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Housekeeping notes

Typo slides in Topic 1A, slide #38 (corrected version was uploaded):

The Rydberg formula

1 1
V= R(—z——2> n=12,..,n,=n,+1,n +2..
ny n;

With R is e empirical (experimentally determined) Rydberg constant;
its value is 3.29 x 10> Hz.
For now: With n; and n,: positive integers, as shown above.

Calculator at exam: non-programmable. If you have any doubts, you can

post a photo of your calculator in the Ed discussion forum and we will let

you know if this calculator is okay.



Wavetunctions and Energy
Levels
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Overview Chapter 1 (Focus 1: Atoms)
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Topic 1B

Topic 1C.1 The wavefunction and its interpretation
Topic 1C.2 The quantization of energy

WHY DO YOU NEED TO KNOW THIS
MATERIAL?

Whenever you are dealing with
quantum mechanics, you have to
consider the properties of
wavefunctions and the

information they contain.

WHAT DO YOU NEED TO KNOW
ALREADY?

Properties of sine functions (sin x)
Concept of duality

De Broglie relation between

momentum and wavelength

Heisenberg uncertainty principle



Topic 1B

[ast week:

Matter has wave-like properties: The de Broglie relation

If electromagnetic radiation, long thought as a wave, has dual character, could it be that matter,

which has been though as consisting of particles, also has wave-like properties?

In 1924, Louis de Broglie proposes that all particles should be regarded as having wave-like

properties.

He suggested, the wavelength associated with a «matter wave» is inversely proportional to the

particle’s mass, m, and speed, v, and that

h
A=—
mv
With mv = p, the linear momentum:
h
A==
p



The Wavetunction and Its
Interpretation

Topic 1C.1
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Topic 1C

1C.1 The wavefunction and its interpretation

Setting the stage
Classical mechanics treats particles as "point-like” objects: precise paths with
definite velocities at each point.

Electrons have wave-like properties: how do you define their path? Electrons

don’t have a well-defined location.
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Topic 1C

1C.1 The wavefunction and its interpretation

The wavefunction, ¥

Precise trajectory of a particle is replaced by the wavefunction,
Y (the Greek letter psi)

In 1927 by Erwin Schrédinger

The wavefunction is a mathematical function with values that

depend on position (and can depend on other variables).

Or in other words:

The wavefunction is a mathematical tool that contains all the
information about a particle’s state.

Its values don’t directly tell us anything measurable.

Waves are described with sine functions (sin x): it can have

positive, negative, and complex values.

Note: in more complex quantum mechanics, you will see that

wavefunctions may be “complex” in the technical sense
y

involving i = v—1. We ignore this possibility here.

Erwin Schrédinger, now featuring his signature round glasses,

along with the wavefunction background in the Vienna
Secessionist style.
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Topic 1C

1C.1 The wavefunction and its interpretation

Born interpretation of the wave function

Max Born suggested how a wavefunction should be interpreted

physically.

[@\l
Why? Because the wave function ¢ itself does not directly representa =
S
physical quantity. ©
=
Born interpretation: The probability of finding the particle in a region

of space is proportional to the value of 12 in that region.

Y? is a probability density, the probability that a particle will be
found in a small region divided by the volume of the region.

If Y2 is large, the particle has a high probability density.
If Y2 is small, the particle has a low probability density.

To calculate the probability that a particle will be found in a region,
the probability density in that region is multiplied by the volume of
the region.

Figure 1C.2
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Topic 1C

1C.1 The wavefunction and its interpretation

Probability vs. probability density

Probability: unitless, can have values between 0

(certainly not there) and 1 (certainly there)

Probability density: units are 1/volume
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Topic 1C

1C.1 The wavefunction and its interpretation

Physical density analogy

Imagine you have a block of material, like a piece of metal, and you know its density is 10 grams per
cubic centimeter (g/cm?3). This density tells you how much mass is packed into each cubic centimeter

of the metal.

Now, to find out how much total mass is in a specific region of the block (let's say a small section of
the metal), you would multiply the density (10 g/cm?) by the volume of the region (in cubic
centimeters). This gives you the total mass in that region.

Quantum Probability Density:

In quantum mechanics, probability density )2 works in a similar way. The probability density tells
you how likely it is to find a particle in a small region of space—just like the physical density tells you

how much mass is in a certain volume.

To find the total probability of finding the particle in a certain region, you multiply the probability
density y? by the volume of that region. This gives you the total probability of finding the particle

in that space.
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Topic 1C

1C.1 The wavefunction and its interpretation

Example: Physical density analogy

Physical density: If the density is 10 g/cm? and you have a 2 cm? region, the total mass in that region is:

Mass = Density x Volume = 10 g/cm3 x 2cm3 =20g

Probability density: If the probability density is 0.5 per cubic centimeter and you have a region of 2
cm3, the total probability of finding the particle in that region is:

Probability = ¥? x Volume = 0.5 per cm3 x 2 cm3 = 1
In this case, the particle is very likely to be in that region!

Key Takeaway:
Just like multiplying physical density by volume gives you the mass in that region, multiplying

probability density by the volume gives you the probability of finding the particle in that region.

Both involve spreading a certain amount (mass or probability) over space and calculating how much
is in a specific part of that space.

24



Topic 1C

1C.1 The wavefunction and its interpretation

P is a wave

The value of ¥ can be positive (above the center line) or negative (below the center

line)
This results in constructive or destructive interference

The square of a function is never negative - 2, or the probability density, is never

negative

Places where ¥ has a large positive or large negative value - places where a particle
is likely to be found

Y = 0 with 2 = 0: the particle has zero probability density, meaning the particle will not
be found there

A location where 1 passes through zero (not just reaches zero) is called a node, a

particle has zero probability density wherever the wavefunction has nodes
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Topic 1C

1C.1 The wavefunction and its interpretation

Classical vs. quantum mechanics

Velocity

/>l.()cari()n

(a)

High

probability

(b)

v

Trajectory

Wavefunction, y

L1

Low probability

Classical mechanics: the location and
velocity of a particle are known precisely at
each pointin time (trajectory), described

by a path or position function.

Quantum mechanics: the particle is better
described by its wave-like character with a

wavefunction y (position not defined).



Topic 1C

1C.1 The wavefunction and its interpretation

The Schrodinger equation

The Schrodinger equation is used to calculate the wavefunction for any

confined to any region of space, including confined within

atoms and molecules.

Equation not used directly in this class.

You will need to know the form of some of its solutions, but not how these

solutions are found.
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Topic 1C

1C.1 The wavefunction and its interpretation

The Schrodinger equation

For a particle of mass m moving in one dimension in a region where the potential energy is
V(x), the equation is

2
d<y
_Z_d_ + V(x)l/J El/J

L J
T T T

Kinetic ~ Potential Total

energy  energy energy
2
xw this term indicates how sharply the wavefunction is curved: sharply curved wave
function is characteristic of a particle with high kinetic energy.

2
d*y
_Z_d_ + V()Y = Ey

L J
|

Hy
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1C.1 The wavefunction and its interpretation

The Schrodinger equation

H is called the hamiltonian of the system.
The hamiltonian is an operator, it «operates on» the wavefunction .

In terms of H, the equation takes the deceptively simple form
HYy = EyY
Because H is an operator, you cannot simply divide by ¥ from both sides.

The Schrédinger equation is a «differential equation», an equation that relates the
«derivatives» of a function (in this case the second derivative of ¥, d?y/dx?) to the value of a
function at each point. You will go more deeply into this topic later in your studies.

The Schrédinger equation is used to calculate both the wavefunction ¥ and the

corresponding energy E.
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1C.1 The wavefunction and its interpretation

The particle-in-a-box model

The Schrodinger equation is used to calculate both
the wavefunction y and the corresponding energy
E.

Simple model system: a single particle of mass m
confined in a one-dimensional «box» between two

impenetrable walls a distance L apart.

Physical analog: a bead free to slide along a rigid

rod lying between two walls a distance L apart.

Classical mechanics: the bead has the same

probability of being found on the rod at any point

inside the box, any speed, any kinetic energy
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1C.1 The wavefunction and its interpretation

Boundary conditions

The quantum mechanical solution:
The particle must be inside the box: boundary conditions

Boundary conditions are statements about the values a wavefunction must have at

certain locations.

A probability density—and therefore a wavefunction—cannot jump abruptly from one

value to another: it varies smoothly and continuously.

Therefore: because the particle cannot be found outside the walls, its wavefunction

must be zero just inside the walls.

The boundary conditions for a particle in a box are that its wavefunction must be

zero at each end of the box, atx = 0 and x = L.
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Topic 1C

1C.1 The wavefunction and its interpretation

Wavefunctions vs. guitar strings

Because the particle acts like a wave with zero amplitude at

each end of the box

- Only wavefunctions with certain wavelengths can exist in

the box

- Think of a guitar string: because it is tied down at each

end, it can support only shapes like the ones shown in Fig.

1C.3.

- The shapes of the wavefunctions for the particle in the box

are the same as the displacements of a vibrating string.

Energy —>

0

Figure 1C.3
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1C.1 The wavefunction and its interpretation ,

Wavefunctions vs. guitar strings ’
A
12th fret
standing wave with one node
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standing wave with three nodes 2
£
St L
n=4 0

Topic 1C Michael Davis, Journal of Chemical Education 2007, 1287. Figure 1C.3 o



Topic 1C

1C.1 The wavefunction and its interpretation

The mathematical form of the particle in the box

1
P (x) = (%)2 sin (n_7er) n=12,..

The integer n labels the wavefunctions and is called a "quantum
number”.

A quantum number:
Is an integer (or sometimes a half-integer, such as Y2, see Topic 1D)
Labels a wavefunction
Specifies a state

Can sometimes be used to calculate the value of a property of the

system, e.g. energy.

Energy —>

0

Figure 1C.3
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1C.1 The wavefunction and its interpretation

Summary

The probability density for a particle at a location is proportional to the square of
the wavefunction at that point; places where the wavefunction passes through zero
are called nodes, and the particle will not be found there. A wavefunction is found by
solving the Schrodinger equation for the particle and recognizing the existence of

certain boundary conditions.

URL
Quantum mechanics and guitars #*
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