
Reactions &
python
packages

Practical Programming
in Chemistry

Prof. Philippe Schwaller

▪ A bit more on chemical reactions

▪ Python packages

This lecture
2

Recap from last time
3

Challenges with atom-mapping
4

Not taken into account with atom-mapping!

▪ Name reaction classes are typically assigned by closed source tools
(e.g. NameRXN from Nextmove Software)

▪ New tool https://github.com/mrodobbe/Rxn-INSIGHT

Reaction classes
5

https://github.com/mrodobbe/Rxn-INSIGHT

Reaction fingerprints
6

Either 166-bit MACCS keys [48] or 1024-bit

extended-connectivity fingerprints with

radius 2 (ECFP4; also: Morgan
fingerprints) [49] can be used for

representing the molecule. The reaction
fingerprint is constructed by either adding

or concatenating the molecular fingerprints

of reactants and products [50].

https://github.com/mrodobbe/Rxn-INSIGHT/blob/master/rxn_insight/representation.py#L19

Does not handle reagents…

https://jcheminf.biomedcentral.com/articles/10.1186/s13321-024-00834-z
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-024-00834-z
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-024-00834-z
https://github.com/mrodobbe/Rxn-INSIGHT/blob/master/rxn_insight/representation.py

7

Differential reaction fingerprint - DRFP
8

Heuristic-based bit fingerprint

RXNFP

>98% accurate

Reaction encoder

9

+ amine

 (1.2.14)

+ alcohol

(1.2.17)

Weinreb reactions:

- Bromo / I odo coupling

(3.9.14/ 17)

- Ketone synthesis (3.9.13)

- Amide synthesis (2.1.9)

Nitro to Amino

(7.1.1)

Nitration

(10.2.1)

I odo N-methylation

(1.1.3)

Alkene

Hydrogenation

 (7.6.1)

Diels-Alder

 (3.11.3)

Chloro N-Arylation (1.3.7)

 Chloro

N-Alkylation

(1.6.4)

Bromo

N-Alkylation

(1.6.2)

Ether synthesis

(1.7.7/ 9/ 11)

Esterification

(2.6.2)

Oxidations

CO2H-Me

deprotection (6.2.2)

O-Bn deprotection (6.3.1)

N-Bn deprotection

(6.1.5)
- Formic acid + amine

condensation (2.1.18)

- Formylation (10.4.1)

- Methyl to Formyl (8.8.1)

- Vilsmeier-Haack (3.11.14)

Alkyne

to Alkene

Hydrogenation

 (7.7.1)

I odination

(10.1.4)

Carboxylic ester

+ amine reaction (2.1.10)

Carboxylic acid

+ amine

condensation (2.1.2)

Aldehyde reductive

amination (1.2.1)

CO2H-Et deprotection

(6.2.1)

Epoxide coupling

Methyl esterification

(1.7.6)

Amide

Schotten-Baumann

(2.1.1)

N-Boc deprotection

(6.1.1)

Nitrile reduction

(7.3.1)

Cyano to formyl

to carbomoyl

(9.5.182 / 9.7.57)

Hydroxyimino to amino

(9.7.286)

N-Boc

protection

(5.1.1)

different

heterocycle

formation

(4.1 / 4.2)

O-TBS deprotection

(6.3.2)

Methoxy to Hydroxy (6.3.7)

Bromo-Suzuki

coupling (3.1.1)

I odo-Suzuki

coupling (3.1.3)

Bromination

 (10.1.1)

Chloro-Suzuki

coupling (3.1.2)

Bromo N-Arylation

(1.3.6)

 Wittig

olefination

(3.8.1)

Separations (11.1 / 11..9)

Thiazole synthesis

 (4.3.3)

Hydroxy

to Chloro

(9.1.6) - I odo Sonogashira (3.3.4)

- I odo Heck (3.2.3)

- Hiyama coupling (3.5.1)

- Chloro Sonogashira (3.3.3)
Unrecognised

Heteroatom alkylation and arylation

Acylation and related processes

C-C bond formation

Heterocycle formation

Protections

Deprotections

Reductions

Oxidations

Functional group interconvertions

Functional group additions

Resolutions

Pd-(OAc)2

K2CO3

I odo-Suzuki coupling

Chemical

Reaction

Atlas

Powered by TMAP
Probst & Reymond

10

https://rxn4chemistry.github.io/rxnfp//tmaps/tmap_ft_10k.htm l

https://rxn4chemistry.github.io/rxnfp/tmaps/tmap_ft_10k.htm

Python packages
-- sharing reusable functionality

11

If we look at those packages
12

https://github.com/rxn4chemistry/rxnfp

https://github.com/reymond-group/drfp

https://github.com/rxn4chemistry/rxnfp
https://github.com/reymond-group/drfp

Intimidating? Yes. Let’s look at it in more detail.
13

• .github/workflows (optional): GitHub Actions
workflows, which are automated scripts that

you can set up
• data (optional): Data needed for your

package's operations

• models (optional): Files related to data
models (e.g. machine learning models)

• notebooks (optional): Jupyter notebooks that
make use of your package.

• scripts (optional): Executable scripts that

perform tasks using your package.
• src/drfp (the main folder): Short for "source",

this directory will contain the actual Python
source code of the package.

• tests (recommended): Contains test code.

This directory will have unit tests that help
ensure your code is running correctly.

The source folder → src/drfp
14

The presence of an __init__.py file in a directory indicates to
Python that the directory should be treated as a package.

This means that the directory's name can be used in
import statements.

Typically, empty but you can use it to simplify imports.

cli stands for command line interface, it contains the code
to make the package work from the command line (optional).

fingerprints.py is where all the magic happens
→ the package functionality is written.

fingerprint is the name of this module in the drfp package.

Input file Output file Extra argument
for fp dimensions

fingerprint.py file
15

Imports from other packages

Silence Rdkit warnings (optional)

Defining an exception (optional)

The DrfpEncoder class, which contains all the
functionality to generate fingerprints from

reaction SMILES.

@static_method
→ Function that does not require data from class

(no self)

The main function is “encode”
16

Command line interface – cli.py
17

https://click.palletsprojects.com/en/8.1.x/

https://github.com/reymond-group/drfp/blob/main/src/drfp/cli.py

https://click.palletsprojects.com/en/8.1.x/
https://github.com/reymond-group/drfp/blob/main/src/drfp/cli.py

Command line interface – cli.py
18

https://github.com/reymond-group/drfp/blob/main/src/drfp/cli.py

https://github.com/reymond-group/drfp/blob/main/src/drfp/cli.py

19

▪ The if __name__ == "__main__": statement in Python is used to
determine whether a Python script is being run directly or being
imported into another script as a module. Let’s break it down.

▪ __name__: This is a special built-in variable in Python. It represents the
name of the current module. However, if a module is being run
directly (i.e., not imported from another script), __name__ is set to the
string "__main__" by the Python interpreter.

▪ if __name__ == "__main__": This line checks if the script is being run
directly. If this condition is True, it means the script is not being
imported and is the main program being executed.

▪ main(): This is a call to a function named main(), which you would
define elsewhere in your script. This function typically contains the code
that you want to run when the script is executed directly.

20

Code is run through the terminal using “python example_file.py” → if statement is executed → CLI

Code is imported in another script/notebook using ”from example_file import exciting_function”
→ if statement not executed.

▪ https://github.com/tiangolo/typer

There is never just one solution.
Another maybe simpler CLI.

21

https://github.com/pschwllr/drfp/blob/main/src/drfp/cli.py
https://github.com/reymond-group/drfp/compare/main...pschwllr:drfp:main

https://github.com/tiangolo/typer
https://github.com/pschwllr/drfp/blob/main/src/drfp/cli.py
https://github.com/reymond-group/drfp/compare/main...pschwllr:drfp:main

Simplify imports in the __init__.py file (advanced)
22

Why not ”from drfp.fingerprint import DrfpEncoder” ?

In the example,
in the README.

▪ .coveragerc (optional): A configuration file for coverage.py,
a tool for measuring code coverage of Python programs.

▪ .gitignore (super useful): A Git configuration file that tells Git
which files or directories to ignore in a project (temporary
files, build artifacts, etc.).

▪ .readthedocs.yml (optional): Configuration file for Read the
Docs, a documentation hosting platform that can
automatically build and host your package's documentation.

▪ LICENSE.txt (important): The license file specifies the terms
under which your package is made available. It's important for
defining how others can use your code.

▪ README.md (important): A Markdown file that provides an
introduction and overview of your package. What appears on
the github repo.

▪ environment.yml (optional): If this project is set up to work
with conda, this YAML file will specify the package
dependencies for the project so that a user can recreate the
package’s environment.

▪ pyproject.toml (important): A configuration file for build
system requirements for Python projects

▪ setup.cfg (old school): A setup configuration file, which is
used to specify metadata and configuration parameters for
the package, like package name, version, and dependencies.

▪ setup.py (old school): A Python script that serves as the
build script for setuptools. It tells setuptools about your
package (such as the name and version) as well as which
code files to include.

▪ tox.ini (optional): A configuration file for tox, a tool for testing
your code on multiple Python environments.

What are all the other files?
23

How to tell pip how to build your package?

24

setup.py (old school) and setup.cfg (separate
static metadata) – learn to understand

25

setup.py only setup.py (automatically reads setup.cfg)

and setup.cfg

There is a lot more information that can be put into
those files (.cfg)

26

▪ 1 single file ”pyproject.toml

▪ https://packaging.python.org/en/latest/guides/writing-pyproject-toml/

pyproject.toml (the new recommended way)
27

https://packaging.python.org/en/latest/guides/writing-pyproject-toml/

▪ The setup.py (old option), setup.py + setup.cfg (old option) or
pyproject.toml (recommended) make it possible to use pip to install
your package.

▪ It will recognise subfolders containing an “__init__.py” file as part of
the package. This file can be empty, but it must exist.

▪ pip install . (“.” means the current folder) will

• Identify the package (finds the pyproject.toml file)

• Build the package (using the build tool defined in the pyproject.toml)

• Resolves dependencies (installs all the required package dependencies)

• Then it installs the package, by copying the package files into the site-
packages directory of the environment (this is where all the installed
packages are)

▪ To uninstall a package, you run ”pip uninstall package-name”

“pip install .”
28

▪ If you are working on a package, and doing changes to it. You would
like the changes to be reflected in your code directly without having to
reinstall the package.

▪ That’s what the “-e” flag (editable) is for.

▪ Instead of installing the package in the site-packages directory. It links
the installation to the current directory.

▪ Hence, if you change something in the code, it will immediately change
in the installed package.

▪ → recommended when you are working no a package

“pip install -e .”
(when you are working on a package)

29

environment.yml
30

File to create a conda environment

- Might contain some additional packages
which are installed with conda instead of

pip

- Other packages that are required to
reproduce example results, but not

dependencies of the package.

.gitignore
31

Whatever matches what is specified in the .gitignore, will be ignored
by git.

How do I know what to include?

I typically start from https://gitignore.io or the one suggested on GitHub.

https://www.toptal.com/developers/gitignore/api/python,m
acos,windows,jupyternotebooks

https://gitignore.io/
https://www.toptal.com/developers/gitignore/api/python,macos,windows,jupyternotebooks
https://www.toptal.com/developers/gitignore/api/python,macos,windows,jupyternotebooks

32

Code licenses
33

Viral licenses, forces people to republish
modified code under same license

(plenty of companies/labs will not touch that
code)

Simple and permissive

Permissive

https://choosealicense.com

https://choosealicense.com/

MIT License
34

https://cthoyt.com/2020/06/03/how-to-code-with-me-organization

https://cthoyt.com/2020/06/03/how-to-code-with-me-organization

35

▪ Nice introduction and description of
your package

▪ Describe how to install it

▪ Make examples of main functionality

README.md
36

▪ Pyscaffold (https://pyscaffold.org/en/stable/)

▪ Cookiecutter (https://cookiecutter.readthedocs.io/en/1.7.2/usage.html)

▪ Copier (https://copier.readthedocs.io/en/stable/)

▪ Example of a Cookiecutter template from my lab:
https://github.com/schwallergroup/liac-repo

▪ We might move to a simpler Copier template in the future.

How to create the complex package/project
structure automatically?

38

https://pyscaffold.org/en/stable/
https://cookiecutter.readthedocs.io/en/1.7.2/usage.html
https://copier.readthedocs.io/en/stable/
https://github.com/schwallergroup/liac-repo

├── .gitignore # from gitignore.io or GitHub

├── LICENSE.txt # e.g. MIT

├── README.md # Your package landing page

├── data # Folder to place data

├── notebooks # Folder to place .ipynb files

├── pyproject.toml # Package build configuration

├── scripts # Auxiliary .py files

├── src

│ └── my_ch200_project # the package

│ └── __init__.py # required (can be empty)

│ └── module_01.py # give descriptive names

│ └── module_02.py

└── tests # Folder with tests for package

Minimal package
39

https://github.com/schwallergroup/copier-liac-minimal

https://github.com/schwallergroup/copier-liac-minimal

copier copy gh:schwallergroup/copier-liac-minimal
ch200_project

41

Going from scripts/notebooks to building
packages gives you Python superpowers!

42

	Slide 1: Reactions & python packages
	Slide 2: This lecture
	Slide 3: Recap from last time
	Slide 4: Challenges with atom-mapping
	Slide 5: Reaction classes
	Slide 6: Reaction fingerprints
	Slide 7
	Slide 8: Differential reaction fingerprint - DRFP
	Slide 9
	Slide 10
	Slide 11: Python packages -- sharing reusable functionality
	Slide 12: If we look at those packages
	Slide 13: Intimidating? Yes. Let’s look at it in more detail.
	Slide 14: The source folder  src/drfp
	Slide 15: fingerprint.py file
	Slide 16: The main function is “encode”
	Slide 17: Command line interface – cli.py
	Slide 18: Command line interface – cli.py
	Slide 19
	Slide 20
	Slide 21: There is never just one solution. Another maybe simpler CLI.
	Slide 22: Simplify imports in the __init__.py file (advanced)
	Slide 23: What are all the other files?
	Slide 24: How to tell pip how to build your package?
	Slide 25: setup.py (old school) and setup.cfg (separate static metadata) – learn to understand
	Slide 26: There is a lot more information that can be put into those files (.cfg)
	Slide 27: pyproject.toml (the new recommended way)
	Slide 28: “pip install .”
	Slide 29: “pip install -e .” (when you are working on a package)
	Slide 30: environment.yml
	Slide 31: .gitignore
	Slide 32
	Slide 33: Code licenses
	Slide 34: MIT License
	Slide 35
	Slide 36: README.md
	Slide 38: How to create the complex package/project structure automatically?
	Slide 39: Minimal package
	Slide 41: copier copy gh:schwallergroup/copier-liac-minimal ch200_project
	Slide 42: Going from scripts/notebooks to building packages gives you Python superpowers!

