CAIUATSN SAVYS EOVENSOTS
|

Practical Programming
in Chemistry

EPFL

Why fingerprints?

= Molecular structures (graphs) by themselves are hard to compare

= |f you assume that molecules with similar substructures have similar
properties - you want to turn molecules into substructure vectors

= As soon as you have a vector (bit/int/float), it is easy to compute a
similarity between two molecules

» Use cases:

» Searching for similar molecules / clustering molecules into classes / ...
* Input to machine learning models

=P7L How the ECPF/Morgan fingerprint is generated? 3
(so, you have an intuition, it’s a one-liner in RDKit)

Simplified case: radius 1

I ¢
6 A 2 ’ I
0 > AT ATTA A AN

/\)‘J\N _ 2. Assign integer based on

1 : 1. Getradius 1 48 1033 765 532 999 hash function (mathematical blender)

substructures on atomic properties.
16 9 29 20 7

3. Define fingerprint size: 32 | fingerprint_size =
and calculate the modulo T s % fingerprint_size 4. Convert to size 32 bit vector by assigning a one
(divide by 32 and take rest) 16 to the numbers in the list.

% fingerprint_size
9

. 0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,
Note: all numbers between R A R E) 1,0,0] = molecular fingerprint
0 and 31. 29 1,0, gerp

2 % fingerprint_size

20 Based on them we can structurally compare

= % fingerprint_size molecules.
7

EPFL

This lecture

= Regular expressions (regex)

= More RDK:it functionality — yay!

= SMARTS and substructure search
= Chemical reactions

EPFL

Regular expressions - regex

=P7L Regular expressions (regex) in Python

= powerful text patterns used for text matching, manipulation, and

searching

Basic Pattern Matching

e = o 'L) !Il
Importing the re module rext = fietlo, World
pattern = r"Hello

match = re.search(pattern, text)
. if match:
import re print("Match found:", match.group())

else:

print("No match found")

Match found: Hello

- https://docs.python.org/3/howto/regex.html

https://docs.python.org/3/howto/regex.html

=PrL

Regex basics

. (dot): matches any character except a newline

\d: matches a digit character

\w: matches a word character (letter, digit, or underscore) .
\'s : matches a whitespace character .
~: matches the start of a string .
$: matches the end of a string .
[1: matches any character inside the brackets °

b 3
5E
?

: matches either the expression before or after the |

: matches zero or more occurrences of the preceding pattern
: matches one or more occurrences of the preceding pattern
: matches zero or one occurrence of the preceding pattern

re.
re.
re.
re.
re.

search : searches for the first location where the pattern matches
match: checks if the pattern matches at the beginning of the string
findall:returns a list of all non-overlapping matches

split: splits the string by the occurrences of the pattern

sub : substitutes occurrences of the pattern with a replacement string

email_pattern = r'\b[A-Za-z0-9._%+-]1+@[A-Za-z0-9.-1+\. [A-Z]|a-z]{2, }\b'

email = "example@example.com"
if re.match(email_pattern, email):
print("valid email address")
else:
print("Invalid email address")

Valid email address

=PFL Regex101 -

REGULAR EXPRESSION

A-Za=20-9._%+-]glelA-7a-20-9. - |AW[A-Za—z][EM

TEST STRING

example@example.com

invalid@email

john.doe@company.org

2 matches (89 steps, 1.0ms) EXPLANATION

Bl [A-2a-20-9. _%+-1HC[A-Za-20-9 .- IRV [A-Za-2]
{2,}
Match a single character present in the list below
A=Za-20
+ matches the previous token between and
times, as many times as possible, giving back as needed
(greedy)
matches a single character in the range between A
and Z (case sensitive)

MATCH INFORMATION

Match 1 0-19 example@example.com

Match 2 34-54 john.doe@company.org

QUICK REFERENCE

Search reference A single character of: a, b or c
A character except: a, borc
All Tokens

A character in the range: a-z
Common Tokens

A character not in the rang...
General Tokens

https://regex101.com/

m

"L Molecular Transformer - a language model in chemistry

output products
precursors ® TN o O
F F
>_ © u
+ | + +
J— K+ K+
0000
CC(C)S.CN(C)C=0.FclcccnclF. input
0=C ([0-])[0-].[K+].[K+]
encoder decoder

« No rules integrated / no chemical knowledge

 Learning from examples (similar to translation models)

- Accurate predictions on unseen reactions (top on benchmarks, back then)

- Better than rule and graph-based approaches =T UNIVERSITY OF
¢¥ CAMBRIDGE

&,

Schwaller et al., Molecular Transformer — A Model for Uncertainty-Calibrated Chemical
. Reaction Prediction. ACS Central Science, 2019 I B M Resea rCh

=PrL Example: SMILES tokenizer '

SMILES: CC(=0)0C1=CC=CC=C1C(=0)0 mmmp Tokenized: CC(=0)0C1=CC=CC=C1C(=0)O0
“atom sequence’

def smiles_tokenizer(smiles):

Tokenize a SMILES molecule or reaction

import re

pattern = “(\[[*\II+][Br?[CLZ|N[O|S|P|F|I[b|c[n]o|s[p|\CIN\) [\« [=[#]=]\+[\\\\]'
regex = re.compile(pattern)

tokens = [token for token in regex.findall(smiles)]

assert smiles == ''.join(tokens)

return ' '.join(tokens)

pattern = "(\[[™\11+] |Br?|CL?|N|O|S|P|F|I|b]c|n]o|s|p|\C|\) |\ [=]#]=]\+]\\\\|\/]|:]|~|@|\?]|>|*|\$|\%s[0-9]{2}| [0-9])"

SMILES: CC(=0)0C1=CC=CC=C1C(=0)0
Tokenized: CC (=0)0C1=CC=CC=C1C(=0)0

SMILES: CC1(C(=0)NC(C(=0)N2C(C(=0)0)CS2)=C(0)C3=CC=CC=C3)C(=0)N(C)C(=0)N1
Tokenized: CC1 (C(=0)NC(C(=0)N2C(C(=0)0)CS2)=cCc(O

SMILES: Cl[Ir](C1l)(P(C3CCCCC3)3)=C(C1)C1
Tokenized: Cl [Ir] (ClL) (P (C3CCCCC3)3)=cCc(cCcL)Cct

EPFL

Do regex work for SMILES search?

= NO.

= | et’s take carboxylic acids
* Formic acid SMILES: O=CO
» Acetic acid SMILES: CC(0O)=0
* Propionic acid SMILES: CCC(=0)0O

= The carboxylic group is written 3 times differently.

= S0, what can we do?

11

EPFL

SMARTS - Regex for molecules

=P7L Regex for chemical structures are SMARTS

= SMILES arbitrary target specification
= A Language for Describing Molecular Patterns

Convert SMILES to RDKit molecules
mols = [Chem.MolFromSmiles(smi) for smi in smiles]

-

Highlight carboxylic acid groups
pattern = Chem.MolFromSmarts('C(=0)0")

Get the atoms that match the pattern for each molecule
matches = [mol.GetSubstructMatches(pattern) for mol in mols] 0=CO

= Many more details on:
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

1

CC(=0)0

13

https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

=PrL

SMARTS Atomic Primitives

SMARTS primitives and examples

Examples:
lc [aliphatic carbon atom
e [aromatic carbon atom
a [aromatic atom
[(#6] [carbon atom
(cal |calcium atom
[(++] [atom with a +2 charge
[(R] [atom in any ring
(D3] [atom with 3 explicit bonds (implicit H's don't count)
[(x3] [atom with 3 total bonds (includes implicit H's)
[tv3] [atom with bond orders totaling 3 (includes implicit H's)

[c[c@H](F)O |match chirality (H-F-O anticlockwise viewed from C)

|c[c@?H](F)O |matches if chirality is as specified or is not specified

| Ssymbol | Symbol name |Atomic property requirements | Default

[* |wildcard lany atom [(no default)

a aromatic |aromatic (no default)

A aliphatic [aliphatic (no default)

D<n> degree |<n> explicit connections exactly one

H<n> total-H-count <n> attached hydrogens exactly one?!

h<n> implicit-H-count |<n> implicit hydrogens at least one

R<n> ring membership [in <n> SSSR rings any ring atom

|r<n> |n'ng size |in smallest SSSR ring of size <n> |any ring atom?

|v<n> |va|ence |total bond order <n> |exactly one?

|X<n> |connectivity |<n> total connections |exact|y one?

Xx<n> Iring connectivity |<n> total ring connections Iat least one?

- <n> negative charge [|-<n> charge -1 charge (-- is -2, etc)
+<n> positive charge |+<n> formal charge +1 charge (++ is +2, etc)
#n atomic number [atomic number <n> (no default)?

@ chirality anticlockwise anticlockwise, default class?
@@ chirality clockwise clockwise, default class?
@<c><n> |chirality chiral class <c> chirality <n> (nodefault)
@<c><n>?|[chiral or unspec |[chirality <c><n> or unspecified |(no default)

<n> atomic mass explicit atomic mass unspecified mass

https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

14

https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

=PrL - SMARTS.Plus

Create an easy to comprehend visualization for your SMARTS expression. While our Compare, Search

®
®
SMARTS pattern:

N . SMARTS
PLUS

SMARTS and SMIRKS as well.

o¥

Picture created by the SMARTSviewer [https://smarts.plus/].
Copyright: ZBH - Center for Bioinformatics Hamburg.

LEGEND
- I
| default aliphatic C aliphatic0 |
————— bond \/
' |
' |
B— —

|
| O aliphatic
|

| e N e— JR—

= https://smarts.plus

and Create functionality is limited to SMARTS, the viewer is handling Reaction SMILES, Reaction

re
o

C(=0)0|

alaaaaal

/\

g -

|

Y

i
.

\
\ ’
Y
k. A

Picture created by the SMARTSviewer [https://smarts.plus/).
Copyright: ZBH - Center for Bioinformatics Hamburg.

LEGEND

| |
| default aromatic I

bond [“"./ atom

| ._l,,

| |
— —
pony |
I ./ aromatic !
| |
| I —

15

https://smarts.plus/

=PFL Create SMARTS using SMARTS.plus

1 o)

Given two molecule sets P (positive) and N (negative), create a frequent or contrast SMARTS expression
matching at least p% of the molecules from P (positive support) and at most n% from N (negative
support).

To use files larger than IMB please use a local installation, see https://uhh.de/naomi for software
availability.

Positive Support Structures Choose File | no file selected

Set P of molecules which should be matched. Valid file formats are .sdf, .mol2, .smi, and .smiles.
The maximum file size is IMB.

Positive Support 70%

Percentage of molecules from P which should at least be matched (p%)

Negative Support Structures Choose File | no file selected

Set N of molecules which should not be matched. Valid file formats are .sdf, .mol2, .smi, and
.smiles. The maximum file size is IMB.

Negative Support 20%

Percentage of molecules from N which should at most be matched (n%)

16

EPFL

Canonicalisation SMARTS

RDCanon: A Python Package for Canonicalizing the Order of Tokens in SMARTS Queries

Babak A. Mahjour and Connor W. Coley*

@ Cite this: J. Chem. Inf. Model. 2024, XXXX, XXX, XXX- Article Views Altmetric Citations Share Addto Export
XXX

Publication Date: March 15, 2024 v 3 9 3 1 - @ @
https://doi.org/10.1021/acs.jcim.4c00138 LEARN ABOUT THESE METRICS

© 2024 American Chemical Society

Request reuse permissions C(=C-{C@](-[C@@&H1](-B)(-0)-P)(-Cl)-Br)(-C)-C/C=C\O

O-[C@&H1](-B)(-[C@@](-CI)(-[Br:1])-C=C(-C)-C/C=C\O)-P
P-[C@&H1](-[C@](-C=[C:2](-C)-C/C=C\O)(-Br)-Cl)(-B)-O

P-[C@&H1](-B)(-0)-[C@](-Br)(-Cl)-C=C(-C)-C/C=C\O
P-[C@&H1](-B)(-0)-[C@](-Br)(-Cl)-C=C(-C)-C/C=C\O
P-[C@&H1](-B)(-0)-[C@](-Br)(-Cl)-C=C(-C)-C/C=C\O

https://github.com/coleygroup/rdcanon/

17

https://github.com/coleygroup/rdcanon/

Substructure Matching

« Find specific patterns within molecules
- Essential for drug discovery and SAR studies

« RDKit provides multiple functions:
 HasSubstructMatch - Boolean result
e GetSubstructMatch - Returns atom indices that match

result = mol.HasSubstructMatch(substructure)

match_indices = mol.GetSubstructMatch(substructure)

18

EPFL

Substructure matches / search / atom highlight

for smiles in ['OCCS', 'CCS', 'OCC', 'CC']:

mol = Chem.MolFromSmiles(smiles)

pattern = Chem.MolFromSmarts('[0,S]")

matches = mol.HasSubstructMatch(pattern)
print(f"{smiles} ontains oxygen or sulfur: {matches}")

0CCS ontains oxygen or sulfur: True
CCS ontains oxygen or sulfur: True
0CC ontains oxygen or sulfur: True
CC ontains oxygen or sulfur: False

mol = Chem.MolFromSmiles('CCN(CC)CCO")
pattern = Chem.MolFromSmarts('[N](C)C")

Get the atoms that match the pattern
matches = mol.GetSubstructMatches(pattern)

print(matches)
Highlight the matching substructures

Draw.MolToImage(mol, highlightAtoms=[atom for match in matches for atom in matchl])

(2, 1, 3), (2, 1, 5), (2, 3, 5))
HO

s

19

=PFL Being more specific

let's suppose we want to create a
SMARTS pattern to match alcohols - “CO”

Ok, obviously we don't want a charged oxygen, so let's try
"C[O+0]" and look at the first three hits:

And the oxygen should have a hydrogen, "C[Oh1+0]":

Now, about that carbon. | only had sp3-hybridised
carbons in mind, so how about "[CX4][Oh1+0]"? Here is
the full list of hits at this point:

\\.r/O:\“//

i
S

l

1710835

N=—8—OH

1161700

3558926

N==—OH

1161700

N=—=—OH

1161700

- https://baoilleach.blogspot.com/2018/11/smarts-for-dummies.html

IZC)(

3344301

q ™
'S
NH,

582

118705

545

https://baoilleach.blogspot.com/2018/11/smarts-for-dummies.html

Stereochemistry in substructure match

= By default, RDKit ignores stereochemistry in substructure matching
= |[mportant for cases like thalidomide (R vs S enantiomers)
= Use useChirality=True to enforce stereochemical matching

mol.HasSubstructMatch(query, useChirality=True)

21

EPFL

Maximum common substructure (MCS)

Maximum Common Substructure (MCS)

 Finds largest substructure shared by multiple molecules

-« Applications:
« ldentifying pharmacophores
* Clustering similar compounds
« Structure-activity relationship studies

from rdkit.Chem import rdFMCS

mcs = rdFMCS.FindMCS(mol_list)

mcs_mol = Chem.MolFromSmarts(mcs.smartsString)

24

=P*L Find maximum common substructure in list of
molecules

= def SmilesMCStoGridlmage(smiles: list[str] or dict[str, str],
align_substructure: bool = True, verbose: bool = False, **kwargs):
""" Convert a list (or dictionary) of SMILES strings to an RDK:it grid
image of the maximum common substructure (MCS) match between

them :returns: RDKIit grid image™”

‘ SmilesMCStoGridImage(["NC10C1", "C10C1[N+](=0)[0-1"1) ‘ SmilesMCStoGridImage(["0", "clcccccl"])

)

e P P

o

Max. substructure match

https://bertiewooster.qgithub.io/2022/10/09/RDKit-find-and-highlight-the-maximum-common-
- substructure-between-molecules.html

https://bertiewooster.github.io/2022/10/09/RDKit-find-and-highlight-the-maximum-common-substructure-between-molecules.html
https://bertiewooster.github.io/2022/10/09/RDKit-find-and-highlight-the-maximum-common-substructure-between-molecules.html

=P7L Extended version to find groups off common core

—_nN co==N7
O_Q_N HO: s—c§3_c}11—« OH,

Max. substructure match Core
=< ¢
O
aldehyde off aromatic carbon [2*]NC(C)=0
alkyl off amine [0o*]ccc [2¥]C

5

[27]c [3c [6¥]c

. https://bertiewooster.github.io/2022/12/25/RDKit-Find-Groups-Off-Common-Core.html

25

https://bertiewooster.github.io/2022/12/25/RDKit-Find-Groups-Off-Common-Core.html

EPFL

Additional RDKit functionality:
e.g., going from 2D to 3D structures

nl
v
"1

L Conformer Generation

- Molecules exist in multiple 3D arrangements (conformations)

 Important for:
« Understanding binding to targets
* Predicting physicochemical properties
* Docking studies

from rdkit.Chem import AllChem

mol_with_h = Chem.AddHs(mol)

Al1Chem.EmbedMolecule(mol_with_h)

Al1Chem.EmbedMultipleConfs(mol_with_h, numConfs=10)

28

MM
"N

Conformer generation

Conformers generation:

Force-field optimization:

29

https://asteeves.github.io/blog/2015/01/12/conformations-in-rdkit/
https://www.rdkit.org/docs/Cookbook.html
https://asteeves.github.io/blog/2015/01/12/optimizing-in-rdkit/

Conformer Energy Minimization and Analysis

- Minimize energy using force fields (e.g., UFF)
- Select lowest energy conformer for further analysis

ff = ALlChem.UFFGetMoleculeForceField(mol, confId=conf_id)

UFF stands for universal force field.

In the exercises, you will use py3dmol to visualise different conformers.

30

=P*L RDKit cookbook

» https://www.rdkit.org/docs/Cookbook.html

= Drawing Molecules (Jupyter) = Manipulating Molecules

= Include an Atom Index = Create Fragments

= Include a Calculation = lLargest Fragment

= Include Stereo = Sidechain-Core
Annotations Enumeration

= Black and White = Neutralizing Molecules
Molecules = Substructure Matching

= Highlight a Substructure = Functional Group with
in a Molecule SMARTS queries

= Highlight Molecule = Macrocycles with
Differences SMARTS queries

= Highlight Entire Molecule = Returning Substructure

= Highlight Molecule with Matches as SMILES
Multiple Colors = Within the Same

= Without Implicit

Fr.

Hydrogens agment

= Descriptor Calculations
= Molecule Hash Strings
= Contiguous Rotatable
Bonds
= Writing Molecules
= Kekule SMILES

= With Abbreviations
= Using CoordGen Library
= On a Plot
= Bonds and Bonding
= Hybridization Type and

Count ‘ .

= Rings, Aromaticity, and = !somerlc SMILES without

Kekulization lso_topes

= Count Ring Systems = Reactions .

= Identify Aromatic Rings = Reversing Reactions

= |dentify Aromatic Atoms = Reaction Fingerprints
= Stereochemistry and Similarity

s |dentifying

Stereochemistry

https://www.rdkit.org/docs/Cookbook.html

EPFL

Chemical reactions

34

=PFL Chemical reactions

Chemical reaction Meta data
precursors
I I
reactants reagents products reaction class - 1.3.4
Buchwald-Hartwig amination

Pd(OACc)2/BINAP, i
reaction yield - 80%

NH
’ £ O\\S/o toluene, Cs2CO3 N
e 0D T L 00
N)
experimental procedures

How chemical reactions are typically reported in literature and patents...

- No information on side products or byproducts...
- Incomplete metadata
- Often missing reagents (obvious for the human)

If you ever publish reactions, make sure the data is machine-accessible and complete.

- https://wires.onlinelibrary.wiley.com/doi/full/10.1002/wcms.1604

https://wires.onlinelibrary.wiley.com/doi/full/10.1002/wcms.1604

=PFL Chemical reaction SMILES

Chemical reaction Meta data
precursors
| |
reactants reagents products reaction class - 1.3.4
Buchwald-Hartwig amination
Pd(OAc)2/BINAP, H

reaction yield - 80%

NH
2 F O\\S/O toluene, Cs2C0O3 N
o e I 0
experimental procedures

Reaction SMILES (text-based reaction representation, precursors>>products) Or reactants>reagents>products

CC(=0)[0-].CC(=0)[0-].CC1=CCC(C)(C)c2cc(0S(=0)(=0)C(F)(F)F)c(C)cc21.CCOC(=0)clcec(N)ccl.Celeceecl.0=C([O-])[0O-].[Cs+].[Cs+].
[Pd+2].clcce(P(c2ccecc2)c2ecc3ccceec3c2-c2c(P(c3ceece3)c3cccce3)cec3ceccc23)ecl>>CCOC(=0)clecc(Nec2cec3c(cc2C)C(C)=CCC3(C)C)ccl

=PrL Atom-mapping

Chemical reaction Meta data
precursors

[]
reactants reagents products reaction class - 1.3.4
Buchwald-Hartwig amination

Pd(OAc)2/BINAP, H
N

NH, o
F \\S/O toluene, Cs2C0O3 O‘
(o] + \) —_—
~~ F>,,r b O‘ LW

Reaction SMILES (text-based reaction representation, precursors> >products)

reaction yield - 80%

experimental procedures

CC(=0)[0-].CC(=0)[0-].cC1=CCC(C)(C)c2cc(0S(=0)(=0)C(F)(F)F)c(C)cc21.CCOC(=0)cdccc(N)ccl.Celecececl.0=C([0-])[O-].[Cs+].[Cs+].
[Pd+2].clccc(P(c2ccecc2)c2cecc3cecec3c2-c2c(P(c3ceece3)c3cecee3)cec3cceec23)ccl>>CCOC(=0)clecec(Nec2cc3c(cc2C)C(C)=CCC3(C)C)ccl

Atom-mapping (e.g. RXNMapper)

Atom-mapped reaction (required for reaction template, centre and bond change extraction)

24 26 b 1 H A !
= 2 NH, 0 ., " Pd(OAC)2/BINAP, w 2 Hal)
10
" o . Fl % s toluene, Cs2C03 17 S OO
(6} 22 A\ —
Syl F>|(o St Pal 22 3
16 21 A 3 16 20 21 127 9 2

[e) 12 8 2 8

19 1
1 19

CC(=0)[0-].CC(=0)[0-].Cclcceecl.0=C([0-])[0-].0=S(=0)(O[c:11]1[cH:12][c:13]2[c:14]([cH:15][c:16]1[CH3:17])[C:18]([CH3:19])=[CH:20]
[CH2:21][C:22]2([CH3:23])[CH3:24])C(F)(F)F.[CH3:1][CH2:2][0:3][C:4](=[0:5])[c:6]1[cH:7][cH:8][c:9](INH2:10])[cH:25][cH:26]1.[Cs+].[Cs+].
[Pd+2].clccc(P(c2ccecc2)c2ecc3cccce3c2-c2¢(P(c3cccee3)c3cccce3)cecec3ccceec23)ccl>>[CH3:1][CH2:2][0:3][C:4](=[0:5])[c:6]1[cH:7][cH:8]
[c:9](INH:10][c:11]2[cH:12][c:13]3[c:14]([cH:15][c:16]2[CH3:17])[C:18]([CH3:19])=[CH:20][CH2:21][C:22]3([CH3:23])[CH3:24])[cH:25][cH:26]1

36

=PFL CDK depict "

Generate depictions of molecules and reactions from SMILES or SDF.

CCO.[CH3:1][C:2](=[0:3]) [OH:4]>[H+]>CC[0:4][C:2] (=[0:3]) [CH3:1].0 Ethyl esterification [1.7.3]
[CH3:9][CH:8]([CH3:10])[c:7]1[cH:11] [cH:12] [cH:13] [cH:14] [cH:15]1. [CH2:3] ([CH2:4][C:5] (=[0:6]) C) [CH2:2] [CI:1]>[Al+3].[CI-].[CI-].[CI-].C(CI)CI>[CH3:9] [CH:8] ([CH3:10])

D

-lli Blackon Clear BJ No Annotation B Chiral Hydrogens (smart) & Abbreviate Reagents and Groups & [Lms:«:, SMARTS pattern..] ooo
iPr.
o) i 0 iPr. AICl;
DCM
)J\ +Ho” N >)k gt + O + goer >SN ——— CH,CI
OH ol
(6]
Ethyl esterification [1.7.3] Friedel-Crafts acylation [3.10.1]

Built with the Chemistry Development Kit. Depict v1.11-SNAPSHOT, CDK v2.10-SNAPSHOT.

= https://www.simolecule.com/cdkdepict/depict.html

https://www.simolecule.com/cdkdepict/depict.html

EPFL

CDK depict options

-
Im Black on Clear @ | Atom Mapping @) Chiral Hydrogens (smart) @ Abbreviate Reagents and Groups @ | | o0e

o 3 ipre. X .
H+
)k +Ho N ——> + H,0 ’
2 OH 9 4/Et 15
1 a 1 O 14

Ethyl esterification [1.7.3]

-l
[M BlackonClear @ Color Map

0 iPr.

(0]
H+
)I\ +Ho N —>)j\ _Et + H0
OH (6}

Ethyl esterification [1.7.3]

2
+ 5 CHCl ———— >
. CIOCA\V 2

AICI,
DCM

Friedel-Crafts acylation [3.10.1]

@ Chiral Hydrogens (smart) & Abbreviate Reagents and Groups & [] (L 1]

Alcl, IPr

cl CHCl pem
+ \[]/\/ —> CH,CI

Friedel-Crafts acylation [3.10.1]

38

ChemAxon

=F*L Open source atom-mapping tools .

RXNMapper

39

RDTool

New RDTool

o

500 1000 1500 2000
#correct AAMs

= RXNMapper (https://github.com/rxn4chemistry/rxnmapper)
* pip install "rxmapper[rdkit]”

from rxnmapper import RXNMapper

rxn_mapper = RXNMapper()

rxns = ['CC(C)S.CN(C)C=0.FclcccnclF.0=C([0-]1)[0-].[K+].[K+]>>CC(C)SclncccclF', 'C1COCCO1.C
results = rxn_mapper.get_attention_guided_atom_maps(rxns)

[{'mapped_rxn': 'CN(C)C=0.F[c:5]1[n:6]1[cH:7]1[cH:8][cH:9][c:10]1[F:11]1.0=C([0-]1)[0-]1.[CH3:1]]
'confidence': 0.9565619900376546},

{'mapped_rxn': 'C1COCCO01.CC(C)(C)[0:3]1[C:2]1(=[0:21]1)[CH2:4][0:5]1[NH:6]1[C:7]1(=[0:8]1)[NH:9]1[C}H
'confidence': 0.9704424331552834}]

= Comparison of different approaches:
https://onlinelibrary.wiley.com/doi/10.1002/minf.202100138

https://github.com/rxn4chemistry/rxnmapper
https://onlinelibrary.wiley.com/doi/10.1002/minf.202100138

=PrL

Reaction templates

a) Forward Reaction

1. BUGAI, CHECIZ

-78Ctort
2. DMP, CH,Cl, H
(0]
Reactant Product

b) Retrosynthetic Reaction
4 v
3
2 9
1
1 1710
1 10 N
Product Reactant

Atom-mapped reaction SMILES
[CH3:1][CH:2]1[CH2:3][CH2:4][CH:5]([C:6]2=[CH:12][CH2:11][CH2:10][CH2:9]
[CH2:8][CH2:7]2)[0:15][C:14]1=[CH2:13]>>[CH3:1][CH:2]1[CH2:3][CH2:4)/
[CH:5]=[C:6]2/[CH2:7][CH2:8][CH2:9][CH2:10][CH2:11]CH:12]2[CH2:13]
[C:14]1=[0:15)

c)
Radius-0
Reaction
Centre
d)

S
-~

Radius-1

e

~ e
N -
~

Radius-2

https://www.chimia.ch/chimia/article/view/2022 294/5301

19; 1
2
1

Reaction SMARTS - Shell/Radius 0
([CH;D2;+0:4]=[C;HO0;D3;+0:5]\[CH;D3;+0:6]-[CH2;D2;+0:1)-
[C;HO,;D3;+0:2]=[0;H0;D1,+0:3])>>([CH2,D1,;+0:1]=[C;H0;D3;+0:2]-
[O;HO0;D2;+0:3}-{CH;D3;+0:4]-[C;H0;D3;+0:5]=[CH;D2;+0:6])

- —1 7
\6
a)\
1 " 14
™™ 11
o 12
5

Reaction SMARTS - Shell/Radius 1
([C:1]-[CH;D3;+0:2)(-[CH2;D2;+0:10]-[C;HO;D3;+0:8](-
[C:9])=[O;H0;D1;+0:7])/[C;H0;D3;+0:3](-[C:4])=[CH;D2;+0:5]\[C:6])>>([C:1]-
[CH;D2;+0:2]=[C;H0;D3;+0:3])(-[C:4])-[CH;D3;+0:5](-[C:6])-[O;H0;D2;+0:7]-
[C:HO;D3;+0:8)(-[C:9])=[CH2;D1;+0:10])

o oy

Reaction SMARTS - Shell/Radius 2
([C:1]-[C:2]-{CH;D3;+0:3]1-[CH2;D2;+0:13]-[C;H0;D3;+0:12]
(=[O;H0;D1;+0:14])-[C:10)(-[C;D1;H3:11])-[C:Q]-[C:8)/
[CH;D2;+0:7]=[C;H0;D3;+0:4]\1-[C:5]}-[C:6])>>([C:1]-[C:2]-
[CH;D2;+0:3]=[C;H0;D3;+0:4](-[C:5]-[C:6])-[CH;D3;+0:7]1-[C:8]-[C:9]-{C:10)(-
[C:D1;H3:11])-[C;H0;D3;+0:12])(=[CH2;D1;+0:13])-[O;H0;D2;+0:14}-1)

40

https://www.chimia.ch/chimia/article/view/2022_294/5301

EPFL Reftrosynthesis (Corey, Nobel prize, 1990)

Steps to
construct the
target

Lego analogy:
- Amol Thakkar

Ages

6+

Easter Chick

30 pes

Target molecule Known (commercially available) building blocks

41

=P7L Do I have to write those templates myself?

pip install reaction-utils

= There are tools for automatic extractions:
https://github.com/MolecularAl/reaction_utils (code)

https://molecularai.github.io/reaction_utils/ (documentation)

HC,, Brig—\@
HC Cu L

. Hec—\ 7- Brg—a \i.*o.a .
\ + 3—\ + op=Se=oy T \f_gﬁvﬂ. /\S?v :
Hic— cH, ch, [& \._cn
a—CHy,

CCN(CC)CC.CCOCC.CL[S:3]1([CH2:2][CH3:1])(=[0:4]1)=[0:5].[0H:6][CH2:7][(

First we create a ChemicalReaction object that is encapsulating the reaction and
provides some simple curation routines.

from rxnutils.chem.reaction import ChemicalReaction

reaction = "CCN(CC)CC.CCOCC.C1[S:3]1([CH2:2] [CH3:1])(=[0:4])=[0:5]. [Ot
rxn = ChemicalReaction(reaction)

if you inspect the reactants_1list property, you will see that two of the reactants from
the reaction SMILES have been moved to the list of agents because they are not
mapped.

rxn.reactants_list
>> ['CL[S:3]1([CH2:2] [CH3:1])(=[0:41)=[0:5]1", '[OH:6][CH2:7][CH2:8] [BI

= rxn.agents_list
>> ['CCN(CC)cct, 'ccocc']

rxn.generate_reaction_template(radius=1)

rxn.retro_template
>> <rxnutils.chem.template.ReactionTemplate at 0x7fe4e9488d90>

rxn.retro_template.smarts
>> '[C:2]-[S;HO;D4;+0:1] (=[0;D1;H0:3]1)(=[0;D1;HOA:4])-[0;HO;D2;+0:6]-

smiles="CCS(=0) (=0)0CCBr"
reactant_list = rxn.retro_template.apply(smiles)
reactant_list

>> (('CCS(=0)(=0)C1', '0OCCBr'),)

https://github.com/MolecularAI/reaction_utils
https://molecularai.github.io/reaction_utils/

EPFL

Happy coding!

(don'’t forget to form groups for the
projects = 3-4 students per group)

