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Computer setup, all ok? 2

Basic command line usage
in bash

Install Python with Conda
(main course programming language)

Install VS Code as interactive
development environment

Creating a GitHub account
and getting familiar with basic commands

Programming language to communicate 
with computer system. 

Super useful to know a few commands.

General purpose programming language.
Create scripts, programs, webapps, …

A better text editor 
to handle Python code.

A platform to share, track,
and store code.



▪ Writing structured code

• Function 

• Classes

▪ Errors

▪ How to read and write files 

This lecture
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Functions in Python
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Function example
5

Function name Parameters

Documentation string. 
Note the 

multiline comment
with “””

The return statement



▪ Without functions, you write the same code over and over.

Write manageable and efficient code 
– why functions?
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Clear naming makes code,
easier to understand.

Functions organise the code, and let you breakdown complex problems
into smaller, more manageable pieces. 



Think of functions like recipes in a cookbook. Instead of writing out all 
the steps to make bread every time you want to bake it, you can just refer 
to the bread recipe. 

Functions work the same way - they're reusable instructions that you 
can call whenever you need them.
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Example: temperature conversion
8

default value 

different return 
Error raised if invalid
parameter

Triple quotes for multiline
documentation string.



Same function with Type hints
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In Python, types of variables are determined dynamically. But with type hints you can let the
computer/human know beforehand what the expected variable type would be. 



▪ Imagine you need the same function multiple times

• In the same notebook → define it at the beginning of the notebook

• In multiple notebooks → define the function in a *.py file

▪ For the conversion example, you could write it into a 
“temperature_conversion.py” file in the same folder as your notebook, 
and then import it  

→ The advantage is that if you modify/improve the function, you have 
to do it once. Also, it allows you to test a single function. 

Reusing functions
10

Note: The “*”
means any string.



▪ Built-in functions (do not need to be imported), e.g.:
print(), len(), int(), str()

▪ User-defined Functions (defined using the def keyword)

▪ Functions imported from .py Files (you can import function from .py
files in same folder)

• In “properties.py” you define “def get_molecular_weight(molecule)”

• In ”analyze_molecules.ipynb”, in the same folder, you import “from properties 
import get_molecular_weight”, and then you can use the function.

▪ Functions imported from installed packages (e.g. Numpy)

What functions can I access in my code? 
11



Classes in Python
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▪ Imagine you want to design a digital periodic table

▪ A class is like a template or blueprint of an element

▪ Every element would be an instance (object) of that class 

▪ Each element has a set of properties: name, symbol, atomic_number, 
…, in programming, we call those attributes. 

▪ And you could have methods (functions) that an element can perform. 

Other ways to write cleaner code – classes
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▪ The __init__ function only runs once when the object is created.

Initialisation - __init__ function 
14

__init__ stands for initialisation



Inheritance
15

This will run the __init__
of the parent class.



▪ Encapsulation: Classes bundle data (attributes) and methods/functions
that operate on the data into a single entity (object). --> better structure

▪ Inheritance: Classes allow for the creation of a new class that inherits 
attributes and methods from an existing class. --> less rewriting

▪ Data Abstraction: Classes can provide a simple interface to complex 
systems..

▪ Modeling Real-world Problems: Object-oriented programming allows you 
to model real-world entities and relationships in a more natural and intuitive 
way. 
In chemistry, for example, you can model molecules, atoms, reactions, and 
laboratory equipment as objects with specific attributes and behaviors.

Why We Use Classes?
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Because it makes writing complex code bases easier. 
This is just for you to know what it is, when you come across a class in Python code you look at. 



▪ Both aim to build complexity from simpler structures

▪ Functions: One place, to define clear inputs and outputs that can be 
reused in multiple parts of your code

▪ Classes: Instead of rewriting every chemical compound/element object 
from scratch, you can define common functionality shared by all 
members of the class.

In short: Functions and classes 
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Errors and exceptions
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▪ Python has several built-in errors that can occur during the execution 
of a program. Understanding these common errors and exceptions is 
crucial for debugging and writing robust Python code. 

Errors in Python
20



Other common errors
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Other common errors
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▪ Exceptions in Python are errors detected during execution that 
interrupt the normal flow of a program. 
They can be caught and handled to prevent the program from 
crashing and to provide more informative error messages or 
alternative solutions.

▪ Exception Handling: Python uses try, except, else, and finally blocks 
to handle exceptions. This allows programmers to write code that can 
gracefully deal with unexpected errors.

▪ Raising Exceptions: Beyond the built-in exceptions, Python allows 
raising custom exceptions using the raise statement. This is useful for 
signaling error conditions in your code in a way that's consistent with 
Python's error handling model.

How to handle errors/exceptions – try/except
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Try/except synthax
24



raise statement
25



▪ On key challenge is that paths on Windows and MacOS/Linux are 
different. 

▪ There are backslashes (\) on Windows and forward slashes (/) on Unix-
like systems (macOS, Linux).

• Windows: C:\Users\Username\Documents\project\myfile.txt

• Mac/Linux: /home/username/Documents/project/myfile.txt

How to access files on your computer?
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Pathlib or os for compatibility
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Note: Use forward slashes (/). Python will automatically convert these to the 
appropriate separator for the operating system on which it's running.

Avoid: Hardcoded absolute paths like “Users/username/some_directory”

Relative paths are preferred! 



▪ The key function for working with files in Python is open(), which is 
used to open a file and returns a file object. This file object can then 
be used to read from or write to the file.

Reading files in Python
28

Issue: if error is raised,
file is never closed.

Handles the file-closing,
when something goes

wrong. Always use with.



Different modes for open()
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Reading from a file 
30



\n →end of line character (or \r\n)
31

Why is this the case?

End of line
character

Common trick! 

Uses a list comprehension (last week) and the strip(), which removes whitespace around a string.



Write files
32

1 liner, using join()



▪ Writing and reading files

▪ Functions

▪ Error handling

▪ Classes

Today’s exercises
33
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