td>
<td width="20%" valign="top">Douglass F. Taber</td>
</tr>

=F7L Beautiful Soup Documentation

Beautiful Soup is a Python library for pulling data out of HTML
and XML files. It works with your favorite parser to provide
idiomatic ways of navigating, searching, and modifying the parse
tree. It commonly saves programmers hours or days of work.

html_doc = """

<html><head><title>The Dormouse's story</title></head>

<body>

<p class="title">The Dormouse's story</p>

<p class="story">0Once upon a time there were three little sisters; and their names were But the htm!| document could be
Elsie,

Lacie and the Output of a I’equest fo a

Tillie;
and they lived at the bottom of a well.</p>

webpage.

<p class="story">...</p>

from bs4 import BeautifulSoup
soup = BeautifulSoup(html_doc, 'html.parser')

https://beautiful-soup-4.readthedocs.io/en/latest/
- pip install beautifulsoup4

31

https://beautiful-soup-4.readthedocs.io/en/latest/

=PrL

Going down the tree

soup.head
<head><title>The Dormouse's story</title></head>

soup.title
<title>The Dormouse's story</title>

soup.find_all('a')

[Elsie,

Lacie,

Tillie]

soup.find_all(id="1ink2")
[Lacie]

soup.find_all("a", class_="sister")

[Elsie,

Lacie,

Tillie]

And plenty of other methods,
that lets you navigate and
identify specific content of a webpage.

html_doc = """

<html><head><title>The Dormouse's story</title></head>
<body>

<p class="title">The Dormouse's story</p>

<p class="story">Once upon a time there were three little sisters; and their names were
Elsie,

Lacie and

Tillie;

and they lived at the bottom of a well.</p>

<p class="story">...</p>

from bs4 import BeautifulSoup
soup = BeautifulSoup(html_doc, 'html.parser’

32

=PrL

Back to Python packages

=PFL pyproject.toml - What does TOML mean?

[I]TOML
[Tom's Obvious Minimal Language]

A config file format for humans.

TOML aims to be a minimal configuration file format that's easy to
read due to obvious semantics. TOML is designed to map
unambiguously to a hash table. TOML should be easy to parse into
data structures in a wide variety of languages.

title = "TOML Exa

[owner]
name = "Tom Preston-Werne
dob = 1979-05-27T07:32:00-08:00

[database]

enabled =

ports = [8000, 8001, 8002]

data = [["delta", "phi"l, [3.14]]

temp_targets = { cpu = 79.5, case = 72.0 }

[servers]

[servers.alphal
ip = "10.0.0.1"
role = "frontend"

[servers.betal
ip = "10.0.0.2"
role = "backend"

35

https://toml.io/en/

=P*L " pyproject.tomi "

A Important pyproject.toml take aways

. There are only two tables that are required for an installable Python package: [build-
system] and [project]. The [project] table stores your package’s metadata.

. There are only two required fields in the [project] table: name= and version=.

. We suggest you add additional metadata to your pyproject.toml file as it will make it
easier for users to find your project on PyPI.

2 “tables” required [build-system] and [project]

https://www.pyopensci.org/python-package-guide/package-structure-code/pyproject-toml-python-package-metadata.html
https://www.pyopensci.org/python-package-guide/package-structure-code/pyproject-toml-python-package-metadata.html

pyproject.toml - tables

e Below [build-system] is considered a table in the toml language.
e Within the build-system table below requires = is a key.

e The associated value for requires is an array containing the value “hatchling”.

[build-system] # <— this is a table
requires = ["hatchling"] # requires = is a key and "hatchling" is a value contained

Required fields for the [project] table

As mentioned above, your pyproject.toml file needs to have a name and version field in
order to properly build your package:

e Name: This is the name of your project provided as a string

» Version: This is the version of your project. If you are using a scm tool for versioning

(using git tags to determine versions), then the version may be dynamic (more on that
below).

Recommended build system
- Comes with the liac copier template

[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"

[project]
name = "examplePy"
authors = [
{name = "Some Maintainer", email = "some-email@pyopensci.org"},
1
maintainers = [
{name = "All the contributors"},
1
description = "An example Python package used to support Python packaging tutorials"
keywords = ["pyOpenSci", "python packaging"]
readme = "README.md"
classifiers = [
"Programming Language :: Python :: 3",
"License :: 0SI Approved :: BSD License",
"Operating System :: 0S Independent",
1
dependencies = [
"dependency-package—name-1",
"dependency-package—-name-2",

For example, numpy==1.24.

Additional meta data:

Meta
License: MIT License (MIT)

Author: Daniel Probst &8

Classifiers

o Development Status

o 5-Production/Stable

Environment
o Console

Intended Audience

o Science/Research

License
o OSI Approved :: MIT License

Operating System
o MacOS
o Microsoft :: Windows
o POSIX:: Linux
o Unix

Programming Language
o Python
o Python:3

o Python::3: Only

Topic
o Scientific/Engineering ::
Chemistry

=PFL What Is a package dependency? "

A Python package dependency refers to an external package or software that your Python
project:

1. needs to function properly.

2. requires if someone wants to develop [/ work on improving your package locally or

3. requires if a user wants to add additional functionality (that is not core) to your package

A dependency is not part of your project’'s codebase. It is a package or software that is
called within the code of your project or during development of your package.

https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html
https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html

40

=PrL
Python Package Dependency Types

G
%OpeanSci

Optional :
Feature dependencies
Instaill to add optional . .]
functionality to your package [project.optional-dependencies]
tests = [
"pytest" ,
"pytest-cov"
[project]
name = "examplePy" k docs =
authors = [yOUr-PaC age "sphinx",
{name = "Some Maintainer", email = "some-email@pyopensci.org"}, "pvdat hi th 1
] Required] pydata_spninx_theme
e e R _Cwedependenc:es lint = [
“"rioxarray", requtred to run your pC’CkG'ge "hlack™
r

""geopandas",

"flake8"

|
‘ feature = [

Optional:
P "pandas",

Development dependencies]
needed to develop your package
Users do not need to install these

ePFL) Optional vs. Required Python Package Dependencies
o)

pyOpenSci

[docs]

sphinx
pydata_sphinx_theme

pip install your-package

Your Python
Environment

Optional,

development your-package Seaborn

your-package Numpy
Core Dependencies
seaborn

numpy

Your Python

. . Trests] Environment
ip install your-package|tests
pip y [9 your-package Seaborn

Numpy
pytest
pytest-cov

Development Dependencies Feature Dependencies Core Dependencies

F P ges [code needed Optional packages that a user can Packages [code required to run your code that
develop your package (run tests, install to support additional functionality need tobei into a users envi when
format code, etc) in your package your package is installed

https://www.pyopensci.org/python-package-
guide/package-structure-code/declare-
dependencies.html#install-dependency-groups

a1

https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html
https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html
https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html

=P*L You could also publish your package on
pypi/ conda-forge (advanced!)

Python package build workflow o

%O;%Sci

Publish [Distribute so others can install

e Code

Create SDist [Wheel Build Push sdist, wheel to PyPI

e Metadata -~ distribution PyPI -~ conda/
e Tests files conda-forge
e Documentation

e Data

Typically the documentation . H .

and data are not included in User install: User l!'\StGl.

your package wheel. Test Pypl pip install conda install -c

(optional) package-name conda-forge

package-name

https://www.pyopensci.org/python-package-quide/package-structure-code/publish-python-
- package-pypi-conda.html

42

https://www.pyopensci.org/python-package-guide/package-structure-code/publish-python-package-pypi-conda.html
https://www.pyopensci.org/python-package-guide/package-structure-code/publish-python-package-pypi-conda.html

=PrL

Having a consistent code format - helper tools

Code style

PEP 8 - Style Guide for Python Code

Author: Guido van Rossum <guido at python.org>, Barry Warsaw <barry at python.org>, Alyssa
Coghlan <ncoghlan at gmail.com>

Status: Active
Type: Process
Created: 05-Jul-2001
Post-History: 05-Jul-2001, 01-Aug-2013

55

https://peps.python.org/pep-0008/

=PrL Lot’s of comrect vs wrong examples.

Correct:

Aligned with opening delimiter.
foo = long_function_name(var_one, var_two,
var_three, var_four)

Add 4 spaces (an extra level of indentation) to distinguish arguments from the rest.
def long_function_name(
var_one, var_two, var_three,
var_four):
print(var_one)

Hanging indents should add a level.
foo = long_function_name(

var_one, var_two,

var_three, var_four)

Wrong:

Arguments on first line forbidden when not using vertical alignment.
foo = long_function_name(var_one, var_two,
var_three, var_four)

Further indentation required as indentation is not distinguishable.
def long_function_name(

var_one, var_two, var_three,

var_four):

print(var_one)

Both code examples work, but one is much more readable than the other.

How to check style? - Linters

Black Isort

Python imports refer to the Python packages that a module in your package requires.

Black is a code formatter. Black will automagically (and unapologetically) fix spacing issues
Imports should always be located at the top of each Python module in your package.

and ensure code format is consistent throughout your package. Black also generally adhere
to PEP 8 style guidelines with some exceptions. A few examples of those exceptions are PEP 8 has specific standards for the order of these imports. These standards are listed below:

below:

Imports should be grouped in the following order:
Black defaults to a line length of 88 (79 + 10%) rather than the 79 character PEP 8 P group 9

specification. However, line length is a setting can be manually overwritten in your Black « Standard library imports.

configuration. Related third party imports.

Black will not adjust line length in your comments or docstrings. « Local application/library specific imports.
This tool will not review and fix import order (you need isort or Ruff to do that - see

below).

(stravalib-dev) username@computer stravalib % flake8 stravalib/model.py

flake8 for linting code in Python packages stravalib/model.py:8:1: F401 'os' imported but unused

stravalib/model.py:29:80: E501 line too long (90 > 79 characters)

. stravalib/model.py:34:80: E501 line too long (95 > 79 characters)
To adhere to Python |pep8 format standards, you might want to add flake8 to your code Sravatib/modell py 442 80 WES018 UineRtoollonall(820= 7okcharacters)

format toolbox. stravalib/model.py:443:39: E231 missing whitespace after ',
stravalib/model.py:493:20: E225 missing whitespace around operator
stravalib/model.py:496:80: E501 line too long (82 > 79 characters)
flake8 will:

« Flag every line in your code that extends beyond 79 characters (including those in
docstrings and comments)

« Flag spacing issues that conflict with PEP 8 guidelines such as missing spaces after
commas

Flake8 also flags unused imports and unused declared variables in your modules.

https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html
https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html
https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html

=PFL Ruff - new addition to the ecosystem

Ruff is a new addition to the code quality ecosystem, gaining some traction since its release.

ruff is a linter for Python, aiming to replace several tools behind a single interface. As such,
ruff can be used instead of flake8 and isort.

ruff has some interesting features that distinguish it from other linters:

¢ Linter configuration in pyproject.toml
¢ Several hundred rules included, many of which are automatically fixable
* Rules explanation, see F403 for an example

» Fast execution time, makes a quick feedback loop possible even on large projects.

Here is a simple configuration to get started with ' ruff :

pyproject.toml

[tool. ruff]
[
pycodestyle errors
pycodestyle warnings
pyflakes. "E" + "W" + "F" + "C90" (mccabe complexity) is equivalent to flak
, # isort

ignore = [
"E501", # line >79, handled by black
]

- Rules set in the pyproject.toml file

58

=P*L Pre-commit hooks (advanced!) - only allow to
commit new code, if code format is ok.

File changes

Framework for pre-commit

diff

T

' Pre-commit
Staging i Ruff (check + All checks passed? Commit
git add '. git commit: reformat) g Yes >.

No, repeat

https://www.pyopensci.org/python-package-quide/package-structure-code/code-style-linting-

format.html#use-pre-commit-hooks-to-run-code-formatters-and-linters-on-commits

https://qgithub.com/schwallergroup/copier-liac/tree/main.

(template with linters + precommit hooks, advanced!!)

https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html
https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html
https://github.com/schwallergroup/copier-liac/tree/main

=P*L Awesome resource (credits to them

pyOpenSci Python Package Guide

We support the Python tools that scientists need to create open science workflows.

release v0.3 (@RI UMId DOI 10.5281/zenodo.10840150

A About this guide

This guide will help you: gOp%Sci 9.0
Al
. Learn how to create a Python package from User “ N
s Documentation
start to finish

L Code | API
. Understand the broader Python packaging

tool ecosystem Maintainer(s)
. Navigate and make decisions around tool
options
. Understand all of the pieces of creating and
maintaining a Python package ; a
Contributor
You will also find best practice recommendations Doctmentation
and curated lists of community resources
surrounding packaging and package
documentation.

https://www.pyopensci.org/python-package-guide/index.html

	Slide 1: APIs, web scraping, and more packaging
	Slide 2: This lecture
	Slide 3: APIs
	Slide 4: Let’s start with some useful chemistry tools, and their Python API.
	Slide 5: OPSIN - Open Parser for Systematic IUPAC nomenclature
	Slide 6: OPSIN output
	Slide 7: It’s ok to query the webpage manually if you want to convert a few names, but what if you had 1M names?
	Slide 8: Let’s get the code..
	Slide 9: py2opsin - Simple Python interface to OPSIN: Open Parser for Systematic IUPAC nomenclature
	Slide 10: The Python package
	Slide 11: Fun fact – he also changed pyproject.toml
	Slide 12: Let’s check out the package source of pyopsin
	Slide 13: How it is done.
	Slide 14: PubChem
	Slide 15: PubChemAPI
	Slide 16: SmallWorld - https://sw.docking.org/search.html
	Slide 18: Again, you find a inofficial Python API
	Slide 19: CDK Depict
	Slide 20: How would we build an API to be able to request the CDK depict SVG in a Jupyter notebook?
	Slide 21: Getting data/information from webpages using Python
	Slide 22: How do we connect from Python to webpages?
	Slide 23: Basic concepts
	Slide 24: Basic example  PubChem
	Slide 25: Same with requests
	Slide 26: Web scraping – an example
	Slide 27: First step – check out page source
	Slide 28: The source code
	Slide 29: Ask ChatGPT for initial code (might not be perfect in the first try, but a good way to start)
	Slide 30
	Slide 31
	Slide 32: Going down the tree
	Slide 34: Back to Python packages
	Slide 35: pyproject.toml - What does TOML mean?
	Slide 36: pyproject.toml
	Slide 37: pyproject.toml – tables
	Slide 38
	Slide 39: What is a package dependency?
	Slide 40
	Slide 41
	Slide 42: You could also publish your package on pypi/conda-forge (advanced!)
	Slide 54: Having a consistent code format - helper tools
	Slide 55: Code style
	Slide 56: Lot’s of correct vs wrong examples.
	Slide 57: How to check style?  Linters
	Slide 58: Ruff – new addition to the ecosystem
	Slide 59: Pre-commit hooks (advanced!) – only allow to commit new code, if code format is ok.
	Slide 60: Awesome resource (credits to them)

