
APIs, web
scraping, and
more
packaging

Practical Programming
in Chemistry

Prof. Philippe Schwaller

▪ Useful chemistry tools

▪ APIs (not active pharmaceutical ingredients, but application
programming interfaces)

▪ Web scraping

▪ More packaging

▪ For those who emailed me about the project, could you send me a
friendly reminder, and could you add “[CH200]” to the subject?

This lecture
2

▪ APIs, or Application Programming Interfaces, are a set of rules
and protocols that allow different software applications to
communicate with each other.

▪ Instead of communicating with a database/webpage manually, an
API can provide a set of functions that facilitate
communications.

APIs
3

https://www.danielleskosky.com/wp-content/uploads/media-uploads/what-is-an-api/api-with-outlets.jpg

A function with well-defined
inputs and outputs can be

an API.

https://www.danielleskosky.com/wp-content/uploads/media-uploads/what-is-an-api/api-with-outlets.jpg

Let’s start with some useful chemistry tools,
and their Python API.

4

▪ IUPAC name to structure converter (https://opsin.ch.cam.ac.uk) made
by Daniel Lowe

OPSIN - Open Parser for Systematic IUPAC nomenclature 5

https://opsin.ch.cam.ac.uk/

OPSIN output
6

It’s ok to query the webpage manually if you want to
convert a few names, but what if you had 1M names?

7

▪ https://github.com/dan2097/opsin, found it! And it’s MIT-licensed :D

▪ But it’s in Java … I don’t want to learn another programming language.

▪ Luckily, there is there is Jackson Burns, who faced the same problem:
https://github.com/JacksonBurns/py2opsin/tree/main

Let’s get the code..
8

https://github.com/dan2097/opsin
https://github.com/JacksonBurns/py2opsin/tree/main

py2opsin - Simple Python interface to OPSIN: Open
Parser for Systematic IUPAC nomenclature

9

https://github.com/JacksonBurns/py2opsin/tree/main

https://github.com/JacksonBurns/py2opsin/tree/main

The Python package
10

The source code

Tests

Documentation

File to tell
pip how to install the package

Fun fact – he also changed pyproject.toml
11

https://github.com/JacksonBurns/blank-python-project

Jackson Burns template for python projects

pyproject.toml,
not setup.py

https://github.com/JacksonBurns/blank-python-project

Let’s check out the package source of pyopsin
12

https://github.com/JacksonBurns/py2opsin/blob/main/py2opsin/py2opsin.py

1 single function that wraps the
java-based OPSIN, and provides a

clear interface to use it in Python.

→ local API

The file that says:
“This is part of the package”

https://github.com/JacksonBurns/py2opsin/blob/main/py2opsin/py2opsin.py

How it is done.
13

Defining the input to the java program

Creating a temporary input file

Running the java program
on the file, saving the output

in ”result”

Parsing the result and
deleting the temporary file.

▪ PubChem is a public chemical database aggregating various information on
mostly small molecules from multiple sources.

▪ PubChem provides broad annotations from more than 870 sources grouped
into data collections containing information about substances, bioassays,
protein targets, genes, pathways, cell lines, taxonomy, and patents.

▪ Currently, more than 111 million unique molecules are deposited in
PubChem.

▪ https://pubchem.ncbi.nlm.nih.gov

PubChem
14

Manual search is fine for a few
compounds, but again what if you

want to query hundreds.

https://pubchem.ncbi.nlm.nih.gov/

PubChemAPI
15

https://github.com/mcs07/PubChemPy

https://github.com/mcs07/PubChemPy

SmallWorld - https://sw.docking.org/search.html
16

Blazing fast molecular similarity search in some of the world's most extensive molecule databases.

https://sw.docking.org/search.html

▪ https://github.com/matteoferla/Python_SmallWorld_API (MIT)

Again, you find a inofficial Python API
18

Make calls to the API endpoints

-q is just an option for “quite”, less output in the terminal while installing

https://github.com/matteoferla/Python_SmallWorld_API

CDK Depict
19

If we click on a molecule,
we get back the following URL.

https://www.simolecule.com/cdkdepict/depict/bot/svg?smi=CN1C%3DNC2%3DC1C(%3DO)N(C(
%3DO)N2C)C%20caffeine&w=-1&h=-

1&abbr=on&hdisp=bridgehead&zoom=1.3&annotate=none&r=0

▪ Define: base_url → https://www.simolecule.com/cdkdepict/depict/

▪ Make a function that takes the following parameters
• style → default: bot

• format → default: svg

• smiles_string + description

• abbreviation → default: on

• hydrogens → default: bridgehead
• annotations → default: none

• rotation → default: 0

▪ Make a dictionary out of the parameters

▪ Encode them with params_str = urllib.parse.urlencode(params)

▪ Create the URL: f’{base_url}/{style}/svg?{params_str}’

▪ Call that URL and return the SVG

How would we build an API to be able to request the
CDK depict SVG in a Jupyter notebook?

20

https://www.simolecule.com/cdkdepict/depict/bot/svg?smi=CN1C%3DNC2%3DC1C(%3DO)N(C(
%3DO)N2C)C%20caffeine&w=-1&h=-

1&abbr=on&hdisp=bridgehead&zoom=1.3&annotate=none&r=0

https://www.simolecule.com/cdkdepict/depict/

Getting data/information from webpages
using Python

21

▪ urllib (standard Python library), requests (community-driven library)

▪ urllib is a Python module that allows you to interact with websites
by sending requests and handling responses. Think of it as a tool that
lets your Python script browse the internet, access web resources,
and even download data, much like you would with a web browser,
but programmatically.

▪ requests is a highly popular Python library designed to simplify the
process of making HTTP requests. It offers a more user-friendly and
intuitive approach compared to Python's standard library modules like
urllib.

How do we connect from Python to webpages?
22

• URLs (uniform resource locators): Just like web addresses you enter
in a browser to visit a webpage, urllib/requests use URLs to locate and
access web resources.

• Requests: This is how you ask for data from a website. For example,
requesting the webpage’s source code or data for a molecule.

• Responses: After you make a request, the website sends back a
response, which includes the data you asked for, like the HTML of a
webpage or a file to download.

Basic concepts
23

▪ https://pubchem.ncbi.nlm.nih.gov/rest/pug/compou
nd/name/caffeine/JSON

Basic example →PubChem
24

This would give you the JSON dictionary in data

https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/caffeine/JSON
https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/caffeine/JSON

Same with requests
25

▪ https://www.organic-chemistry.org/Highlights/totalsynthesis.shtm

Web scraping – an example
26

https://www.organic-chemistry.org/Highlights/totalsynthesis.shtm

First step – check out page source
27

Alternatively, you could also just use requests to get the page source.
(the example above is with Firefox)

The source code
28

Ask ChatGPT for initial code (might not be perfect
in the first try, but a good way to start)

29

30

31

https://beautiful-soup-4.readthedocs.io/en/latest/
pip install beautifulsoup4

But the html document could be
the output of a request to a

webpage.

https://beautiful-soup-4.readthedocs.io/en/latest/

Going down the tree
32

And plenty of other methods,
that lets you navigate and

identify specific content of a webpage.

Back to Python packages

34

pyproject.toml - What does TOML mean?
35

https://toml.io/en/

https://toml.io/en/

▪ https://www.pyopensci.org/python-package-guide/package-structure-
code/pyproject-toml-python-package-metadata.html

pyproject.toml
36

2 “tables” required [build-system] and [project]

https://www.pyopensci.org/python-package-guide/package-structure-code/pyproject-toml-python-package-metadata.html
https://www.pyopensci.org/python-package-guide/package-structure-code/pyproject-toml-python-package-metadata.html

pyproject.toml – tables
37

38

Additional meta data:

For example, numpy==1.24.

Recommended build system
→ Comes with the liac copier template

What is a package dependency?
39

https://www.pyopensci.org/python-package-
guide/package-structure-code/declare-dependencies.html

https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html
https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html

40

41

https://www.pyopensci.org/python-package-
guide/package-structure-code/declare-

dependencies.html#install-dependency-groups

https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html
https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html
https://www.pyopensci.org/python-package-guide/package-structure-code/declare-dependencies.html

You could also publish your package on
pypi/conda-forge (advanced!)

42

https://www.pyopensci.org/python-package-guide/package-structure-code/publish-python-
package-pypi-conda.html

https://www.pyopensci.org/python-package-guide/package-structure-code/publish-python-package-pypi-conda.html
https://www.pyopensci.org/python-package-guide/package-structure-code/publish-python-package-pypi-conda.html

Having a consistent code format - helper tools

54

▪ https://peps.python.org/pep-0008/

Code style
55

https://peps.python.org/pep-0008/

Lot’s of correct vs wrong examples.
56

Both code examples work, but one is much more readable than the other.

How to check style? → Linters
57

https://www.pyopensci.org/python-package-
guide/package-structure-code/code-style-

linting-format.html

https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html
https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html
https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html

Ruff – new addition to the ecosystem
58

→ Rules set in the pyproject.toml file

Pre-commit hooks (advanced!) – only allow to
commit new code, if code format is ok.

59

https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-
format.html#use-pre-commit-hooks-to-run-code-formatters-and-linters-on-commits

Ruff (check +
reformat)

https://github.com/schwallergroup/copier-liac/tree/main.
(template with linters + precommit hooks, advanced!!)

https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html
https://www.pyopensci.org/python-package-guide/package-structure-code/code-style-linting-format.html
https://github.com/schwallergroup/copier-liac/tree/main

▪ https://www.pyopensci.org/python-package-guide/index.html

Awesome resource (credits to them)
60

https://www.pyopensci.org/python-package-guide/index.html

	Slide 1: APIs, web scraping, and more packaging
	Slide 2: This lecture
	Slide 3: APIs
	Slide 4: Let’s start with some useful chemistry tools, and their Python API.
	Slide 5: OPSIN - Open Parser for Systematic IUPAC nomenclature
	Slide 6: OPSIN output
	Slide 7: It’s ok to query the webpage manually if you want to convert a few names, but what if you had 1M names?
	Slide 8: Let’s get the code..
	Slide 9: py2opsin - Simple Python interface to OPSIN: Open Parser for Systematic IUPAC nomenclature
	Slide 10: The Python package
	Slide 11: Fun fact – he also changed pyproject.toml
	Slide 12: Let’s check out the package source of pyopsin
	Slide 13: How it is done.
	Slide 14: PubChem
	Slide 15: PubChemAPI
	Slide 16: SmallWorld - https://sw.docking.org/search.html
	Slide 18: Again, you find a inofficial Python API
	Slide 19: CDK Depict
	Slide 20: How would we build an API to be able to request the CDK depict SVG in a Jupyter notebook?
	Slide 21: Getting data/information from webpages using Python
	Slide 22: How do we connect from Python to webpages?
	Slide 23: Basic concepts
	Slide 24: Basic example  PubChem
	Slide 25: Same with requests
	Slide 26: Web scraping – an example
	Slide 27: First step – check out page source
	Slide 28: The source code
	Slide 29: Ask ChatGPT for initial code (might not be perfect in the first try, but a good way to start)
	Slide 30
	Slide 31
	Slide 32: Going down the tree
	Slide 34: Back to Python packages
	Slide 35: pyproject.toml - What does TOML mean?
	Slide 36: pyproject.toml
	Slide 37: pyproject.toml – tables
	Slide 38
	Slide 39: What is a package dependency?
	Slide 40
	Slide 41
	Slide 42: You could also publish your package on pypi/conda-forge (advanced!)
	Slide 54: Having a consistent code format - helper tools
	Slide 55: Code style
	Slide 56: Lot’s of correct vs wrong examples.
	Slide 57: How to check style?  Linters
	Slide 58: Ruff – new addition to the ecosystem
	Slide 59: Pre-commit hooks (advanced!) – only allow to commit new code, if code format is ok.
	Slide 60: Awesome resource (credits to them)

