m_li

kdGebeebapg

Advanced

e Ooukes |'Off~ ‘um:mt(:lur
- Prveur .»g.l PeayalziL 3500008 Veides,
Tosen, n RO Bstl, GURASESD ummu,_huo—sl L (Jamenss
e He nv:)u.wlnhbﬂ O
ﬂm)n\wqw(tﬁa(l— Ji—Gintbg:i)
5. Oulation 74. vomiliraisecT)
mmmﬂt«)}d}’t B Qlamel)

sy | vwwml,\ ma;;!

Poweaturagie 07

Practical Programming
in Chemistry

Prof. Philippe Schwaller

=pFL Computer setup, all ok?

Visual Studio Code

Programming language to communicate

A better text editor

i) @ PLLEr SIS to handle Python code.

Super useful to know a few commands.

Basic command line usage Install VS Code as interactive
in bash development environment

General purpose programming language. A platform to share, track,

Create scripts, programs, webapps, ... and store code.

ANACONDA GitHub

Install Python with Conda Creating a GitHub account
(main course programming language) and getting familiar with basic commands

=PrL

This lecture

= Writing structured code
* Function
» Classes

= Errors
= How to read and write files

=PrL

Functions in Python

=PFL Function example

Documentation string.

Note the
multiline comment
With “wnn

function_name(parameters):

"""Docstring explaining the function."""

result

The return statement

Function name Parameters

o000

calculate_molarity(moles, volume_liters):
"""Calculate the molarity of a solution.

Parameters:
- moles: Number of moles of solute.
- volume_liters: Volume of solution in liters.

Returns:
The molarity of the solution.

moles / volume_liters

molarity = calculate_molarity(0.5, 1.0)
print(f"Molarity: {molarity} M")|

=PFL Write manageable and efficient code
- why functions?

= Without functions, you write the same code over and over.

Clear naming makes code,
easier to understand.
studentl_scores = [85, 92, 78, 90]
studentl_total = @

for score in studentl_scores:

def calculate_average(scores):
total = @

studentl_total += score
for score in scores:

studentl_average = studentl_total / len(studentl_scores)
total += score

student2_scores = [79, 88, 92, 85] return total / len(scores)

student2_total = 0
for score in student2_scores:
student2_total += score

studentl_average = calculate_average([85, 92, 78, 90])

student2_average = student2_total / len(student2_scores) student2_average calculate_average([79, 88, 92, 85])

Functions organise the code, and let you breakdown complex problems
- into smaller, more manageable pieces.

=PrL

Think of functions like recipes in a cookbook. Instead of writing out all
the steps to make bread every time you want to bake it, you can just refer
to the bread recipe.

Functions work the same way - they're reusable instructions that you
can call whenever you need them.

=PFL Example: temperature conversion

Triple quotes for multiline
documentation string.

default value

rt_te ture(temp, scale_to='C'):
onvert temperature between Celsius and Fahrenheit.

Parameters:
- temp: The temperature to convert.

- scale_to: Target temperature scale ('C' for Celsius, 'F' for Fahrenheit)

Returns:
The converted temperature.

scale_to.upper() == 'C':
(temp - 32
scale_to.upp
temp * 9

ValueError("scale_to must be 'C' or '

print(f"100F in Celsius: {convert_temperature(100, 'C')}°C")

print(f"0C in Fahrenheit: {convert_temperature(scale_to='F', temp=0)}°F")

Error raised if invalid
parameter

different return

In [32]: # Example usage -> positional arguments
e (f"100F in Celsius: {convert_temperature(100, 'C')}°C")

Example usage -> keyword arguments
(f"0C in Fahrenheit: {convert_temperature(scale_to='F', temp=0)}°F")

100F in Celéius: 37.77777777777778°C
0C in Fahrenheit: 32.0°F

In [34]: # Example usage -> default value
(f"100F in Celsius: {convert_temperature(100)}°C")

100F in Celsius: 37.77777777777778°C

def convert_temperature(temp: float, scale_to: str '‘'C') -= float:
""Convert temperature between Celsius and Fahrenheit

Parameters:
temp: float - The temperature to convert.
scale_to: str - Target temperature scale ('C' for Ce , 'F' Tor Fahrenheit)

Returns:
float: The converted temperature.

if scale_to. () Lo
return (temp % /
elif scale_to. (] F':
return (temp * /)+
alse:
raise ValueError(“"scale_t

in Celsius: {convert_temperature(
1 Fahrenheit: {convert_temperature(

In Python, types of variables are determined dynamically. But with type hints you can let the
computer/human know beforehand what the expected variable type would be.

=P

10

Reusing functions

= |[magine you need the same function multiple times
 In the same notebook - define it at the beginning of the notebook

* In multiple notebooks - define the function in a *.p;file\
Note: The “*”

= For the conversion example, you could write it into a means any string.
“temperature_conversion.py” file in the same folder as your notebook,
and then import it

convert_temperature

- The advantage is that if you modify/improve the function, you have
to do it once. Also, it allows you to test a single function.

=PrL

What functions can | access in my code? "

= Built-in functions (do not need to be imported), e.g.:
print(), len(), int(), str()
def my_function(paraml, param2):

= User-defined Functions (defined using the def keyword) — # Furction boay

return paraml + param2

= Functions imported from .py Files (you can import function from .py
files in same folder)

* In “properties.py” you define “def get_molecular_weight(molecule)”

* In "analyze_molecules.ipynb”, in the same folder, you import “from properties
import get_molecular_weight”, and then you can use the function.

= Functions imported from installed packages (e.g. Numpy)

=PrL

Classes in Python

=P

Other ways to write cleaner code - classes ’

= |[magine you want to design a digital periodic table
= Aclass is like a template or blueprint of an element
= Every element would be an instance (object) of that class

= Each element has a set of properties: name, symbol, atomic_number,
..., iIn programming, we call those attributes.

= And you could have methods (functions) that an element can perform.

Element:
__init__(self, name, symbol, atomic_number):
self.name = name
self.symbol = symbol

self.atomic number = atomic_number

describe(self):
print(f"{self.name} ({self.symbol}), Atomic Number: {self.atomic_number}")

=PrL

Initialisation- __init__ function

__init__ stands for initialisation

= The __init__ function only runs once when the object is created.

Element:

__init__(self, name, symbol, atomic_number):
self.name = name

self.symbol = symbol
self.atomic_number = atomic_number

describe(self):

print(f"{self.name} ({self.symbol}), Atomic Number: {self.atomic_number}")

hydrogen = Element("Hydrogen", “H", 1)

14

£PFL Inheritance

Element:

__init__(self, name, symbol, atomic_number):
self.name = name

self.symbol = symbol

self.atomic _number = atomic_number

describe(self):
print(f"{self.name} ({self.symbol}), Atomic Number: {self.atomic_number}")

NobleGas(Element):
__init__(self, name, symbol, atomic_number, standard_state="gaseous"):
super().__init__(name, symbol, atomic_number)
self.standard_state = standard_state)) .
This will runthe __init__
describe state(self): of the parent class.
print(f"{self.name} is in its {self.standard_state} state at room temperature.")

helium = NobleGas("Helium", "He", 2)
helium.describe()

helium.describe state()
|

=PrL Why We Use Classes?

Because it makes writing complex code bases easier.
This is just for you to know what it is, when you come across a class in Python code you look at.

18

=PFL |n short: Functions and classes

= Both aim to build complexity from simpler structures

= Functions: One place, to define clear inputs and outputs that can be
reused in multiple parts of your code

= Classes: Instead of rewriting every chemical compound/element object
from scratch, you can define common functionality shared by all
members of the class.

=PrL

Errors and exceptions

=P

Errors in Python

= Python has several built-in errors that can occur during the execution
of a program. Understanding these common errors and exceptions is
crucial for debugging and writing robust Python code.

X == In [36] Ll [37]

4 1" 4 1" ("x is 1")
prlﬂt(x 1s 1%) Cell In[36], line 1
Cell In[37], line 1
A ————> 1 X B
. . 2 ()
invalid syntax
: name 'x' is not defined

In [38]: x =

1
X == 1:

x is 1

=PrL

my_list = 3]
print(my_list[3])

my_dict = {"name": "Alice"}
print(my_dict["age"])

Other common errors

)], line 2
mple of TypeError
Attempting to add a string and an integer

: can only concatenate str (not "int") to str

Traceback (most recent call last)

: unsupported operand type(s) for +: 'int' and 'str'

Traceback (most recent call last)
Cell In[41], line 3

1 # Example of IndexError
2 my_list [B120

———— 3 (my_list[1 # There is no index 3 in this list

: list index out of range

Traceback (most recent call last)
Cell In[43], line 2

1 my_dict {

| —-—-> 2 (my_dict[: 1)

: 'age'

21

=PrL

Other common errors

"hello" .append('world')

non_existent function

open('nonexistent_file.txt"')
read_data = f.read()

=PrL

How to handle ermrors/exceptions - try/except

= Exceptions in Python are errors detected during execution that
interrupt the normal flow of a program.
They can be caught and handled to prevent the program from
crashing and to provide more informative error messages or
alternative solutions.

= Exception Handling: Python uses try, except, else, and finally blocks
to handle exceptions. This allows programmers to write code that can
gracefully deal with unexpected errors.

= Raising Exceptions: Beyond the built-in exceptions, Python allows
raising custom exceptions using the raise statement. This is useful for
signaling error conditions in your code in a way that's consistent with
Python's error handling model.

23

24

=P*L " Try/except synthax

result = 10 / 0
ZeroDivisionError:
print("You can't divide by zero!")

SomeException:

print("Division successful!")

print("This block executes no matter what.")

some_function()

result = 10 / x
ZeroDivisionError:
print("You can't divide by zero!")

print("Division successful!")

print("This block executes no matter what.")

=PFL raise statement

o t_temperature(temp, scale_to='C'):
"""Convert temperature between Celsius and Fahrenheit.

Parameters:
- temp: The temperature to convert.

- scale_to: Target temperature scale ('C' for Celsius, 'F' for Fahrenheit) [In [44]: convert_temperature(0, "A")

Returns: Traceback (most recent call last)

The converted temperature. Cell ln[ﬂ], line 1
e - 1 convert_temperature(,)

scale_to.upper()
(temp - Cell In[29], line 16, in convert_temperature

scale_to.upper() B 14 temp * 9/5 + 32

temp *
> ValueError(

ValueError("scale_to must be 'C' or 'F'.")
scale_to must be 'C' or 'F'.

print(f"100F in Celsius: {convert_temperature(100, 'C')}°C")

print(f"0C in Fahrenheit: {convert_temperature(scale_to='F', temp=0)}°F")

=P

* "C: isthedrive letter.
* “\Users\Username\Documents\project\ is the path to the directory containing the file.

* “myfile.txt" is the name of the file.
¢ » ~) cd git/teaching/practical-programming-in-chemistry-milestones

* °/ isthe root directory. “
* “home/username/Documents/project/ " isthe path to the directory containing the file.

How to access files on your computer?

= On key challenge is that paths on Windows and MacOS/Linux are
different.
= There are backslashes (\) on Windows and forward slashes (/) on Unix-

like systems (macOS, Linux).
* Windows: C:\Users\Username\Documents\project\myfile.txt

« Mac/Linux: /home/username/Documents/project/myfile.txt

® ® ® M practical-programming-in-chemistry-milestones — -zsh — 80x24

Last login: Mon Feb 12 14:15:04 on ttys018

& = ~/gi/tea/practical-programming-in-chemistry-milestones » P main ?1) pwd
/Users/pschwllr/git/teaching/practical-programming-in-chemistry-milestones
& = ~/gi/tea/practical-programming-in-chemistry-milestones ® P main ?1) 1s

README . md
~/gi/tea/practical-programming-in-chemistry-milestones » P main 71) |}

* "myfile.txt isthe name of the file.

=PFL Pathlib or os for compatibility

pathlib 0S

path = os.path.join('some_directory',

p = Path('some_directory/myfile.txt')

home = Path.home()

ety paren = Wiants 0GR 0 Ep Relative paths are preferred!

open(p, 'r') f:
content = f.read()|

Note: Use forward slashes (/). Python will automatically convert these to the
appropriate separator for the operating system on which it's running.

Avoid: Hardcoded absolute paths like “Users/username/some_directory”

27

‘myfile.txt")

=PFL Reading files in Python "

= The key function for working with files in Python is open(), which is
used to open a file and returns a file object. This file object can then
be used to read from or write to the file.

file = op . vample
content : i1lc ad (
file.clos)
print(cont

Issue: if error is raised,
file is never closed.

open('example.txt', 'r') IRUEE Handles the file-closing

content = file.read() mmensowmﬂﬂnggoeg
print(content)| wrong. Always use with.

=PFL Different modes for open()

Opening a File

To open afile in Python, we use the open function. The open function returns a file object and is most

commonly used with two arguments: open(filename, mode) .

¢ The filename isthe name (and the path if the file is not located in the same directory as the Python

script) of the file you want to open.

¢ The mode argumentis a string that defines which mode you want to open thefile in:

o " r"
o “W“
o My
o “a“
o "p"
o =

: read mode (default)

: write mode, for overwriting the contents of a file

: exclusive creation mode, for creating a new file and failing if it already exists
: append mode, for appending data to an existing file

: binary mode

: text mode (default)

=PFL Reading from afile

e read() : This reads the entire file.

30

e readline() : This reads afile line by line.

e readlines():Thisreads all the lines and returns them as a list of strings.

[In [46]: less compounds.txt
Water
Methane

Ammonia
Hydrogen Peroxide
Acetic Acid

[In [47]: ('compounds.txt',

Irl)
content = file.read()
(content)

Water

Methane

Ammonia

Hydrogen Peroxide
Acetic Acid

('compounds.txt', 'r')
line = file.readline()
(line)

\n -2 end of line character (or \r\n) .

In [52]: with open('compounds.txt', 'r') as file:
lines = file.readlines()

print('Water' in lines) Why is this the case?

False

In [53]: ('compounds.txt', 'r') file:
lines = file.readlines())
(lines) End of line
L character
['water\n', 'Methane\n', 'Ammonia\n', 'Hydrogen Peroxide\n', 'Acetic Acid\n']
In [54]: ('compounds.txt', 'r') file:
lines = [line.strip() line file.readlines()]
(lines) Common trick!

['Water', 'Methane', 'Ammonia', 'Hydrogen Peroxide', 'Acetic Acid']

Uses a list comprehension (last week) and the strip(), which removes whitespace around a string.

Write fil

with open

('chemicals.txt', 'w') as file:

file.write('New line in file.')

[In [56]:

i[In [57]:
(TR

~ compound in compounds:

[In [62]: less com
Water

Methane

Ammonia

Hydrogen Peroxide
Acetic Acid

compounds
['Water', 'Methane', 'Ammonia', 'Hydrogen Peroxide', 'Acetic Acid']

;ith open('compounds.txt', 'w') as file:
‘or compound in compounds:

file.write(compound) [In [58]: less compounds.txt
WaterMethaneAmmoniaHydrogen PeroxideAcetic Acid
n(' ds.txt', 'w') as file: i .
L conponds. £ Wl L th open('compounds.txt', 'w') as file:

file.write(compound + '\n') file.write('\n'.join(compounds))

[In [65]: less compounds.txt
Water

Methane

Ammonia

Hydrogen Peroxide

Acetic Acid

pounds.txt

1 liner, using join()

In [66]1: '\n'.join(compounds)
'Water\nMethane\nAmmonia\nHydrogen Peroxide\nAcetic Acid'

=PrL

Today’s exercises

= Writing and reading files
= Functions

= Error handling

» Classes

33

	Slide 1: Advanced Python
	Slide 2: Computer setup, all ok?
	Slide 3: This lecture
	Slide 4: Functions in Python
	Slide 5: Function example
	Slide 6: Write manageable and efficient code – why functions?
	Slide 7
	Slide 8: Example: temperature conversion
	Slide 9: Same function with Type hints
	Slide 10: Reusing functions
	Slide 11: What functions can I access in my code?
	Slide 12: Classes in Python
	Slide 13: Other ways to write cleaner code – classes
	Slide 14: Initialisation - __init__ function
	Slide 15: Inheritance
	Slide 16: Why We Use Classes?
	Slide 18: In short: Functions and classes
	Slide 19: Errors and exceptions
	Slide 20: Errors in Python
	Slide 21: Other common errors
	Slide 22: Other common errors
	Slide 23: How to handle errors/exceptions – try/except
	Slide 24: Try/except synthax
	Slide 25: raise statement
	Slide 26: How to access files on your computer?
	Slide 27: Pathlib or os for compatibility
	Slide 28: Reading files in Python
	Slide 29: Different modes for open()
	Slide 30: Reading from a file
	Slide 31: \n  end of line character (or \r\n)
	Slide 32: Write files
	Slide 33: Today’s exercises

