
Pandas, 
Matplotlib,
seaborn

Practical Programming
in Chemistry

Prof. Philippe Schwaller



Python functions, classes

Last week
2



Python packages (free functionality, a pip install away!)

▪ Numpy

▪ Pandas

▪ Matplotlib

▪ Seaborn (optional)

▪ (scipy, one exercise, optional)

▪ If you want to run the code of the examples shown in this lecture 
(pandas, matplotlib, seaborn):

https://schwallergroup.github.io/practical-programming-in-
chemistry/tutorials/lecture_04/01_pandas.html

This lecture 
3

https://schwallergroup.github.io/practical-programming-in-chemistry/tutorials/lecture_04/01_pandas.html
https://schwallergroup.github.io/practical-programming-in-chemistry/tutorials/lecture_04/01_pandas.html


4

XKCD



▪ Through package managers, the two most common are pypi and 
conda.

How to install packages in Python? 
5

pip install numpy

to install the numpy package

conda install numpy

to install the numpy package



▪ Numpy (Python’s equivalent to Matlab)

External packages, e.g. Numpy
6

This might overwrite some other functions, e.g. from math → sum.

Hard to debug, as you might not know, what functions is called. 



Creating arrays
7



np.ones(), np.zeros(), np.full()
8



9

Numpy – manupulating arrays

(brief intro, you’ll learn much more in the 
exercises)



How to get numpy?
10

- both package managers pip and
conda coexist

- if available via pip, I tend to use
it as it’s the officially recommended

one, and simplicity



▪ You can access the command line using “!” in front of your command

Installing in a running notebook
11

When you install from the command line, make sure you are in the correct conda environment.



▪ https://numpy.org/doc/stable/reference/routines.array-manipulation.html

Functionality to manipulate arrays
12

Advanced slicing (start:stop:step)

https://numpy.org/doc/stable/reference/routines.array-manipulation.html


Filtering arrays
13

Selecting all non-nan values (nan= Not a Number)

Adding a constant to specific elements (here x < 0)

https://numpy.org/doc/stable/user/basics.indexing.html#



Why can I just not use lists instead of arrays?
14



Pandas – handling tabular data with Python

15



Pandas – the way to handle tabular data in Python
16

How to install? → simply use “pip install pandas” in your conda environment. 

How to use?



Series and dataframes
17

Series are one-dimensional array-like object,
→ Imagine single columns in an Excel spreadsheet 

Dataframes are two-dimensional, tabular data structures 
with labeled axes (rows and columns). → spreadsheet



Basic Data Inspection for DataFrames (df)
18

First few rows of the dataframe (default: 5)



Basic Data Inspection for DataFrames (df)
19

Summary statistics for numerical columns

Types of the columns



Accessing the data in a df
20

Access the “Molecular Weight” column

Filter by melting point > 25 



• .loc is label-based, meaning you use the labels of the rows and 
columns to select data.

• .iloc is integer position-based, so you use integer indices to select 
data.

Indexing – loc and iloc 
21



Indexing – loc and iloc 
22

Label-based

Index-based



Operations on dfs
23



Specifier Description

Example using f-

strings Output

d

Formats an 

integer as a 

decimal number.

f'{42:d}' 42

f

Formats a 

floating-point 

number as a 

fixed-point 

number.

f'{3.14159:.2f}' 3.14

e

Formats a 

floating-point 

number in 

scientific notation.

f'{0.0015:.2e}' 1.50e-03

%
Formats a number 

as a percentage.
f'{0.75:.1%}' 75.0%

Common string format specifiers (super useful!)
24



Sorting by value in column
25



Adding a new column
26



More advanced filtering using `query()`
27



▪ Often you will have data that comes from multiple sources (files), and 
you would like to combine them into a single DataFrame

▪ Pandas provides useful functionality for that:

• pd.merge(df1, df2): Merging two DataFrames representing different sets of 
properties for a selection of compounds.

• pd.concat(df1, df2): Concatenating DataFrames containing properties of 
different compounds to create a single, comprehensive DataFrame.

• df1.join([df2]): Combining DataFrames with different information about 
compounds based on their index. This is useful when the indices represent a 
shared order or align datasets based on their order rather than a specific key.

▪ Let’s look at some examples. 

Combining DataFrames
28



pd.merge(df1, df2)
29



pd.concat(df1, df2)
30



df1.join([df2])
31



.apply() on single column
32



.apply() on single column
33



.apply() on multiple columns
34

Note: we have to use the axis keyword.

In pandas DataFrames:
- axis=0: Perform the operation
vertically (column by column).
- axis=1: Perform the operation
horizontally (row by row).



Making basic plots in pandas
35

While Pandas plotting is convenient for quick and straightforward plots, 
Matplotlib provides more control and flexibility for customizing plots.



Matplotlib – the default Python plotting library

36



Matplotlib
37

How to get it? `pip install matplotlib`
How to import it? `import matplotlib.pyplot as plt`

https://matplotlib.org

https://matplotlib.org/


Pairwise data
38

https://matplotlib.org/stable/plot_types/index.html#pairwise-data



Statistical distributions
39

https://matplotlib.org/stable/plot_types/index.html#statistical-distributions



Gridded data
40

https://matplotlib.org/stable/plot_types/index.html#gridded-data



3D and volumetric data
41



▪ https://matplotlib.org/stable/gallery/index.html

Gallery with 100s of examples
42

https://matplotlib.org/stable/gallery/index.html


Line plot
43



Bar Chart
44



Scatter plot
45



Saving figures
46

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.
savefig.html#matplotlib-pyplot-savefig

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html


subplots
47



Customizing line styles and markers
48



Annotating points 
49



Customizing axes
50



Colorbars
51



Seaborn – an extension of matplotlib to make more 
aesthetic plots 

(I made most of my plots using seaborn)

52



How to make nicer plots → seaborn
53

→ pip install seaborn
→ import seaborn as sns

→ Documentation: https://seaborn.pydata.org

https://seaborn.pydata.org/


Bar plot 
54



Scatter plot
55



Pair plot
56



More customization
57



There are many more seaborn examples
58

https://seaborn.pydata.org/examples/index.html

https://seaborn.pydata.org/tutorial/aesthetics.html

https://seaborn.pydata.org/examples/index.html
https://seaborn.pydata.org/tutorial/aesthetics.html

	Slide 1: Pandas, Matplotlib, seaborn
	Slide 2: Last week
	Slide 3: This lecture 
	Slide 4
	Slide 5: How to install packages in Python? 
	Slide 6: External packages, e.g. Numpy
	Slide 7: Creating arrays
	Slide 8: np.ones(), np.zeros(), np.full()
	Slide 9: Numpy – manupulating arrays  (brief intro, you’ll learn much more in the exercises)
	Slide 10: How to get numpy?
	Slide 11: Installing in a running notebook
	Slide 12: Functionality to manipulate arrays
	Slide 13: Filtering arrays
	Slide 14: Why can I just not use lists instead of arrays?
	Slide 15: Pandas – handling tabular data with Python
	Slide 16: Pandas – the way to handle tabular data in Python
	Slide 17: Series and dataframes
	Slide 18: Basic Data Inspection for DataFrames (df)
	Slide 19: Basic Data Inspection for DataFrames (df)
	Slide 20: Accessing the data in a df
	Slide 21: Indexing – loc and iloc 
	Slide 22: Indexing – loc and iloc 
	Slide 23: Operations on dfs
	Slide 24: Common string format specifiers (super useful!)
	Slide 25: Sorting by value in column
	Slide 26: Adding a new column
	Slide 27: More advanced filtering using `query()`
	Slide 28: Combining DataFrames
	Slide 29: pd.merge(df1, df2)
	Slide 30: pd.concat(df1, df2)
	Slide 31: df1.join([df2])
	Slide 32: .apply() on single column
	Slide 33: .apply() on single column
	Slide 34: .apply() on multiple columns
	Slide 35: Making basic plots in pandas
	Slide 36: Matplotlib – the default Python plotting library
	Slide 37: Matplotlib
	Slide 38: Pairwise data
	Slide 39: Statistical distributions
	Slide 40: Gridded data
	Slide 41: 3D and volumetric data
	Slide 42: Gallery with 100s of examples
	Slide 43: Line plot
	Slide 44: Bar Chart
	Slide 45: Scatter plot
	Slide 46: Saving figures
	Slide 47: subplots
	Slide 48: Customizing line styles and markers
	Slide 49: Annotating points 
	Slide 50: Customizing axes
	Slide 51: Colorbars
	Slide 52: Seaborn – an extension of matplotlib to make more aesthetic plots   (I made most of my plots using seaborn)
	Slide 53: How to make nicer plots  seaborn
	Slide 54: Bar plot 
	Slide 55: Scatter plot
	Slide 56: Pair plot
	Slide 57: More customization
	Slide 58: There are many more seaborn examples

