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Housekeeping notes

� Typo slides in Topic 1A, slide #38 (corrected version was uploaded):

� Calculator at exam: non-programmable. If you have any doubts, you can 

post a photo of your calculator in the Ed discussion forum and we will let 

you know if this calculator is okay.



Wavefunctions and Energy 
Levels
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Overview Chapter 1 (Focus 1: Atoms)
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Topic 1C.1 The wavefunction and its interpretation
Topic 1C.2 The quantization of energy

W H Y  D O  Y O U  N E E D  T O  K N O W  T H I S  

M A T E R I A L ?  

� Whenever you are dealing with 

quantum mechanics, you have to 

consider the properties of 

wavefunctions and the 

information they contain.

W H A T  D O  Y O U  N E E D  T O  K N O W  

A L R E A D Y ?

� Properties of sine functions (sin x)

� Concept of duality

� De Broglie relation between 

momentum and wavelength

� Heisenberg uncertainty principle
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Topic 1B

Last week:

Matter has wave-like properties: The de Broglie relation 

If electromagnetic radiation, long thought as a wave, has dual character, could it be that matter, 

which has been though as consisting of particles, also has wave-like properties?

In 1924, Louis de Broglie proposes that all particles should be regarded as having wave-like 

properties.

He suggested, the wavelength associated with a «matter wave» is inversely proportional to the

particle’s mass, m, and speed, v, and that

𝜆 =
ℎ
𝑚𝑣

With mv = p, the linear momentum:

𝜆 =
ℎ
𝑝



The Wavefunction and Its 
Interpretation
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1C.1 The wavefunction and its interpretation

Setting the stage

� Classical mechanics treats particles as ”point-like” objects: precise paths with 

definite velocities at each point.

� Electrons have wave-like properties: how do you define their path? Electrons 

don’t have a well-defined location.
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1C.1 The wavefunction and its interpretation

The wavefunction, 𝝍
� Precise trajectory of a particle is replaced by the wavefunction, 

𝜓	(the Greek letter psi)

� In 1927 by Erwin Schrödinger

The wavefunction is a mathematical function with values that 

depend on position (and can depend on other variables).

� Or in other words:

The wavefunction is a mathematical tool that contains all the 

information about a particle’s state.

Its values don’t directly tell us anything measurable.

� Waves are described with sine functions (sin x): it can have 

positive, negative, and complex values.

� Note: in more complex quantum mechanics, you will see that 

wavefunctions may be “complex” in the technical sense 

involving 𝑖 = −1. We ignore this possibility here.

Topic 1C

Erwin Schrödinger, now featuring his signature round glasses, 
along with the wavefunction background in the Vienna 
Secessionist style.



1C.1 The wavefunction and its interpretation

Born interpretation of the wave function

� Max Born suggested how a wavefunction should be interpreted 
physically.

� Why? Because the wave function 𝜓	itself does not directly represent a 
physical quantity.

� Born interpretation: The probability of finding the particle in a region 

of space is proportional to the value of 𝜓! in that region.

� 𝝍𝟐 is a probability density, the probability that a particle will be
found in a small region divided by the volume of the region.

� If 𝜓! is large, the particle has a high probability density.

� If 𝜓! is small, the particle has a low probability density.

� To calculate the probability that a particle will be found in a region, 

the probability density in that region is multiplied by the volume of
the region.

Topic 1C

Figure 1C.2



1C.1 The wavefunction and its interpretation

Probability vs. probability density

� Probability: unitless, can have values between 0 

(certainly not there) and 1 (certainly there)

� Probability density: units are 1/volume
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1C.1 The wavefunction and its interpretation

Physical density analogy

� Imagine you have a block of material, like a piece of metal, and you know its density is 10 grams per 
cubic centimeter (g/cm³). This density tells you how much mass is packed into each cubic centimeter 

of the metal.

� Now, to find out how much total mass is in a specific region of the block (let's say a small section of 
the metal), you would multiply the density (10 g/cm³) by the volume of the region (in cubic 

centimeters). This gives you the total mass in that region.

Quantum Probability Density:

� In quantum mechanics, probability density 𝜓! works in a similar way. The probability density tells 
you how likely it is to find a particle in a small region of space—just like the physical density tells you 

how much mass is in a certain volume.

� To find the total probability of finding the particle in a certain region, you multiply the probability 
density 𝜓! by the volume of that region. This gives you the total probability of finding the particle 

in that space.
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1C.1 The wavefunction and its interpretation

Example: Physical density analogy

Physical density: If the density is 10 g/cm³ and you have a 2 cm³ region, the total mass in that region is:

� Mass = Density × Volume = 10 g/cm³ × 2 cm³ = 20 g

Probability density: If the probability density is 0.5 per cubic centimeter and you have a region of 2 
cm³, the total probability of finding the particle in that region is:

� Probability = 𝜓! × Volume = 0.5 per cm³ × 2 cm³ = 1 

� In this case, the particle is very likely to be in that region!

Key Takeaway:

� Just like multiplying physical density by volume gives you the mass in that region, multiplying 
probability density by the volume gives you the probability of finding the particle in that region. 

Both involve spreading a certain amount (mass or probability) over space and calculating how much 
is in a specific part of that space.
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1C.1 The wavefunction and its interpretation

𝝍 is a wave

• The value of 𝜓 can be positive (above the center line)  or negative (below the center

line)

• This results in constructive or destructive interference

• The square of a function is never negative à 𝜓', or the probability density, is never

negative

• Places where 𝜓 has a large positive or large negative value à places where a particle

is likely to be found

• 𝜓 = 0 with 𝜓' = 0: the particle has zero probability density, meaning the particle will not 

be found there

• A location where 𝜓 passes through zero (not just reaches zero) is called a node, a 

particle has zero probability density wherever the wavefunction has nodes
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1C.1 The wavefunction and its interpretation

Classical vs. quantum mechanics

� Classical mechanics: the location and 

velocity of a particle are known precisely at 

each point in time (trajectory), described 

by a path or position function.

� Quantum mechanics: the particle is better 

described by its wave-like character with a 

wavefunction 𝜓 (position not defined).



1C.1 The wavefunction and its interpretation

The Schrödinger equation

Topic 1C

� The Schrödinger equation is used to calculate the wavefunction for any 

particle confined to any region of space, including electrons confined within 

atoms and molecules.

� Equation not used directly in this class.

� You will need to know the form of some of its solutions, but not how these

solutions are found.



1C.1 The wavefunction and its interpretation

The Schrödinger equation

Topic 1C

� For a particle of mass 𝑚 moving in one dimension in a region where the potential energy is
𝑉 𝑥 , the equation is

−
ℏ!

2𝑚
𝑑!𝜓
𝑑𝑥!

+ 𝑉 𝑥 𝜓 = 𝐸𝜓

Kinetic 
energy

Potential 
energy

Total
energy

(!)
(*!

: this term indicates how sharply the wavefunction is curved: sharply curved wave
function is characteristic of a particle with high kinetic energy.

−
ℏ'

2𝑚
𝑑'𝜓
𝑑𝑥'

+ 𝑉 𝑥 𝜓 = 𝐸𝜓

𝐻𝜓



1C.1 The wavefunction and its interpretation

The Schrödinger equation

Topic 1C

� 𝐻 is called the hamiltonian of the system.

� The hamiltonian is an operator, it «operates on» the wavefunction 𝜓. 

� In terms of H, the equation takes the deceptively simple form

𝐻𝜓 = 𝐸𝜓

� Because H is an operator, you cannot simply divide by 𝜓 from both sides.

� The Schrödinger equation is a «differential equation», an equation that relates the
«derivatives» of a function (in this case the second derivative of 𝜓, 𝑑'𝜓/dx') to the value of a 
function at each point. You will go more deeply into this topic later in your studies.

� The Schrödinger equation is used to calculate both the wavefunction 𝝍 and the

corresponding energy 𝑬.



1C.1 The wavefunction and its interpretation

The particle-in-a-box model

Topic 1C

� The Schrödinger equation is used to calculate both

the wavefunction 𝝍 and the corresponding energy

𝑬.

� Simple model system: a single particle of mass m

confined in a one-dimensional «box» between two

impenetrable walls a distance L apart.

� Physical analog: a bead free to slide along a rigid 

rod lying between two walls a distance L apart.

� Classical mechanics: the bead has the same 

probability of being found on the rod at any point

inside the box, any speed, any kinetic energy



1C.1 The wavefunction and its interpretation

Boundary conditions

Topic 1C

The quantum mechanical solution:

� The particle must be inside the box: boundary conditions

� Boundary conditions are statements about the values a wavefunction must have at 

certain locations.

� A probability density—and therefore a wavefunction—cannot jump abruptly from one

value to another: it varies smoothly and continuously.

� Therefore: because the particle cannot be found outside the walls, its wavefunction

must be zero just inside the walls.

� The boundary conditions for a particle in a box are that its wavefunction must be

zero at each end of the box, at 𝒙 = 𝟎 and 𝒙 = 𝑳.



1C.1 The wavefunction and its interpretation

Wavefunctions vs. guitar strings

Topic 1C

Because the particle acts like a wave with zero amplitude at 

each end of the box

à Only wavefunctions with certain wavelengths can exist in 

the box

à Think of a guitar string: because it is tied down at each 

end, it can support only shapes like the ones shown in Fig. 

1C.3.

à The shapes of the wavefunctions for the particle in the box 

are the same as the displacements of a vibrating string.

Figure 1C.3



1C.1 The wavefunction and its interpretation

Wavefunctions vs. guitar strings

Topic 1C Figure 1C.3Michael Davis, Journal of Chemical Education 2007, 1287.



1C.1 The wavefunction and its interpretation

The mathematical form of the particle in the box

Topic 1C

𝜓+ 𝑥 =
2
𝐿

,
'
sin

𝑛𝜋𝑥
𝐿 𝑛 = 1,2, …

� The integer n labels the wavefunctions and is called a ”quantum 
number”.

A quantum number:

� Is an integer (or sometimes a half-integer, such as ½, see Topic 1D)

� Labels a wavefunction

� Specifies a state

� Can sometimes be used to calculate the value of a property of the 

system, e.g. energy.

Figure 1C.3



1C.1 The wavefunction and its interpretation

Summary

Topic 1C

The probability density for a particle at a location is proportional to the square of 

the wavefunction at that point; places where the wavefunction passes through zero 

are called nodes, and the particle will not be found there. A wavefunction is found by 

solving the Schrödinger equation for the particle and recognizing the existence of 

certain boundary conditions.

Figure 1C.3


