DCMCL,
- ¢ Chempisic AU Helntg, * iyt ()(] -satlstsunmo‘le ,

o I

"I' I

\; -

[op oo o

pre !‘[asas
.!") /L.l""* v,
d 2 ; AR ‘o‘
Ty 3 ‘J . Mmm

Qus A Ty, el clecopiley

{ Pandas,
| Matplotiib,
14 | seabomn

Prof. Philippe Schwaller

=PFL Last week

Python functions, classes

split python

W3Schools

https://www.w3schools.com » python » ref_string_split
Python String split() Method
Definition and Usage. The split() method splits a string into a lis' u can specify the separator, default
separator is any whitespace.

Stack Overflow
https://stackoverflow.com » questions » understanding-s.

Understanding split() function in python

I'm trying to understanding how the split() method works. | would expect to see just 2 strings since I'm

splitting at cat for the string catcat.

2 answers - Top an: r: According to the official documentation: string.split(s[, sep[, maxsplit])): If th
python - Split string into two parts only - Stack Overflow

Split string at delimiter '\' in python - Stack Overflow

Split Strings into words with multiple word boundary

How do | split a string into a list of characters ...

More results from stackoverflow.com

Python Docs

https://docs.python.org » library » stdtypes
str.split
No information is available for this page.
Learn v

=PFL This lecture

Python packages (free functionality, a pip install away!)
= Numpy

= Pandas

= Matplotlib

= Seaborn (optional)

= (scipy, one exercise, optional)

= |f you want to run the code of the examples shown in this lecture
(pandas, matplotlib, seaborn):

https://schwallergroup.qgithub.io/practical-programming-in-
chemistry/tutorials/lecture 04/01 pandas.html

https://schwallergroup.github.io/practical-programming-in-chemistry/tutorials/lecture_04/01_pandas.html
https://schwallergroup.github.io/practical-programming-in-chemistry/tutorials/lecture_04/01_pandas.html

/

T LEARNED IT LAST
NIGHTI EVERYTHING
15 S0 SIMPLE!

I

HELLO WORLD 1S JUsT
print "Hello, world!"

I DUNNO..-
DYNAMIC TYPING?
WHITEGRCE?

COME Jom LS
PROGRAIMMING
IS FUN AGRIN!
ITS A WHOLE
NEW WORLD
\ UP HERE!

BUT HOW ARE
YOU FLYING?

/
T JUST TYPED
import N*Igrauffy
THAT'S 1T? /

... L ALS0 SAMPLED
EVERYTHING IN THE
MEDICINE CABINET
FOR COMPARISON.
{

BUT I THINK THIS

IS THE PYTHON.

XKCD

=PFL How to Install packages in Python?

= Through package managers, the two most common are pypi and
conda.

609,203 projects 6,598,675 releases 13,360,442 files 903,240 users

™ The Pythen Package Index (PyPl) is a repository of software for the Python
t 0 n programming language.

U ’
Pac"(age PyPI helps you find and install software developed and shared by the Python community. Learn about ®
' Index installing packages (2. D
Package authors use PyPI to distribute their software. Learn how to package your Python code for

pip install numpy conda install numpy
to install the numpy package to install the numpy package

7L External packages, e.g. Numpy

= Numpy (Python’s equivalent to Matlab)

import numpy as np

from n mport *

This might overwrite some other functions, e.g. from math - sum.
Hard to debug, as you might not know, what functions is called.

=PFL Creating arrays

arrld = np.array([2,2,4,4])
print(arrild)

HEEs

2d = . ([[3,3,5,5],
arr np.array S
o101y N I I I

print(arr2d)

arr2d

print(arr2d.size) # 12 elements
nn print(arr2d.ndim) # 2 dimensions

print(arr2d.shape) # (3,4)

=PFL np.ones(), np.zeros(), np.full()

arrl = np.ones(3) arr@ = np.zeros(3)

Lnnn Lﬂml

arrf = np.full(shape=(2,3), fill value=9)
or, in short

arr3 = np.full((2,3), 9) nnn

=PrL

Numpy - manupulating arrays

(brief intro, you’ll leam much more in the
exercises)

=P*L How to get numpy? "

& numpy.org ©

Install Documentation Learn Community AboutUs News Contribute

N The fundamental package for scientific computing with Python
NumPy

If you use conda , you can install NumPy from the defaults or conda-forge channels:

CONDA

2023-09-16

Best practice, use an environment rather than install in the base env
conda create -n my-env

conda activate my-env

If you want to install from conda-forge
conda config ——env —-add channels conda-forge
The actual install command

conda install numpy

- both package managers pip and

conda coexist
" - if available via pip, | tend to use
If you use pip, you can install NumPy with: . gy . w
it as it’s the officially recommended
pip install numpy

one, and simplicity

=PrL

Installing in a running notebook

“'”

= You can access the command line using “!” in front of your command

pip install numpy

'pip install numpy

When you install from the command line, make sure you are in the correct conda environment.

11

=P*L Functionality to manipulate arrays

12

= https://numpy.org/doc/stable/reference/routines.array-manipulation.html

Changing array shape
reshape(a, newshapel[, order]) Gives a new shape to an array without changing its data.
ravel(a[, order]) Return a contiguous flattened array.
ndarray.flat A 1-D iterator over the array.
ndarray. flatten([order]) Return a copy of the array collapsed into one dimension.

Advanced slicing (start:stop:step)

>>> x = np.array([e, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> x[1:7:2]
array([1, 3, 5])

Joining arrays
concatenate([axis, out, dtype, casting])
stack(arrays[, axis, out, dtype, casting])
block(arrays)
vstack(tup, *[, dtype, casting])
hstack(tup, *[, dtype, casting])
dstack(tup)
column_stack(tup)

row_stack(tup, *[, dtype, casting])

Join a sequence of arrays along an existing axis.

Join a sequence of arrays along a new axis.

Assemble an nd-array from nested lists of blocks.

Stack arrays in sequence vertically (row wise).

Stack arrays in sequence horizontally (column wise).

Stack arrays in sequence depth wise (along third axis).

Stack 1-D arrays as columns into a 2-D array.

Stack arrays in sequence vertically (row wise).

https://numpy.org/doc/stable/reference/routines.array-manipulation.html

=PrL

Filtering arays

Selecting all non-nan values (nan= Not a Number)

>>> X = np.array([[1., 2.], [np.nan, 3.],
>>> X[~np.isnan(x)]
array([1., 2., 3.])

Adding a constant to specific elements (here x < 0)

>>> X = np.array([1l., -1., -2., 3])
>>> xX[x < 0] += 20

>>> X

array([1., 19., 18., 3.])

https://numpy.org/doc/stable/user/basics.indexing.html#

[np.nan, np.nan]l)

13

L Why can | just not use lists instead of amrays?

masses = [5, 10, 20] # grams

molar_masses = [58.44, 18.015, 46.07] # Sodium Chloride, Water, Ethanol
volumes = [0.1, 0.2, 0.3] # liters

molarity = masses / molar_masses / volumes # mol/L

Traceback (most recent call last)

ell In[67], line 5
2 molar_masses [, 2
3 volumes L . " 1 # liters

]l # Sodium Chloride, Water, Ethanol

---> 5 molarity = masses = molar_masses / volumes # mol/L

: unsupported operand type(s) for /: 'list' and 'list'

masses = np.array([5, 10, 20]) # grams
: molar_masses = np.array([58.44, 18.015, 46.07]) # Sodium Chloride, Water, Ethanol

: volumes = np.array([0.1, 0.2, 0.3]) # liters

: molarity = masses / molar_masses / volumes # mol/L

molarity
array([0.85557837, 2.77546489, 1.44707329])

=PrL

Pandas - handling tabular data with Python

=PrL

Pandas - the way to handle tabular data in Python

pandas

pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool,
built on top of the Python programming language.

Install pandas now!

How to install? - simply use “pip install pandas” in your conda environment.

How to use?

16

=PFL Serles and dataframes "

compounds = pd.Series(["Water", "Ethanol", "Glucose", "Sodium Chloride", "Methane"])
compounds

0 Water

1 Ethanol _ _ _ _ _

2 Glucose Series are one-dimensional array-like object,

3 Sodium Chloride - Imagine single columns in an Excel spreadsheet

4 Methane

dtype: object

data = {
"Compound": ["Water", "Ethanol", "Glucose", "Sodium Chloride", "Methane"],
"Molecular Weight": [18.015, 46.07, 180.16, 58.44, 16.04],
"Melting Point (°C)": [0, -114.1, 146, 801, -182.5]

}

df = pd.DataFrame(data)

Dataframes are two-dimensional, tabular data structures
with labeled axes (rows and columns). - spreadsheet

=L Basic Data Inspection for DataFrames (df) *

data = {
"Compound": ["Water", "Ethanol", "Glucose", "Sodium Chloride", "Methane"],
"Molecular Weight": [18.015, 46.07, 180.16, 58.44, 16.04],
"Melting Point (°C)": [0, -114.1, 146, 801, -182.5]

}

df = pd.DataFrame(data)

df.head()

Compound Molecular Weight Melting Point (°C)

0 Water 18.015 0.0 hinllEE

1 Ethanol 46.070 1141 Compound Molecular Weight Melting Point (°C)
2 Glucose 180.160 146.0 0 Water 18.015 0.0
3 Sodium Chloride 58.440 801.0 1 Ethanol 46.070 -114.1
4 Methane 16.040 -182.5

First few rows of the dataframe (default: 5)

=L Basic Data Inspection for DataFrames (df)

data = {
"Compound": ["Water", "Ethanol", "Glucose", "Sodium Chloride", "Methane"],
"Molecular Weight": [18.015, 46.07, 180.16, 58.44, 16.04],
"Melting Point (°C)": [0, -114.1, 146, 801, -182.5]

}

df = pd.DataFrame(data)

df.describe() Summary statistics for numerical columns

Molecular Weight Melting Point (°C)

count 5.000000 5.000000
mean 63.745000 130.080000
df.dtypes
std 67.564785 395.170225
min 16.040000 -182.500000 Compound object
25% 18.015000 -114.100000 Mole;ular w81ght floatb4
Melting Point (°C) float64
50% 46.070000 0.000000 dtype: object
75% 58.440000 146.000000

Types of the columns
max 180.160000 801.000000

19

=PFL Accessing the data in a df :

mw = df["Molecular Weight"] solids = df[df["Melting Point (°C)"] > 25]
mw solids
0 18.015 Compound Molecular Weight Melting Point (°C)
1 46.070
2 180.160 2 Glucose 180.16 146.0
3 58.440 3 Sodium Chloride 58.44 801.0
4 16.040
Name: Molecular Weight, dtype: float64 Filter by melting point > 25
Access the “Molecular Weight” column df ["Melting Point (°C)"] > 25
(/] False
1 False
2 True
3 True
4 False

Name: Melting Point (°C), dtype: bool

7. |ndexing - loc and iloc :

Compound Molecular Weight Melting Point (°C)

A Water 18.015 0.0
B Ethanol 46.070 -14.1
C Glucose 180.160 146.0
D Sodium Chloride 58.440 801.0
E Methane 16.040 -182.5

- .loc is label-based, meaning you use the labels of the rows and
columns to select data.

- .iloc is integer position-based, so you use integer indices to select

data.

df.loc['B"] df.iloc[1]

Compound Ethanol Compound Ethanol
Molecular Weight 46.07 Molecular Weight 46.07
Melting Point (°C) -114.1 Melting Point (°C) -114.1

Name: B, dtype: object Name: B, dtype: object

=PrL

Indexing - loc and lloc

df.index = ['A', 'B', 'C', 'D', 'E']
df

Compound Molecular Weight Melting Point (°C)

A Water 18.015 0.0
B Ethanol 46.070 -114.1
[+ Glucose 180.160 146.0
D Sodium Chloride 58.440 801.0
E Methane 16.040 -182.5

Select the Molecular Weight and Melting Point for Ethanol and Glucose
df.loc[['B', 'C'], ["Molecular Weight", "Melting Point (°C)"]]

Molecular Weight Melting Point (°C)

B 46.07
Cc 180.16

-114.1
146.0

Label-based

Select the Molecular Weight and Melting Point for Ethanol and Glucose

df.iloc[[1, 2], [1, 2]]

Molecular Weight Melting Point (°C)

B 46.07

C 180.16

-114.1

146.0

Index-based

=PrL

Operations on dfs

average_molecular_weight = df["Molecular Weight"].mean()
print(f"Average Molecular Weight: {average_molecular_weight}")

Average Molecular Weight: 63.745000000000005

min_melting_point = df["Melting Point (°C)"].min()
max_melting_point = df["Melting Point (°C)"].max()
print(f"Minimum Melting Point: {min_melting_point} °C")
print(f"Maximum Melting Point: {max_melting_point} °C")

Minimum Melting Point: -182.5 °C
Maximum Melting Point: 801.0 °C

23

=PFL . Common string format specifiers (super usefull)

Example using f-
Specifier Description strings Output

Formats an
d integer as a f{42.d}' 42
decimal number.

Formats a
floating-point
f number as a f{3.14159:.2f} 3.14
fixed-point
number.

Formats a
floating-point
number in
scientific notation.

f'{0.0015:.2¢}' 1.50e-03

o Formats a number f{0.75:.1%} 75.0%
as a percentage.

average_molecular_weight = df["Molecular Weight"].mean()
print(f"Average Molecular Weight: {average_molecular_weight:.2f}")

Average Molecular Weight: 63.75

=PrL

Sorting by value in column "

sorted_by_weight_df = df.sort_values(by="Molecular Weight")
print("Sorted by Molecular Weight:")
sorted_by_weight_df
Sorted by Molecular Weight:
Compound Molecular Weight Melting Point (°C)

E Methane 16.040 -182.5
A Water 18.015 0.0
B Ethanol 46.070 -114.1
D Sodium Chloride 58.440 801.0
c Glucose 180.160 146.0

sorted_by_weight_df = df.sort_values(by="Molecular Weight", ascending=False)
print("Sorted by Molecular Weight:")
sorted_by_weight_df
Sorted by Molecular Weight:
Compound Molecular Weight Melting Point (°C)

C Glucose 180.160 146.0
D Sodium Chloride 58.440 801.0
B Ethanol 46.070 -114.1
A Water 18.015 0.0
E Methane 16.040 -182.5

=PrL Adding a new column

df ["Moles (in 10@0g)"] = 100 / df["Molecular Weight"]

df

Compound Molecular Weight Melting Point (°C) Moles (in 1009)
0 Water 18.015 0.0 5.550930
1 Ethanol 46.070 -114.1 2.170610
2 Glucose 180.160 146.0 0.555062
3 Sodium Chloride 58.440 801.0 1.711157
a4 Methane 16.040 -182.5 6.234414

EPFL . More advanced ﬁltering IISiI'Ig) qllel'Y(Y

filtered_df = df.query(' 'Molecular Weight' > 30 and ‘Melting Point (°C)" < 100')
filtered_df

Compound Molecular Weight Melting Point (°C) Moles (in 100g)

1 Ethanol 46.07 -114.1 2.17061

filtered_df = df.query(' Molecular Weight > 30 or "Melting Point (°C)" > 100')
filtered_df

Compound Molecular Weight Melting Point (°C) Moles (in 100g)
1 Ethanol 46.07 -114.1 2.170610
2 Glucose 180.16 146.0 0.555062

3 Sodium Chloride 58.44 801.0 1.711157

=PrL

Combining DataFrames

= Often you will have data that comes from multiple sources (files), and
you would like to combine them into a single DataFrame

= Pandas provides useful functionality for that:

* pd.merge(dfl, df2): Merging two DataFrames representing different sets of
properties for a selection of compounds.

* pd.concat(dfl, df2): Concatenating DataFrames containing properties of
different compounds to create a single, comprehensive DataFrame.

« dfl.join([df2]): Combining DataFrames with different information about
compounds based on their index. This is useful when the indices represent a
shared order or align datasets based on their order rather than a specific key.

= | et’s look at some examples.

=PrL

pd.merge(df1, df2)

DataFrame of physical properties

df_physical = pd.DataFrame({
"Compound": ["Water", "Ethanol", "Methane"l,
"Boiling Point (°C)": [1e@, 78.37, -161.5],
"Density (g/mL)": [1.0, 0.789, 0.000656]

})

DataFrame of chemical properties

df_chemical = pd.DataFrame({
"Compound": ["water", "Ethanol", "Methane"],
"Flammability": ["No", "Yes", "Yes"]

)

Merging on 'Compound'
df_merged = pd.merge(df_physical, df_chemical, on="Compound")
df_merged

Compound Boiling Point (°C) Density (g/mL) Flammability
0 Water 100.00 1.000000 No
1 Ethanol 78.37 0.789000 Yes

2 Methane -161.50 0.000656 Yes

=PFL pd.concat(dfl, df2)

DataFrame of compounds set 1

df_setl = pd.DataFrame({
"Compound": ["Water", "Ethanol"],
"Molecular Weight": [18.015, 46.07],
"Melting Point (°C)": [0, -114.1]

})

DataFrame of compounds set 2

df_set2 = pd.DataFrame({
"Compound": ["Glucose", "Sodium Chloride"],
"Molecular Weight": [180.16, 58.44],
"Melting Point (°C)": [146, 8@1]

})

Concatenating vertically
df_concatenated = pd.concat([df_setl, df_set2], axis=0).reset_index(drop=True)

df_concatenated
Compound Molecular Weight Melting Point (°C)

0 Water 18.015 0.0
1 Ethanol 46.070 -114.1
2 Glucose 180.160 146.0

3 Sodium Chloride 58.440 801.0

=PFL dfl.join([df2]) "

DataFrame of compounds
df_compounds = pd.DataFrame({

"Compound": ["Water", "Ethanol", "Methane"]
}).set_index("Compound")

DataFrame of boiling points Boiling Point (°C) Melting Point (°C)
df_bp = pd.DataFrame({ Compound

"Boiling Point (°C)": [1ee, 78.37, =-161.5]
}, index=["Water", "Ethanol", "Methane"]) Water 100.00 0.0
DataFrame of melting points Ethanol 78.37 -114.1
hE DR A Methane -161.50 1825

"Melting Point (°C)": [0, -114.1, =-182.5]
¥, index=["Water", "Ethanol", "Methane"])

Combining using join
df_combined = df_compounds.join([df_bp, df_mpl)
df_combined

=PrL

.apply() on single column

import pandas as pd

data = {
"Compound": ["Water", "Ethanol™, "Glucose", "Sodium Chloride", "Methane"],
"Molecular Weight (g/mol)": [18.815, 46.87, 188.16, 58.44, 16.84]

}

df = pd.DataFrame(data)

Convert Molecular Weight from g/mol to kg/mol using a lambda function
df ['Molecular Weight (ka/mol}'] = df['Molecular Weight (g/mol)'].apply(lambda x: x / 1l@ee)
df

Compound Molecular Weight (gfmol]) Molecular Weiaht (ka/maoll

def convert_to_kg_per_mol{weight_g_per_mol):

Q Water 18.015 return weight_g_per_mol / 1008
. | " '
1 Ethanol 46.070 :fT?:;{ezzia:u;EE;:: E:g ::sl}"’[]’ IEC:i?TH:'i-:g:ia r{gﬂzz;t i;;::'{} 'T.apply(convert_to_kg_per_mal)
2 Glucose 180.160 o
Compound Molecular Weight (g/mol) Molecular Weight (kg/mol)

3 Sodium Chloride 58.440 , Water 18.015 0.018015
4 Methane 16.040 1 Ethanol 46.070 0.046070

2 Glucose 180.160 0180160

3 Sodium Chloride 58.440 0.068440

4 Methane 16.040 0.016040

32

=PeL apply() on single column

def convert_to_kg_per_mollweight_g_per_mol):
return weight_g_per_mol / 1008

Apply the function to the 'Molecular Weight {g/mol)' column
df ['"Molecular Weight (kg/mol)'] = df['Molecular Weight (g/mol)'].apply(convert_to_kg_per_mol)
df

Compound Molecular Weight (g/mol) Molecular Weight (kg/maol)

o Water 18.015 0.018015
1 Ethanaol 46.070 0.046070
2 Glucose 180.160 0180160
3 Sodium Chloride 58.440 0.058440
4 Methane 16.040 0.016040

=PrL

.apply() on multiple columns

Adding mass of solute (in grams) and volume of solution (in liters) to the DataFrame

df ['Mass (g)'l = [18, 46, 18@, 58, 16] # Example masses
df ['Volume (L)'l = [1, 8.5, 1, 0.5, 1] # Example volumes

Calculate molarity using molecular weight, mass, and volume
df ['Molarity (mol/L)'] = df.apply(lambda row: row['Mass (g)'l / rowl'Molecular Weight (g/mol)'] / row['Volume (L)'], axis=1)

1.0
0.5
1.0
0.5

0.999167
1.996961
0.999112

1984942

df
Compound Molecular Weight (gfmol) Molecular Weight (kg/mol) Mass (g) Volume (L) Molarity (molfL)
0 Water 18.015 0.018015
1 Ethanol 46.070 0.046070
2 Glucose 180.160 0180160
3 Sodium Chloride 58.440 0.058440
4 Methane 16.040 0.016040

Define a function to calculate molarity

def calculate_molarity(row):
mass_g = row|['Mass (g)']
molecular_weight_g_per_mol = row['Molecular Weight (g/mol)
volume_L = row['Volume (L)']
molarity = mass_g / molecular_weight_g_per_mol / volume_L
return molarity

Apply the function to the DataFrame to calculate molarity
df['Molarity (mol/L)'] = df.apply(calculate_molarity, axis=1)
df

Compound Molecular Weight (g/mol) Molecular Weight (kg/mol)
0 Water 18.015 0.018015
1 Ethanal 46.070 0.046070
2 Glucose 180.160 0180160
3 Sodium Chloride 58440 0.058440

4 Methane 16.040 0.016040

']

1.0

0.997506

Mass (g) Volume (L) Molarity (moljL)

18
46
180
58
16

1.0
0.5
1.0
0.5

1.0

0.999167
1.996961
0.999M12
1984942

0.997506

Note: we have to use the axis keyword.

In pandas DataFrames:
- axis=0 Perform the operation
vertically (column by column).
- axis=1 Perform the operation
horizontally (row by row).

34

=P7L Making basic plots in pandas)

df.plot(x="'Compound', y='Boiling Point (°C)', marker='o', linestyle='-', title='Boiling Points of Compounds')
<hxes: title={'center': 'Boiling Points of Compounds'}, xlabel='Compound’'=

Boiling Points of Compounds

120
—— Boiling Paint (°C) df.plot(kind='bar', x='Compound', y='Molecular Weight (g/mol)', title='Molecular Weights of Compounds')
<Axes: title={'center': 'Molecular Weights of Compounds'}, xlabel='Compound's
110 4
Molecular Weights of Compounds
60- mmm Molecular Weight (g/mol})
100 A
50
9{) B
40 1
80 1
30
70 A
20
60 104
T T T T T T T T T
Water Ethanol Acetic Acid Acetone Methanol 0

T = 2 2 B
Compound g e =} g g
g] << = T
£ (v} a £
& £ E i
I+ =

L4

Compound

While Pandas plotting is convenient for quick and straightforward plots,
Matplotlib provides more control and flexibility for customizing plots.

=PrL

Matplotlib - the default Python plotting library

=PrL

Matplotiib

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations
in Python. Matplotlib makes easy things easy and hard things possible.

Create publication quality plots.

Make interactive figures that can zoom, pan, update.
Customize visual style and layout.

Export to many file formats.

Embed in JupyterLab and Graphical User Interfaces.

Use a rich array of third-party packages built on Matplotlib.

How to get it? "pip install matplotlib®
How to import it? "import matplotlib.pyplot as plt’

37

https://matplotlib.org/

=PFL Pairwise data

https://matplotlib.org/stable/plot_types/index.html#pairwise-data

Plots of pairwise (z, y), tabular (var_0, - - - , var_n), and functional f(z) = y data.

plot(x, y) scatter(x, y) bar(x, height) stem(x, y)

| gl

fil_between(x, y1, stackplot(x, y) stairs(values)
y2)

38

=PFL Statistical distributions

https://matplotlib.org/stable/plot_types/index.html#statistical-distributions

N I R

hist(x) boxplot(X) errorbar(x, y, yerr, violinplot(D)
Xerr)

1716

eventplot(D) hist2d(x, y) hexbin(x, y, C) pie(x)

FZI

ecdf(x)

FHIIHIHHH
TH R -1

=PrL

Gridded data

https://matplotlib.org/stable/plot_types/index.html#gridded-data

I T |

imshow(Z) pcolormesh(X, Y, Z) contour(X, Y, Z) contourf(X, Y, Z)

barbs(X, Y, U, V) quiver(X, Y, U, V) |
V)

40

=PrL

3D and volumetric data

scatter(xs, ys, zs) plot_surface(X, Y,

plot_wireframe(X, Y,
Z)

A

plot_trisurf(x, v,)

voxels([x, v, z],
filled)

a1

=PFL Gallery with 100s of examples

» https://matplotlib.org/stable/gallery/index.html

Bar color demo

Horizontal bar chart

Grouped bar chart
with labels

Plotting categorical
variables

Plotting the Cross spectral Curve with error

coherence of two density (CSD) band
signals

Errorbar limit
selection

42

https://matplotlib.org/stable/gallery/index.html

1 import pandas as pd
E P F L import matplotLib.pyplat as plt
ne p o data = {

‘Compound': ['Water', 'Ethanol', 'Acetic Acid', 'Acetone', 'Methanol'],

*Boiling Point (°C)': [16@, 78.37, 118.1, 56.85, 64.7],
'Molecular Weight (g/mol)': [18.015, 46.07, 60.052, 58.08, 32.04]

¥

df = pd.DataFrame(data)

df

plt.figure(figsize=(10, 6)) # Set the figure size
plt.plot(df['Compound'], df['Boiling Point (°C)'l, marker='o', linestyle='-', color='blue')

Compound Boiling Point (°C) Molecular Weight (g/mol)

o Water 100.00 18.015
plt.title('Boiling Points of Compounds') 1 Ethanol 78.37 46.070
p-L.t.x-Labe-L(ICOmpOUnd]) 2 Acetic Acid 118.10 60.052
' . . . o ' 3 Acetone 56.05 58.080
plt.ylabel('Boiling Point (°C)") P— iz w000
plt.grid(True)
plt.xticks(rotation=45) # Rotate the x-axis labels for better readability
Boiling Points of Compounds
120
110
100 A1
o
£ 9
&
2
E 80 1
70 4
60
- - — — S
\‘@\. e’S‘bQ }\g‘“b ?“éoi‘ ‘!és@(\
- L

Compound

=PrL

Bar Chart o

plt.
plt.
plt.
plt.

Molecular Weight (g/mol)

figure(figsize=(10, 6))

bar(df['Compound'], df['Molecular Weight (g/mol)'l, color='green')
title('Molecular Weights of Compounds')

xlabel('Compound')

ylabel('Molecular Weight (g/mol)"')

xticks(rotation=45)

Molecular Weights of Compounds

60 1

8

8

N
o
L

10 A1

Compound

4

=PrL Scatter plot
a r p plt.figure(figsize=(10, 6))

plt.scatter(df['Molecular Weight (g/mol)'], df['Boiling Point (°C)'], color='red')
plt.title('Relationship Between Molecular Weight and Boiling Point')
plt.xlabel('Molecular Weight (g/mol)"')

plt.ylabel('Boiling Point (°C)"')

plt.grid(True)

Relationship Between Molecular Weight and Boiling Point

120 4

110 4

100 + e

Boiling Point (°C)

80 1

70 1

60 1

T T T T T

20 30 40 50 60
Molecular Weight (g/mol)

=PrL

||
Saving figures
plt.savefig('plot.png')
plt.savefig('plot.svg')

plt.savefig('plot.pdf')

matplotlib.pyplot.savefig(xargs, *kxkwargs)

Save the current figure.

Call signature:

savefig(fname, *, transparent=None, dpi='figure', format=None,
metadata=None, bbox_inches=None, pad_inches=0.1,
facecolor="'auto', edgecolor='auto', backend=None,
*xkwargs

)

“0. plot.pdf
plot.png
plot.svg

[source]

46

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html

EPFL bplo& fig, ax = plt.subplots(1l, 2, figsize=(14, 6)) # 1 row, 2 columns
s“ # First subplot

ax[0].bar(df['Compound'], df['Molecular Weight (g/mol)'], color='skyblue')
ax[0].set_title('Molecular Weights of Compounds')
ax[0].set_xlabel('Compound")

ax[0].set_ylabel('Molecular Weight (g/mol)"')

ax[0].tick_params(axis='x', rotation=45)

Second subplot

ax[1].scatter(df['Molecular Weight (g/mol)'], df['Boiling Point (°C)'], color='salmon')
ax[1l].set_title('Molecular Weight vs. Boiling Point"')

ax[1].set_xlabel('Molecular Weight (g/mol)"')

ax[1].set_ylabel('Boiling Point (°C)')

plt.tight_layout() # Adjust layout to not overlap

Molecular Weights of Compounds Molecular Weight vs. Boiling Point
120 1
60 4 .
110 -
50 -
= 1001 ®
o
£ 40 —
cl e
) £ w0
v
-~ g
5 £
E S 80 .
o
= 204
70 4
10 A b
60
L]
0 . ' : - .
20 30 a0 50 60

Molecular Weight (g/mol)

=PrL

Customizing line styles and markers

Boiling Point (°C)

120 A

110 A

100 A

80 1

70 1

60

plt.figure(figsize=(10, 6))
plt.plot(df['Compound'], df['Boiling Point (°C)'],

color='darkred', linestyle='--', marker='""', markersize=10, linewidth=2,

label='Boiling Point')
plt.title('Boiling Points of Compounds')
plt.xlabel('Compound')
plt.ylabel('Boiling Point (°C)")
plt.legend()
plt.xticks(rotation=45)
plt.grid(True)

Boiling Points of Compounds

A =& Boiling Point
PN
’ \
’ \
/ \
’
’ \
A ! \
’
~ ’ \
7/ \
’ \
/ \
’ \
! \
4 \
’
/ \
S ’I \‘
A \
\
\
\
\
\
\
\ ,‘
-
\ -
\ -
-
"
; . , . ;
4 & & <® &
«® & o ﬁ# °
v_& W

Compound

48

EPFL m n plt.figure(figsize=(10, 6))
n In po‘n plt.scatter(df['Molecular Weight (g/mol)'l, df['Boiling Point (°C)'], color='purple')

Highlight the point for Acetic Acid
for i, row in df.iterrows():
bp = row['Boiling Point (°C)']
mw = row['Molecular Weight (g/mol)"']
plt.annotate(row['Compound'], (mw, bp),
textcoords="offset points", xytext=(-1@,10), ha='center’,
lprrowprops=dict(arrowstyle='->', color='black'))

plt.title('Molecular Weight vs. Boiling Point')
plt.xlabel('Molecular Weight (g/mol)')
plt.ylabel('Boiling Point (°C)")

plt.grid(True)

Molecular Weight vs. Boiling Point

PRSP
AceticAcid
120 4

110 A

\Water
1001 %

80 - Ethanol

Boiling Point (°C)

70 1
Methanol
*

60 1 Acetone

= 20 30 40 50 60

Molecular Weight (g/mol)

plt.figure(figsize=(10, 6)) 50

=PrL c to 17 . : : . . U
us mlnng axes plt.bar(df['Compound'], df['Molecular Weight (g/mol)'l, color='teal')

Setting the range for the y-axis
plt.ylim(@, 100)

Customizing tick labels
plt.xticks(rotation=45, fontsize=12, color='blue')

plt.yticks(fontsize=12, color='blue')

plt.title('Molecular Weights of Compounds', fontsize=16)
plt.xlabel('Compound', fontsize=14)

Molecular Weights of Compounds

100

801

60 1

40 1

201

Compound

=PFL Colorbars

Boiling Point (°C)

120 A

110 A

100 A

80 1

70 A

60 1

Assuming an additional 'Density (g/mL)' column in the DataFrame

df ['Density (g/mL)'] = [1.@, 0.789, 1.049, 0.790, 0.791]

plt.figure(figsize=(10, 6))

Example densities

sc = plt.scatter(df['Molecular Weight (g/mol)'], df['Boiling Point (°C)'],

c=df['Density (g/mL)'], cmap='viridis')
plt.colorbar(sc, label='Density (g/mL)")

plt.title('Molecular Weight vs. Boiling Point by Density')

plt.xlabel('Molecular Weight (g/mol)"')

plt.ylabel('Boiling Point (°C)"')
plt.grid(True)

Molecular Weight vs. Boiling Point by Density

20 30 40 50 60
Molecular Weight (g/mol)

o
o
v}

o
©o
=]

0.85

0.80

Density (g/mL)

51

=PrL

Seaborn - an extension of matplotlib to make more
aesthetic plots

(1 made most of my plots using seabom)

=PrL

How to make nicer plots = seabom

seaborn: statistical data visualization

- pip install seaborn
- import seaborn as sns
- Documentation: https://seaborn.pydata.org

53

https://seaborn.pydata.org/

=PrL

Bar plot

plt.figure(figsize=(10, 6))

sns.barplot(x="'Compound', y='Molecular Weight (g/mol)', data=df, palette='coolwarm', hue='Compound')
plt.title('Molecular Weights of Compounds')

plt.xticks(rotation=45)

Molecular Weights of Compounds

60

Molecular Weight (g/mol)

Compound

54

=PFL Scatter plot)

plt.figure(figsize=(10, 6))

sns.scatterplot(x="'Molecular Weight (g/mol)', y='Boiling Point (°C)', data=df,
hue='Density (g/mL)', palette='viridis', size='Density (g/mL)"',
sizes=(50, 200))

plt.title('Molecular Weight vs. Boiling Point by Density')

Molecular Weight vs. Boiling Point by Density

120 A
Density (g/mL)
® 0789
® 079
1109 e 0791
) 10
1.049
100 A
g
£ 901
'S
a
o
£
S 80 .
70
.
60 -
.
T T T : :
20 30 40 50 60

|| Molecular Weight (g/mol)

=PFL Pair plot

sns.pairplot(df, hue='Compound', palette='plasma')

120 1 e °
110 1 1
£ 100 e 1 .
H
£ o J]
&
g w0 T o 1o
a 70 g -
60 1 1
. L]
601, * 1 1e .
3
E
550 1 1
= . . Compound
'340 1 4 ® Water
= * Ethanol
5 ® Acetic Acid
§30 * Acetone
g Methanol
20 . 1 1 -
1.05 o o
1.00 . 1* 1
£
e 0.95 1 1
Z
£ 0.90 1 1
c
@
O oss 1 1
0.80 1, . 1 . . 1
60 80 100 120 20 40 60 0.8 0.9 1.0

= Boiling Point (°C) Molecular Weight (g/mol) Density (g/mL)

=PFL More customization

sns.set_theme(style='whitegrid')
sns.set_context('talk')
plt.figure(figsize=(10, 6))
sns.scatterplot(x="'Molecular Weight (g/mol)', y='Boiling Point (°C)°',
hata:df, hue='Compound"', palette='cool', s=100, edgecolor='black")
plt.title('Molecular Weight vs. Boiling Point')

Molecular Weight vs. Boiling Point
120

(]
110
:(_‘)‘100 @
c
5 90
o
E’ 80 Compound
g @ Water @
70 @ Ethanol
@ Acetic Acid ®
60 @ Acetone
@ Methanol @
20 30 40 50 60

Molecular Weight (g/mol)

=PrL

There are many more seabom examples

B _ub

https://seaborn.pvdata.org/examples/index.html

https://seaborn.pydata.org/tutorial/aesthetics.html

https://seaborn.pydata.org/examples/index.html
https://seaborn.pydata.org/tutorial/aesthetics.html

	Slide 1: Pandas, Matplotlib, seaborn
	Slide 2: Last week
	Slide 3: This lecture
	Slide 4
	Slide 5: How to install packages in Python?
	Slide 6: External packages, e.g. Numpy
	Slide 7: Creating arrays
	Slide 8: np.ones(), np.zeros(), np.full()
	Slide 9: Numpy – manupulating arrays (brief intro, you’ll learn much more in the exercises)
	Slide 10: How to get numpy?
	Slide 11: Installing in a running notebook
	Slide 12: Functionality to manipulate arrays
	Slide 13: Filtering arrays
	Slide 14: Why can I just not use lists instead of arrays?
	Slide 15: Pandas – handling tabular data with Python
	Slide 16: Pandas – the way to handle tabular data in Python
	Slide 17: Series and dataframes
	Slide 18: Basic Data Inspection for DataFrames (df)
	Slide 19: Basic Data Inspection for DataFrames (df)
	Slide 20: Accessing the data in a df
	Slide 21: Indexing – loc and iloc
	Slide 22: Indexing – loc and iloc
	Slide 23: Operations on dfs
	Slide 24: Common string format specifiers (super useful!)
	Slide 25: Sorting by value in column
	Slide 26: Adding a new column
	Slide 27: More advanced filtering using `query()`
	Slide 28: Combining DataFrames
	Slide 29: pd.merge(df1, df2)
	Slide 30: pd.concat(df1, df2)
	Slide 31: df1.join([df2])
	Slide 32: .apply() on single column
	Slide 33: .apply() on single column
	Slide 34: .apply() on multiple columns
	Slide 35: Making basic plots in pandas
	Slide 36: Matplotlib – the default Python plotting library
	Slide 37: Matplotlib
	Slide 38: Pairwise data
	Slide 39: Statistical distributions
	Slide 40: Gridded data
	Slide 41: 3D and volumetric data
	Slide 42: Gallery with 100s of examples
	Slide 43: Line plot
	Slide 44: Bar Chart
	Slide 45: Scatter plot
	Slide 46: Saving figures
	Slide 47: subplots
	Slide 48: Customizing line styles and markers
	Slide 49: Annotating points
	Slide 50: Customizing axes
	Slide 51: Colorbars
	Slide 52: Seaborn – an extension of matplotlib to make more aesthetic plots (I made most of my plots using seaborn)
	Slide 53: How to make nicer plots  seaborn
	Slide 54: Bar plot
	Slide 55: Scatter plot
	Slide 56: Pair plot
	Slide 57: More customization
	Slide 58: There are many more seaborn examples

