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Python functions, classes

Last week
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Python packages (free functionality, a pip install away!)

▪ Numpy

▪ Pandas

▪ Matplotlib

▪ Seaborn (optional)

▪ (scipy, one exercise, optional)

▪ If you want to run the code of the examples shown in this lecture 
(pandas, matplotlib, seaborn):

https://schwallergroup.github.io/practical-programming-in-
chemistry/tutorials/lecture_04/01_pandas.html

This lecture 
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https://schwallergroup.github.io/practical-programming-in-chemistry/tutorials/lecture_04/01_pandas.html
https://schwallergroup.github.io/practical-programming-in-chemistry/tutorials/lecture_04/01_pandas.html
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XKCD



▪ Through package managers, the two most common are pypi and 
conda.

How to install packages in Python? 
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pip install numpy

to install the numpy package

conda install numpy

to install the numpy package



▪ Numpy (Python’s equivalent to Matlab)

External packages, e.g. Numpy
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This might overwrite some other functions, e.g. from math → sum.

Hard to debug, as you might not know, what functions is called. 



Creating arrays
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np.ones(), np.zeros(), np.full()
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Numpy – manupulating arrays

(brief intro, you’ll learn much more in the 
exercises)



How to get numpy?
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- both package managers pip and
conda coexist

- if available via pip, I tend to use
it as it’s the officially recommended

one, and simplicity



▪ You can access the command line using “!” in front of your command

Installing in a running notebook
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When you install from the command line, make sure you are in the correct conda environment.



▪ https://numpy.org/doc/stable/reference/routines.array-manipulation.html

Functionality to manipulate arrays
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Advanced slicing (start:stop:step)

https://numpy.org/doc/stable/reference/routines.array-manipulation.html


Filtering arrays
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Selecting all non-nan values (nan= Not a Number)

Adding a constant to specific elements (here x < 0)

https://numpy.org/doc/stable/user/basics.indexing.html#



Why can I just not use lists instead of arrays?
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Pandas – handling tabular data with Python
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Pandas – the way to handle tabular data in Python
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How to install? → simply use “pip install pandas” in your conda environment. 

How to use?



Series and dataframes
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Series are one-dimensional array-like object,
→ Imagine single columns in an Excel spreadsheet 

Dataframes are two-dimensional, tabular data structures 
with labeled axes (rows and columns). → spreadsheet



Basic Data Inspection for DataFrames (df)
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First few rows of the dataframe (default: 5)



Basic Data Inspection for DataFrames (df)
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Summary statistics for numerical columns

Types of the columns



Accessing the data in a df
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Access the “Molecular Weight” column

Filter by melting point > 25 



• .loc is label-based, meaning you use the labels of the rows and 
columns to select data.

• .iloc is integer position-based, so you use integer indices to select 
data.

Indexing – loc and iloc 
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Indexing – loc and iloc 
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Label-based

Index-based



Operations on dfs
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Specifier Description

Example using f-

strings Output

d

Formats an 

integer as a 

decimal number.

f'{42:d}' 42

f

Formats a 

floating-point 

number as a 

fixed-point 

number.

f'{3.14159:.2f}' 3.14

e

Formats a 

floating-point 

number in 

scientific notation.

f'{0.0015:.2e}' 1.50e-03

%
Formats a number 

as a percentage.
f'{0.75:.1%}' 75.0%

Common string format specifiers (super useful!)
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Sorting by value in column
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Adding a new column
26



More advanced filtering using `query()`
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▪ Often you will have data that comes from multiple sources (files), and 
you would like to combine them into a single DataFrame

▪ Pandas provides useful functionality for that:

• pd.merge(df1, df2): Merging two DataFrames representing different sets of 
properties for a selection of compounds.

• pd.concat(df1, df2): Concatenating DataFrames containing properties of 
different compounds to create a single, comprehensive DataFrame.

• df1.join([df2]): Combining DataFrames with different information about 
compounds based on their index. This is useful when the indices represent a 
shared order or align datasets based on their order rather than a specific key.

▪ Let’s look at some examples. 

Combining DataFrames
28



pd.merge(df1, df2)
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pd.concat(df1, df2)
30



df1.join([df2])
31



.apply() on single column
32



.apply() on single column
33



.apply() on multiple columns
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Note: we have to use the axis keyword.

In pandas DataFrames:
- axis=0: Perform the operation
vertically (column by column).
- axis=1: Perform the operation
horizontally (row by row).



Making basic plots in pandas
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While Pandas plotting is convenient for quick and straightforward plots, 
Matplotlib provides more control and flexibility for customizing plots.



Matplotlib – the default Python plotting library

36



Matplotlib
37

How to get it? `pip install matplotlib`
How to import it? `import matplotlib.pyplot as plt`

https://matplotlib.org

https://matplotlib.org/


Pairwise data
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https://matplotlib.org/stable/plot_types/index.html#pairwise-data



Statistical distributions
39

https://matplotlib.org/stable/plot_types/index.html#statistical-distributions



Gridded data
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https://matplotlib.org/stable/plot_types/index.html#gridded-data



3D and volumetric data
41



▪ https://matplotlib.org/stable/gallery/index.html

Gallery with 100s of examples
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https://matplotlib.org/stable/gallery/index.html


Line plot
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Bar Chart
44



Scatter plot
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Saving figures
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https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.
savefig.html#matplotlib-pyplot-savefig

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html


subplots
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Customizing line styles and markers
48



Annotating points 
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Customizing axes
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Colorbars
51



Seaborn – an extension of matplotlib to make more 
aesthetic plots 

(I made most of my plots using seaborn)
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How to make nicer plots → seaborn
53

→ pip install seaborn
→ import seaborn as sns

→ Documentation: https://seaborn.pydata.org

https://seaborn.pydata.org/


Bar plot 
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Scatter plot
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Pair plot
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More customization
57



There are many more seaborn examples
58

https://seaborn.pydata.org/examples/index.html

https://seaborn.pydata.org/tutorial/aesthetics.html

https://seaborn.pydata.org/examples/index.html
https://seaborn.pydata.org/tutorial/aesthetics.html
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