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▪ Useful chemistry tools 

▪ APIs (not active pharmaceutical ingredients, but application 
programming interfaces)

▪ Web scraping 

▪ More packaging

▪ For those who emailed me about the project, could you send me a 
friendly reminder, and could you add “[CH200]” to the subject? 

This lecture
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▪ APIs, or Application Programming Interfaces, are a set of rules 
and protocols that allow different software applications to 
communicate with each other.

▪ Instead of communicating with a database/webpage manually, an 
API can provide a set of functions that facilitate 
communications.

APIs
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https://www.danielleskosky.com/wp-content/uploads/media-uploads/what-is-an-api/api-with-outlets.jpg

A function with well-defined
inputs and outputs can be 

an API.

https://www.danielleskosky.com/wp-content/uploads/media-uploads/what-is-an-api/api-with-outlets.jpg


Let’s start with some useful chemistry tools,
and their Python API.
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▪ IUPAC name to structure converter (https://opsin.ch.cam.ac.uk) made 
by Daniel Lowe

OPSIN - Open Parser for Systematic IUPAC nomenclature 5

https://opsin.ch.cam.ac.uk/


OPSIN output
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It’s ok to query the webpage manually if you want to 
convert a few names, but what if you had 1M names?
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▪ https://github.com/dan2097/opsin, found it! And it’s MIT-licensed :D

▪ But it’s in Java … I don’t want to learn another programming language.

▪ Luckily, there is there is Jackson Burns, who faced the same problem:
https://github.com/JacksonBurns/py2opsin/tree/main

Let’s get the code.. 
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https://github.com/dan2097/opsin
https://github.com/JacksonBurns/py2opsin/tree/main


py2opsin - Simple Python interface to OPSIN: Open 
Parser for Systematic IUPAC nomenclature
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https://github.com/JacksonBurns/py2opsin/tree/main

https://github.com/JacksonBurns/py2opsin/tree/main


The Python package
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The source code

Tests 

Documentation 

File to tell
pip how to install the package 



Fun fact – he also changed pyproject.toml 
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https://github.com/JacksonBurns/blank-python-project

Jackson Burns template for python projects 

pyproject.toml,
not setup.py

https://github.com/JacksonBurns/blank-python-project


Let’s check out the package source of pyopsin
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https://github.com/JacksonBurns/py2opsin/blob/main/py2opsin/py2opsin.py

1 single function that wraps the 
java-based OPSIN, and provides a

clear interface to use it in Python.

→ local API

The file that says:
“This is part of the package”

https://github.com/JacksonBurns/py2opsin/blob/main/py2opsin/py2opsin.py


How it is done. 
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Defining the input to the java program

Creating a temporary input file

Running the java program
on the file, saving the output 

in ”result”

Parsing the result and
deleting the temporary file. 



▪ PubChem is a public chemical database aggregating various information on 
mostly small molecules from multiple sources.

▪ PubChem provides broad annotations from more than 870 sources grouped 
into data collections containing information about substances, bioassays, 
protein targets, genes, pathways, cell lines, taxonomy, and patents.

▪ Currently, more than 111 million unique molecules are deposited in 
PubChem. 

▪ https://pubchem.ncbi.nlm.nih.gov

PubChem
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Manual search is fine for a few
compounds, but again what if you

want to query hundreds. 

https://pubchem.ncbi.nlm.nih.gov/


PubChemAPI
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https://github.com/mcs07/PubChemPy

https://github.com/mcs07/PubChemPy


SmallWorld - https://sw.docking.org/search.html
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Blazing fast molecular similarity search in some of the world's most extensive molecule databases. 

https://sw.docking.org/search.html


▪ https://github.com/matteoferla/Python_SmallWorld_API (MIT)

Again, you find a inofficial Python API
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Make calls to the API endpoints

-q is just an option for “quite”, less output in the terminal while installing

https://github.com/matteoferla/Python_SmallWorld_API


CDK Depict 
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If we click on a molecule,
we get back the following URL.

https://www.simolecule.com/cdkdepict/depict/bot/svg?smi=CN1C%3DNC2%3DC1C(%3DO)N(C(
%3DO)N2C)C%20caffeine&w=-1&h=-

1&abbr=on&hdisp=bridgehead&zoom=1.3&annotate=none&r=0



▪ Define: base_url → https://www.simolecule.com/cdkdepict/depict/

▪ Make a function that takes the following parameters
• style → default: bot 

• format → default: svg

• smiles_string + description

• abbreviation → default: on 

• hydrogens → default: bridgehead
• annotations → default: none

• rotation → default: 0

▪ Make a dictionary out of the parameters

▪ Encode them with params_str = urllib.parse.urlencode(params)

▪ Create the URL: f’{base_url}/{style}/svg?{params_str}’

▪ Call that URL and return the SVG

How would we build an API to be able to request the 
CDK depict SVG in a Jupyter notebook?
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https://www.simolecule.com/cdkdepict/depict/bot/svg?smi=CN1C%3DNC2%3DC1C(%3DO)N(C(
%3DO)N2C)C%20caffeine&w=-1&h=-

1&abbr=on&hdisp=bridgehead&zoom=1.3&annotate=none&r=0

https://www.simolecule.com/cdkdepict/depict/


Getting data/information from webpages 
using Python
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▪ urllib (standard Python library), requests (community-driven library)

▪ urllib is a Python module that allows you to interact with websites 
by sending requests and handling responses. Think of it as a tool that 
lets your Python script browse the internet, access web resources, 
and even download data, much like you would with a web browser, 
but programmatically.

▪ requests is a highly popular Python library designed to simplify the 
process of making HTTP requests. It offers a more user-friendly and 
intuitive approach compared to Python's standard library modules like 
urllib.

How do we connect from Python to webpages?
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• URLs (uniform resource locators): Just like web addresses you enter 
in a browser to visit a webpage, urllib/requests use URLs to locate and 
access web resources.

• Requests: This is how you ask for data from a website. For example, 
requesting the webpage’s source code or data for a molecule.

• Responses: After you make a request, the website sends back a 
response, which includes the data you asked for, like the HTML of a 
webpage or a file to download.

Basic concepts
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▪ https://pubchem.ncbi.nlm.nih.gov/rest/pug/compou
nd/name/caffeine/JSON

Basic example →PubChem
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This would give you the JSON dictionary in data

https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/caffeine/JSON
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/caffeine/JSON


Same with requests
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▪ https://www.organic-chemistry.org/Highlights/totalsynthesis.shtm

Web scraping – an example
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https://www.organic-chemistry.org/Highlights/totalsynthesis.shtm


First step – check out page source
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Alternatively, you could also just use requests to get the page source.
(the example above is with Firefox) 



The source code
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Ask ChatGPT for initial code (might not be perfect 
in the first try, but a good way to start)
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30
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https://beautiful-soup-4.readthedocs.io/en/latest/
pip install beautifulsoup4

But the html document could be
the output of a request to a

webpage.

https://beautiful-soup-4.readthedocs.io/en/latest/


Going down the tree
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And plenty of other methods,
that lets you navigate and 

identify specific content of a webpage.



Back to Python packages

34



pyproject.toml - What does TOML mean?  
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https://toml.io/en/

https://toml.io/en/


▪ https://www.pyopensci.org/python-package-guide/package-structure-
code/pyproject-toml-python-package-metadata.html

pyproject.toml 
36

2 “tables” required [build-system] and [project]

https://www.pyopensci.org/python-package-guide/package-structure-code/pyproject-toml-python-package-metadata.html
https://www.pyopensci.org/python-package-guide/package-structure-code/pyproject-toml-python-package-metadata.html


pyproject.toml – tables
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Additional meta data:

For example, numpy==1.24.

Recommended build system
→ Comes with the liac copier template



What is a package dependency?
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https://www.pyopensci.org/python-package-
guide/package-structure-code/declare-dependencies.html

https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html
https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html


40
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https://www.pyopensci.org/python-package-
guide/package-structure-code/declare-

dependencies.html#install-dependency-groups

https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html
https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html
https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html


You could also publish your package on 
pypi/conda-forge (advanced!) 

42

https://www.pyopensci.org/python-package-guide/package-structure-code/publish-python-
package-pypi-conda.html

https://www.pyopensci.org/python-package-guide/package-structure-code/publish-python-package-pypi-conda.html
https://www.pyopensci.org/python-package-guide/package-structure-code/publish-python-package-pypi-conda.html


Having a consistent code format - helper tools

54



▪ https://peps.python.org/pep-0008/

Code style 
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https://peps.python.org/pep-0008/


Lot’s of correct vs wrong examples.
56

Both code examples work, but one is much more readable than the other. 



How to check style? → Linters
57

https://www.pyopensci.org/python-package-
guide/package-structure-code/code-style-

linting-format.html

https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html
https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html
https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html


Ruff – new addition to the ecosystem 
58

→ Rules set in the pyproject.toml file



Pre-commit hooks (advanced!) – only allow to 
commit new code, if code format is ok. 

59

https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-
format.html#use-pre-commit-hooks-to-run-code-formatters-and-linters-on-commits

Ruff (check + 
reformat)

https://github.com/schwallergroup/copier-liac/tree/main. 
(template with linters + precommit hooks, advanced!!) 

https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html
https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html
https://github.com/schwallergroup/copier-liac/tree/main


▪ https://www.pyopensci.org/python-package-guide/index.html

Awesome resource (credits to them)
60

https://www.pyopensci.org/python-package-guide/index.html
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