|
b

05 { OH

L.ob"Y e

e ST e @
e 2" 2 S ZX

& Jupyter
notebooks

® P re b.rh, Deo)
jmombera

‘1

Practical Programming
in Chemistry

=PrL

Python recap (continuation of last
week) - lists, tuples, sets, dicts, and
functions

=PFL Baslc Python recap - lists

Lists are collections of objects: numbers, strings,
even other lists!

Create an empty list o~ 1) 3
my_empty_list = [] 1 %))

Indexing works the same as for strings

compound_names = ['Water (H20)', 'Carbon Dioxide (C02)', 'Sodium Chloride (NaCl)', 'Glucose (C6H1206)"']

molecular_weights = [18.01528, 44.0095, 58.443, 180.156]

=PFL Baslc Python recap - lists

compound_names = ['Water (H20)', 'Carbon Dioxide (C02)', 'Sodium Chloride (NaCl)', 'Glucose (C6H1206)"']
molecular_weights = [18.01528, 44.0095, 58.443, 180.156]

In [3]: compound_names[1] In [4]: compound_names[-1]
‘Carbon Dioxide (C02)' 'Glucose (C6H1206)'

Access second object of list Access last object

In [5]: (compound_names)

4

Count the number of objects in the list

=PFL Baslc Python recap - lists

compound_names = ['Water (H20)', 'Carbon Dioxide (C02)', 'Sodium Chloride (NaCl)', 'Glucose (C6H1206)"']

molecular_weights = [18.01528, 44.0095, 58.443, 180.156]

[In [6]: compound_names + molecular_weights [In [7]: compound_names *2
['wWwater (H20)',
‘Carbon Dioxide (C02)',
'Sodium Chloride (NaCl)',
'Glucose (C6H1206)',
'Water (H20)',

['Water (H20)',
‘Carbon Dioxide (C02)',
'Sodium Chloride (NaCl)',
'Glucose (C6H1206)',

18.01528,
44.0095, ‘Carbon Dioxide (C02)',
'Sodium Chloride (NaCl)',

58.443,
180.156] 'Glucose (C6H1206)']

Concatenation with + operator Repetition with * operator

=P7L Baslc Python recap - lists (Membership, is an
objectina list)

compound_names = ['Water (H20)', 'Carbon Dioxide (C02)', 'Sodium Chloride (NaCl)', 'Glucose (C6H1206)"']

molecular_weights = [18.01528, 44.0095, 58.443, 180.156]

In [8]: 'Carbon Dioxide (C02)' compound_names
True

In [9]: 'Water' compound_names
False

chemical_elements = ['Hydrogen', 'Carbon', 'Oxygen', 'Nitrogen']
element_to_check = 'Oxygen'

element_to_check chemical elements:
print(f"{element_to_check} is in the list of chemical elements.")

print(f"{element_to_check} is not in the list of chemical elements.")

=PFL Basic Python recap - lists (growing)
a=[0, 1.1, 2.2]

Appending Single object to add at the end of the list a
a.append(3.3) # => [0, 1.1, 2.2, 3.3]

Extending (argument must be an iterable object)
a.extend([4.4, 5.5]) # => [0, 1.1, 2.2, 3.3, 4.4, 5.5]

Add a list at the end of the list a

Inserting (1st arg. is the el. index before which to insert)
a.insert(-1, @) # => [@, 1.1, 2.2, 3.3, 4.4, 9, 5.5]

=PrL

O @

#
a
a
a

Basic Python recap - lists (searching)

= [0, 1.1, 2.2]

Searching for an element
.index(1.1) # => 1

.index(3.3) # => ValueError: 3.3 is not in list

Count the number of occurences
=a*2#=>1[0, 1.1, 2.2, 0, 1.1, 2.2]
.count(@) # => 2

.count(3.3) # => 0

=PrL

o))

Basic Python recap - lists (sorting, reversing)

= [e, 99, 3, 11, -5]

Sorting the list

a.sort() # => [-5, @, 3, 11, 99], increasing order by default

.sort(reverse = True) # => [99, 11, 3, @, -5]

Reverse element order

a=1[0, 99, 3, 11, -5]

.reverse() # => [-5, 11, 3, 99, 0]

10

=PFL Basic Python recap - list comprehensions

Sauare brackets

| indicate a list

-

[f(x) X iterable_object]

APply av
operation to the

loop variable

In [14]: celsius = [0, 10, 20, 30]
: fahrenheit = [(9/5) * temp + 32 temp celsius]

(fahrenheit) # Output: [32.0, 50.0, 68.0, 86.0]

[32.0, 50.0, 68.0, 86.0]

In [15]: ph_values = [3.5, 7.0, 8.3, 6.5, 4.8]
: acidic_solutions = [ph ph ph_values ph < 7]
(acidic_solutions) # Output: [3.5, 6.5, 4.8]

[3.5, 6.5, 4.8]

Conversion from celsius to
fahrenheit.

Filtering for acidic solutions
(ph < 7).

11

=PrL

Basic Python recap - tuples
= Very similar to lists, but ("H20, “CH4”) instead of ['H20, “CH4"]
= Main difference, they cannot be changed (immutable).

: compound_1list ['H20', 'CH4']
: compound_tuple (‘H20", “CH4')

.. compound_1list.append('C02') # ['H20', 'CH4', 'C02']
: compound_tuple.append('C02")

Traceback (most recent call last)
Cell In[17], line 5
2 compound_tuple = ()
4 compound_list.append(J# [H20 CHA . C02°]
----> 5 compound_tupte append)

: 'tuple' object has no attribute 'append’

13

=P7L Basic Python recap - sets)

Sets are unordered collections of unique elements

In [22]: # List of compound names with some duplicates
: compound_names = ["Water", "Sodium Chloride", "Carbon Dioxide", "Glucose", "Wate
r', "Sodium Chloride"]

: # Convert the list to a set to filter out duplicates
: unique_compound_names = set(compound_names)

nt(f"The unique compound names are: {unique_compound_names}")

The unique compound names are: {'Carbon Dioxide', 'Water', 'Glucose', 'Sodium Chloride'}

In [21]: # Define the atoms in ethanol
: ethanol_atoms = "CCHHHHOH"

Convert the string of atoms into a set to find unique atoms
unique_atoms = (ethanol_atoms)

N (f"The unique atoms in ethanol are: {unique_atoms}")
The untque atoms in ethanol are: {'H', '0', 'C'}

= Let'simagine you have a list 1M molecules, and now you would like to know how many unique ones there are.

Basic Python recap - sets

In [24]: # Set of elements commonly found in organic compounds
* Organic_elements - {ucn, “H“, nou, “N“, IISII’ uPu}

Set of elements commonly found in inorganic compounds
inorganic_elements = {"0", "N", "Na", "Cl", "K", "Ca"}

In [25]: # Union: Elements that are found in either organic or inorganic compounds (or both)
union elements = organic_elements.union(inorganic_elements)
: t(f"Union of Elements (Either Organic or Inorganic): {union_elements}")
Unxon of Elements (Either Organic or Inorganic): {'H', 'K', 'N', 'S', 'Na', 'Cl', 'O', 'Ca', 'P', 'C'}

In [26]: # Intersection: Elements that are found in both organic and inorganic compounds
intersection_elements = organic_elements.intersection(inorganic_elements)

A (f"Intersection of Elements (Both Organic and Inorganic): {intersection_elements}")
Intersection of Elements (Both Organic and Inorganic): {'0', 'N'}

In [27]: # Difference: Elements that are unique to organic compounds (not found in inorganic compounds)
difference elements = organic_elements.difference(inorganic_elements)
. 't (f"Elements Unique to Organic Compounds: {difference_elements}")
Elements Unlque to Organic Compounds: {'H', 'P', 'C', 'S'}

In [28]: # Symmetric Difference: Elements that are in either organic or inorganic compounds, but not in both
symmetric difference_elements = organic_elements.symmetric_difference(inorganic_elements)

: t(f"Elements Unique to Each Type (Not Shared): {symmetric_difference_elements}")
Elements UnLque to Each Type (Not Shared): {'k', 'S‘', ‘'Cl', 'Ca‘', 'C', 'H', 'Na', 'P'}

=PrL

Basic Python recap - dictionaries

= Key, value pairs

values

Idl

\

: 4}

f ./

a

!bf
fof
fd.f

1

2
2
4

16

=PrL

Basic Python recap - dictionaries

Creating an empty dictionary

my dict = {}

Initializing with key-value pairs

my dict = {'a': 1, 'b': 2, 'c': 3, 'd': 4}

Get the value associated to a key
my dict['a’'] # 1
my_dict['e’'] # Raises KeyError

Change the value or add a new key-value pair
my dict['e'] =5 # {'a":1,'b":2,'c":3,'d":4,"'e":5}

@ Wirjona Stojilovie, EPFL, 2021

17

18

=PFL Baslc Python recap - functions

def (argl, arg2, .., argN):

~__— statements
e . This function will come back,
Similar to ii/else return value in one of the exercises

statements, indentation
defines block (tomorrow).

(theoretical_ytield, actual_yield):
Calculate the percent yield of a reaction.
theoretical_yield: Theoretical yield in grams
actual_yield: Actual yield obtained from the reaction in grams
Returns the percent yield as a percentage.

percent_yield = (actual_yield / theoretical_yield) * 100
percent_yield

Example usage:
(reaction_yield(10.0, 8.5)) # Output for a reaction with 10 g theoretical 85
=>

yield and 8.5 g actual yield

=PrL

More exercises and resources

= https://github.com/sib-swiss/first-steps-with-python-training (useful more
IN-depth exercise notebooks)

= https://realpython.com/search?kind=courseé&level=basics&order=newes
t (different topics in more details)

= https://www.kaggle.com/learn/intro-to-programming (super basic intro)

= hitps://www.kaggle.com/learn/python (intro to Python, different topics)

= |f you want to have more than what is shown in today’s exercises.

19

https://github.com/sib-swiss/first-steps-with-python-training
https://realpython.com/search?kind=course&level=basics&order=newest
https://realpython.com/search?kind=course&level=basics&order=newest
https://www.kaggle.com/learn/intro-to-programming
https://www.kaggle.com/learn/python

=PrL

Python packages -
how to access additional
functions without coding

them yourself

=PrL

What is a package?

= A package is a collection of pre-written code that adds specific
functionality to your programming environment.

= Think of it like an add-on or plugin that gives you new tools to work with.

import numpy as np
average = np.mean([list_of_numbers])

import pandas as pd

data = pd.read_csv("myfile.csv")

21

=PFL How to Install packages in Python? "

= Through package managers, the two most common are pypi and
conda.

609,203 projects 6,598,675 releases 13,360,442 files 903,240 users

™ The Pythen Package Index (PyPl) is a repository of software for the Python
t 0 n programming language.

U ’
Pac"(age PyPI helps you find and install software developed and shared by the Python community. Learn about ®
' Index installing packages (2. D
Package authors use PyPI to distribute their software. Learn how to package your Python code for

pip install numpy conda install numpy
to install the numpy package to install the numpy package

=PrL

Environments

23

=PrL

What is an environment?

= An environment is like a separate, isolated workspace for your
programming projects.

Project A Project B
— uses Python 3.7 — uses Python 3.10
Solution

—> Create an environment for project A and one for B

24

=PrL

Conda
-- a powerful package
and environment manager

=PFL How to create an environment in conda? ’

) _ _ Name of environment
= |n your command line interface, run the following:

create ——name myenv python=3.10 create ——name ppchem python=3.10

Activation
activate ppchem of that

environment

activate myenv

install numpy

install numpy

Numpy gets
installed in
this env
(ppchem).

deactivate

=PrL

Demo on the command line interface

=PFL Which environment am | in at the moment?

env list

info ——envs

® protavision A system © 23:34:07 |
® protavision A system © 23:34:45 |
® protavision A system © 23:34:45

practical
practical_programming
_programming
protavision

n

publi

py-depict

rdenv

/Users/pschwllr/miniforge3/envs/practical
/Users/pschwllr/miniforge3/envs/practical:

/Users/pschwllr/miniforge3/envs/protavisio
/Users/pschwllr/miniforge3/envs/publi

/Users/pschwllr/miniforge3/envs/py-depict
/Users/pschwllr/miniforge3/envs/rdenv

=PrL

Good practices

= Always activate an environment before installing packages

pip install numpy

7

conda activate ppchem

conda install numpy

Or pip install numpy.

=PrL

Listing all requirements in a conda environment

= Document your installation steps, e.g. in the README.md

v

conda list > requirements.txt

conda env export > environment.yml

v

30

=PrL

Python file formats
- .py and .ipynb

=PFL .py - Python Script File

= This is the standard Python source code file
= Plain text file containing Python code
= Can be run directly from the command line or imported as a module

Lecture03 > example.py > ...
from math import logl@

calculate_ph(concentration):

return -logl@(concentration)

__main__":
print|(calculate_ph(@.01)|)

32

=PFL _Ipynb - Jupyter Notebook File ”

 Interactive document that combines:

* Live code Cell 1 This notebook demonstrates pH calculations

* Rich text (markdown)

markdown

 Visualizations
from math import logl@

» Equations
Cell 2 calculate_ph(concentration):

° Grea’t for return -log1@(concentration)
« Data analysis

Python

=D by B W

» Teaching

concentration = 0.01
Cell 3 ph = calculate_ph(concentration)

« Documenting research print[(f*The pH is: {ph}"]

 Step-by-step explanations

=rrL ey differences between .py and .ipynb files

= .py files are linear scripts that run from top to bottom
= .ipynb files are interactive, can run cells in any order
= .py files are better for production code and software development

ipynb files are better for exploration, analysis, and presentation

example.ipynb

Lecture03 > example.py > ...
from math import logl@

pH Calculation
This notebook demonstrates pH calculations

markdown

def calculate_ph(concentration):

return -logl@(concentration)

from math import logl@

def calculate_ph(concentration):

if __name__ == "_main__": X
return -log1@(concentration)

print/(calculate_ph(@.01)) Pythor

= Dy Dy B B

To run: python example.py concentration = 0.01

ph = calculate_ph(concentration)
print/(f"The pH is: {ph}")

Python

=PrL S0, when to use which format?

= py files for reusable functions and scripts

= .ipynb notebooks for learning, experimenting, and documenting their
work

= At the beginning, we will use Jupyter notebooks (.ipynb).

35

=PrL

B Practical Programming in Chemistry - CH-200

Jupyter notebooks in VS Code

Jupyter (formerly IPython Notebook) is an open-source project that lets you easily combine Markdown
text and executable Python source code on one canvas called a notebook. Visual Studio Code supports
working with Jupyter Notebooks natively, and through Pytl > This topic covers the native
support available for Jupyter Notebooks and demonstrates how to:

o Create, open, and save Jupyter Notebooks

o Work with Jupyter code cells

o View, inspect, and filter variables using the Variable Explorer and Data Viewer
Connect to a remote Jupyter server
Debug a Jupyter Notebook

Getting Started with

Jupyter Notel » >ks
in VS Code

Watch on (£ YouTube

It's a very useful ~6 minute video
to watch and follow during the
exercise session.

36

https://code.visualstudio.com/docs/datascience/jupyter-notebooks

Create or open a Jupyter Notebook

You can create a Jupyter Notebook by running the Create: New Jupyter Notebook command from the
Command Palette ((<>&P) or by creating a new .ipynb file in your workspace.

getting-started.ipynb X £ [-

getting-started.ipynb
+ Code -+ Markdown | [Run All = Outline *** B select Kernel

=Dy b, B - @
D\/

Python

shft + ctrl + p
shft+cmd + p

To open Command Palette

Select Kemel (select conda environment)

Top right
N Ip=g

[Select Kernel
B - m

Type to choose a kernel source

Python Environments...
Existing Jupyter Server...

Connect to codespace

practical (Python 3.8.17) ~/miniforge3/envs/practical/bin/python

practical_programming (Python 3.10.13) ~/miniforge3/envs/practical_programming/bin/python
protavision (Python 3.10.16) ~/miniforge3/envs/protavision/bin/python

publi (Python 3.8.13) ~/miniforge3/envs/publi/bin/python

Markdown vs Python cell types

{} o ---

L protavision (Python 3.10.16)
Dr Dy BH - W

getting-started.ipynb X

getting-started.ipynb > ...
+ Code -+ Markdown | [> Run All %D Restart =« Clear All Outputs | [& Variables = Outline

Welcome to Jupyter Notebooks in VS Code!

msg = "Hello world"
print(msg)

v/ 00s

Hello world

This should point to the
conda environment you
have selected.

B pPython 3.11.9

v B w

markdown

=PrL

Exercises today:

= Creating your first conda environment
= Using jupyter notebooks in VSCode
= Basic Python recap (data types, lists, loops, and paths)

40

	Slide 1: Recap, Conda & Jupyter notebooks
	Slide 3: Python recap (continuation of last week) – lists, tuples, sets, dicts, and functions
	Slide 4: Basic Python recap – lists
	Slide 5: Basic Python recap – lists
	Slide 6: Basic Python recap – lists
	Slide 7: Basic Python recap – lists (Membership, is an object in a list)
	Slide 8: Basic Python recap – lists (growing)
	Slide 9: Basic Python recap – lists (searching)
	Slide 10: Basic Python recap – lists (sorting, reversing)
	Slide 11: Basic Python recap – list comprehensions
	Slide 13: Basic Python recap – tuples
	Slide 14: Basic Python recap – sets
	Slide 15: Basic Python recap - sets
	Slide 16: Basic Python recap - dictionaries
	Slide 17: Basic Python recap - dictionaries
	Slide 18: Basic Python recap – functions
	Slide 19: More exercises and resources
	Slide 20: Python packages – how to access additional functions without coding them yourself
	Slide 21: What is a package?
	Slide 22: How to install packages in Python?
	Slide 23: Environments
	Slide 24: What is an environment?
	Slide 25: Conda -- a powerful package and environment manager
	Slide 26: How to create an environment in conda?
	Slide 27: Demo on the command line interface
	Slide 28: Which environment am I in at the moment?
	Slide 29: Good practices
	Slide 30: Listing all requirements in a conda environment
	Slide 31: Python file formats - .py and .ipynb
	Slide 32: .py - Python Script File
	Slide 33: .ipynb - Jupyter Notebook File
	Slide 34: Key differences between .py and .ipynb files
	Slide 35: So, when to use which format?
	Slide 36: Jupyter notebooks in VS Code
	Slide 37
	Slide 38: Select Kernel (select conda environment)
	Slide 39: Markdown vs Python cell types
	Slide 40: Exercises today:

