
Advanced
Python

Practical Programming
in Chemistry

Prof. Philippe Schwaller

Computer setup, all ok? 2

Basic command line usage
in bash

Install Python with Conda
(main course programming language)

Install VS Code as interactive
development environment

Creating a GitHub account
and getting familiar with basic commands

Programming language to communicate
with computer system.

Super useful to know a few commands.

General purpose programming language.
Create scripts, programs, webapps, …

A better text editor
to handle Python code.

A platform to share, track,
and store code.

▪ Writing structured code

• Function

• Classes

▪ Errors

▪ How to read and write files

This lecture
3

Functions in Python

4

Function example
5

Function name Parameters

Documentation string.
Note the

multiline comment
with “””

The return statement

▪ Without functions, you write the same code over and over.

Write manageable and efficient code
– why functions?

6

Clear naming makes code,
easier to understand.

Functions organise the code, and let you breakdown complex problems
into smaller, more manageable pieces.

Think of functions like recipes in a cookbook. Instead of writing out all
the steps to make bread every time you want to bake it, you can just refer
to the bread recipe.

Functions work the same way - they're reusable instructions that you
can call whenever you need them.

7

Example: temperature conversion
8

default value

different return
Error raised if invalid
parameter

Triple quotes for multiline
documentation string.

Same function with Type hints
9

In Python, types of variables are determined dynamically. But with type hints you can let the
computer/human know beforehand what the expected variable type would be.

▪ Imagine you need the same function multiple times

• In the same notebook → define it at the beginning of the notebook

• In multiple notebooks → define the function in a *.py file

▪ For the conversion example, you could write it into a
“temperature_conversion.py” file in the same folder as your notebook,
and then import it

→ The advantage is that if you modify/improve the function, you have
to do it once. Also, it allows you to test a single function.

Reusing functions
10

Note: The “*”
means any string.

▪ Built-in functions (do not need to be imported), e.g.:
print(), len(), int(), str()

▪ User-defined Functions (defined using the def keyword)

▪ Functions imported from .py Files (you can import function from .py
files in same folder)

• In “properties.py” you define “def get_molecular_weight(molecule)”

• In ”analyze_molecules.ipynb”, in the same folder, you import “from properties
import get_molecular_weight”, and then you can use the function.

▪ Functions imported from installed packages (e.g. Numpy)

What functions can I access in my code?
11

Classes in Python

12

▪ Imagine you want to design a digital periodic table

▪ A class is like a template or blueprint of an element

▪ Every element would be an instance (object) of that class

▪ Each element has a set of properties: name, symbol, atomic_number,
…, in programming, we call those attributes.

▪ And you could have methods (functions) that an element can perform.

Other ways to write cleaner code – classes
13

▪ The __init__ function only runs once when the object is created.

Initialisation - __init__ function
14

__init__ stands for initialisation

Inheritance
15

This will run the __init__
of the parent class.

▪ Encapsulation: Classes bundle data (attributes) and methods/functions
that operate on the data into a single entity (object). --> better structure

▪ Inheritance: Classes allow for the creation of a new class that inherits
attributes and methods from an existing class. --> less rewriting

▪ Data Abstraction: Classes can provide a simple interface to complex
systems..

▪ Modeling Real-world Problems: Object-oriented programming allows you
to model real-world entities and relationships in a more natural and intuitive
way.
In chemistry, for example, you can model molecules, atoms, reactions, and
laboratory equipment as objects with specific attributes and behaviors.

Why We Use Classes?
16

Because it makes writing complex code bases easier.
This is just for you to know what it is, when you come across a class in Python code you look at.

▪ Both aim to build complexity from simpler structures

▪ Functions: One place, to define clear inputs and outputs that can be
reused in multiple parts of your code

▪ Classes: Instead of rewriting every chemical compound/element object
from scratch, you can define common functionality shared by all
members of the class.

In short: Functions and classes
18

Errors and exceptions

19

▪ Python has several built-in errors that can occur during the execution
of a program. Understanding these common errors and exceptions is
crucial for debugging and writing robust Python code.

Errors in Python
20

Other common errors
21

Other common errors
22

▪ Exceptions in Python are errors detected during execution that
interrupt the normal flow of a program.
They can be caught and handled to prevent the program from
crashing and to provide more informative error messages or
alternative solutions.

▪ Exception Handling: Python uses try, except, else, and finally blocks
to handle exceptions. This allows programmers to write code that can
gracefully deal with unexpected errors.

▪ Raising Exceptions: Beyond the built-in exceptions, Python allows
raising custom exceptions using the raise statement. This is useful for
signaling error conditions in your code in a way that's consistent with
Python's error handling model.

How to handle errors/exceptions – try/except
23

Try/except synthax
24

raise statement
25

▪ On key challenge is that paths on Windows and MacOS/Linux are
different.

▪ There are backslashes (\) on Windows and forward slashes (/) on Unix-
like systems (macOS, Linux).

• Windows: C:\Users\Username\Documents\project\myfile.txt

• Mac/Linux: /home/username/Documents/project/myfile.txt

How to access files on your computer?
26

Pathlib or os for compatibility
27

Note: Use forward slashes (/). Python will automatically convert these to the
appropriate separator for the operating system on which it's running.

Avoid: Hardcoded absolute paths like “Users/username/some_directory”

Relative paths are preferred!

▪ The key function for working with files in Python is open(), which is
used to open a file and returns a file object. This file object can then
be used to read from or write to the file.

Reading files in Python
28

Issue: if error is raised,
file is never closed.

Handles the file-closing,
when something goes

wrong. Always use with.

Different modes for open()
29

Reading from a file
30

\n →end of line character (or \r\n)
31

Why is this the case?

End of line
character

Common trick!

Uses a list comprehension (last week) and the strip(), which removes whitespace around a string.

Write files
32

1 liner, using join()

▪ Writing and reading files

▪ Functions

▪ Error handling

▪ Classes

Today’s exercises
33

	Slide 1: Advanced Python
	Slide 2: Computer setup, all ok?
	Slide 3: This lecture
	Slide 4: Functions in Python
	Slide 5: Function example
	Slide 6: Write manageable and efficient code – why functions?
	Slide 7
	Slide 8: Example: temperature conversion
	Slide 9: Same function with Type hints
	Slide 10: Reusing functions
	Slide 11: What functions can I access in my code?
	Slide 12: Classes in Python
	Slide 13: Other ways to write cleaner code – classes
	Slide 14: Initialisation - __init__ function
	Slide 15: Inheritance
	Slide 16: Why We Use Classes?
	Slide 18: In short: Functions and classes
	Slide 19: Errors and exceptions
	Slide 20: Errors in Python
	Slide 21: Other common errors
	Slide 22: Other common errors
	Slide 23: How to handle errors/exceptions – try/except
	Slide 24: Try/except synthax
	Slide 25: raise statement
	Slide 26: How to access files on your computer?
	Slide 27: Pathlib or os for compatibility
	Slide 28: Reading files in Python
	Slide 29: Different modes for open()
	Slide 30: Reading from a file
	Slide 31: \n  end of line character (or \r\n)
	Slide 32: Write files
	Slide 33: Today’s exercises

