

CH-110 Advanced General Chemistry I

Prof. A. Steinauer
angela.steinauer@epfl.ch

Housekeeping notes

- I've uploaded a periodic table in English on Moodle
- Slides: available at the earliest the day before (usually 30 minutes before class)
- I will post a final version of the slides after class.
- Exam questions will be posed in English and French
- Exercises will be uploaded every Tuesday. The solutions will be posted on Moodle the following Tuesday.
- **I've put a small feedback form online, it will be open until next Tuesday, September 24.**
- What will be asked on the exam?

▼ WEEK 2: 16-22 September

Topic 1B: Quantum theory

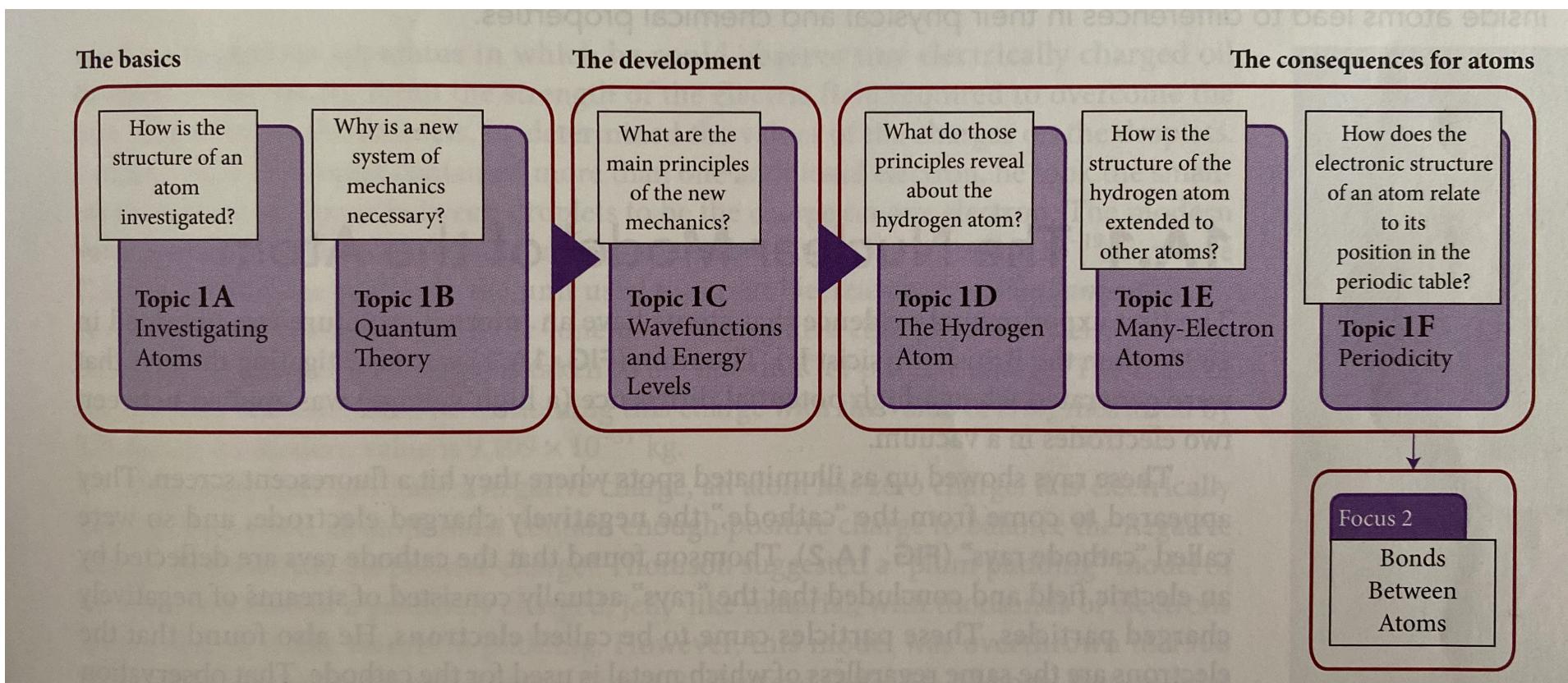
Topic 1C: Wavefunctions and energy levels

FEEDBACK

Feedback week 1

PERIODIC TABLE OF THE ELEMENTS

Group		1	2															18	
		I	II															VIII	
Period	IA	IIA															VIIA		
	3 Li lithium 6.94 2s ¹	4 Be beryllium 9.01 2s ²															2 He helium 4.00 1s ²		
	11 Na sodium 22.99 3s ¹	12 Mg magnesium 24.31 3s ²	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9	10	11 IB	12 IIB	13	14	15	16	17		
	19 K potassium 39.10 4s ¹	20 Ca calcium 40.08 4s ²	21 Sc scandium 44.96 3d ¹ 4s ²	22 Ti titanium 47.87 3d ² 4s ²	23 V vanadium 50.94 3d ³ 4s ²	24 Cr chromium 52.00 3d ⁵ 4s ¹	25 Mn manganese 54.94 3d ⁵ 4s ²	26 Fe iron 55.84 3d ⁶ 4s ²	27 Co cobalt 58.93 3d ⁷ 4s ²	28 Ni nickel 58.69 3d ⁸ 4s ²	29 Cu copper 63.55 3d ¹⁰ 4s ¹	30 Zn zinc 65.41 3d ¹⁰ 4s ²	31 Ga gallium 69.72 4s ² 4p ¹	32 Ge germanium 72.64 4s ² 3p ²	33 As arsenic 74.92 4s ² 3p ³	34 Se selenium 78.96 4s ² 4p ⁴	35 Br bromine 79.90 4s ² 4p ⁵	36 Kr krypton 83.80 4s ² 4p ⁶	18 Ar argon 39.95 3s ² 3p ⁶
	37 Rb rubidium 85.47 5s ¹	38 Sr strontium 87.62 5s ²	39 Y yttrium 88.91 4d ¹ 5s ²	40 Zr zirconium 91.22 4d ² 5s ²	41 Nb niobium 92.91 4d ⁴ 5s ¹	42 Mo molybdenum 95.94 4d ⁵ 5s ²	43 Tc technetium (98) 4d ⁵ 5s ²	44 Ru ruthenium 101.07 4d ⁵ 5s ¹	45 Rh rhodium 102.90 4d ⁸ 5s ¹	46 Pd palladium 106.42 4d ¹⁰	47 Ag silver 107.87 4d ¹⁰ 5s ¹	48 Cd cadmium 112.41 4d ¹⁰ 5s ²	49 In indium 114.82 5s ² 5p ¹	50 Sn tin 118.71 5s ² 5p ²	51 Sb antimony 121.76 5s ² 5p ³	52 Te tellurium 127.60 5s ² 5p ⁴	53 I iodine 126.90 5s ² 5p ⁵	54 Xe xenon 131.29 5s ² 5p ⁶	
	55 Cs cesium 132.91 6s ¹	56 Ba barium 137.33 6s ²	57 La lanthanum 138.91 5d ¹ 6s ²	72 Hf hafnium 178.49 5d ⁶ s ²	73 Ta tantalum 180.95 5d ⁶ s ²	74 W tungsten 183.84 5d ⁶ s ²	75 Re rheneium 186.21 5d ⁶ s ²	76 Os osmium 190.23 5d ⁶ s ²	77 Ir iridium 192.22 5d ⁶ s ²	78 Pt platinum 195.08 5d ⁶ s ¹	79 Au gold 196.97 5d ⁶ s ¹	80 Hg mercury 200.59 5d ¹⁰ 6s ²	81 Tl thallium 204.38 6s ² 6p ¹	82 Pb lead 207.2 6s ² 6p ²	83 Bi bismuth 208.98 6s ² 6p ³	84 Po polonium (209) 6s ² 6p ⁴	85 At astatine (210) 6s ² 6p ⁵	86 Rn radon (222) 6s ² 6p ⁶	
	87 Fr francium (223) 7s ¹	88 Ra radium (226) 7s ²	89 Ac actinium (227) 6d ¹ 7s ²	104 Rf rutherfordium (261) 6d ⁷ s ²	105 Db dubnium (262) 6d ⁷ s ²	106 Sg seaborgium (266) 6d ⁷ s ²	107 Bh bohrium (264) 6d ⁷ s ²	108 Hs hassium (267) 6d ⁷ s ²	109 Mt meitnerium (268) 6d ⁷ s ²	110 Ds darmstadtium (271) 6d ¹⁰ 7s ¹	111 Rg roentgenium (272) 6d ¹⁰ 7s ¹	112 ⁺	113	114	115	116	117	118	
Lanthanoids (lanthanides) 6																			
Actinoids (actinides) 7																			
Molar masses (atomic weights) quoted to the number of significant figures given here can be regarded as typical of most naturally occurring samples.																			
58 Ce cerium 140.12 4f ¹ 5d ¹ 6s ²																			
59 Pr praseodymium 140.91 4f ¹ 6s ²																			
60 Nd neodymium 144.24 4f ² 6s ²																			
61 Pm promethium (145) 4f ³ 6s ²																			
62 Sm samarium 150.36 4f ⁵ 6s ²																			
63 Eu europium 151.96 4f ⁷ 6s ²																			
64 Gd gadolinium 157.25 4f ⁷ 5d ¹ 6s ²																			
65 Tb terbium 158.93 4f ¹¹ 6s ²																			
66 Dy dysprosium 162.50 4f ¹⁰ 6s ²																			
67 Ho holmium 164.93 4f ¹¹ 6s ²																			
68 Er erbium 167.26 4f ¹² 6s ²																			
69 Tm thulium 168.93 4f ¹³ 6s ²																			
70 Yb ytterbium 173.04 5d ¹ 6s ²																			
71 Lu lutetium 174.97 5d ¹ 6s ²																			


*The names of the elements 112 and higher have not yet been determined;
both 112 and 114 have been confirmed.

Quantum Theory

Topic 1B

Overview Chapter 1 (Focus 1: Atoms)

Topic 1B.1: Radiation, quanta, and photons

Topic 1B.2: Wave-particle duality

Topic 1B.3: The uncertainty principle

WHY DO YOU NEED TO KNOW THIS MATERIAL?

- The properties of electrons in atoms and molecules, which underlies the whole of **chemistry**, **can be understood only in terms of quantum mechanics.**

WHAT DO YOU NEED TO KNOW ALREADY?

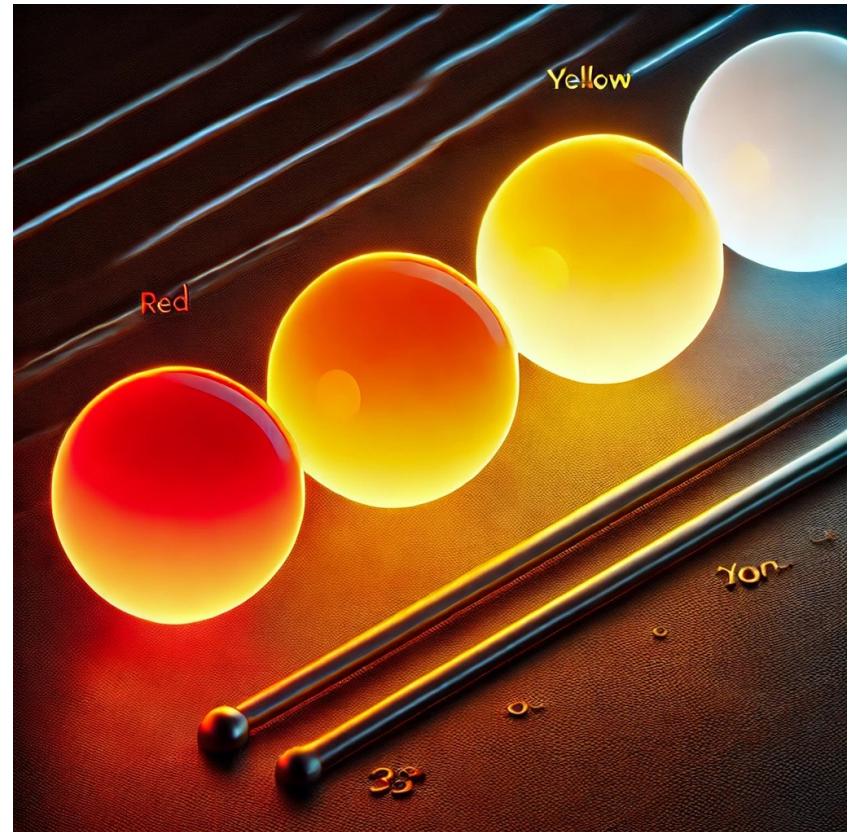
- Concept of kinetic energy (Fundamentals A)
- Properties of electromagnetic radiation, specifically the **relationship between wavelength and frequency** (Topic 1A)

Radiation, Quanta, and Photons

Topic 1B.1

1B.1 Radiation, quanta, and photons

Setting the stage


- Towards end of 19th century: scientists gathered more and more information about electromagnetic radiation.
- It becomes more clear: **many of the observations cannot be explained by classical mechanics.**
- Atomic spectrum of hydrogen: why are there spectral lines? This remained a big puzzle.

1B.1 Radiation, quanta, and photons

Black body experiment

- Nature of electromagnetic radiation was studied by heating objects:
- **Qualitative** observations:
Incandescence: *if an object is heated to high enough temperatures, it begins to glow.*
*If temperature is raised higher: color of light turns from **red** to **orange** to **yellow** to **white**.*
- **Quantitative** assessments: measuring intensity of this radiation at each wavelength and repeat experiments at different temperatures.

1B.1 Radiation, quanta, and photons

What is black body radiation?

- A black body is an idealized object that **absorbs all radiation** (light, heat, etc.) that falls on it, and doesn't reflect or transmit any of that energy. It appears **completely black** when cold because it doesn't reflect any light.
- However, a black body doesn't just absorb energy—it also **emits radiation** when it gets hot. This emitted radiation depends only on the **temperature** of the black body, not on its material or shape. This is called **black body radiation**.
- The concept of black body radiation might feel strange because it doesn't behave exactly like other objects we encounter daily. **Most objects reflect or scatter some light** (which is why we see them), but a perfect black body doesn't.

1B.1 Radiation, quanta, and photons

Everyday objects to illustrate black body radiation

1B.1 Radiation, quanta, and photons

Black body experiment

- Hot object = "black body"
- **A black body emits and absorbs light without favoring certain wavelengths.**
- Its atoms and their electrons behave collectively, numerous transitions overlap in energy.
- Figure 1.B1 shows intensity of black-body radiation for a range of temperatures.

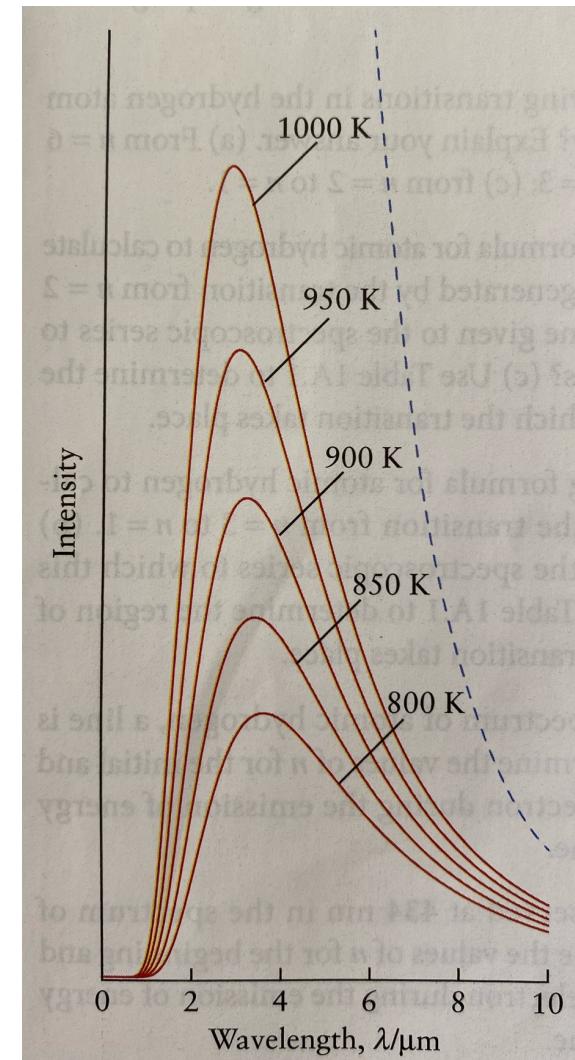


Figure 1.B1

1B.1 Radiation, quanta, and photons

Observations

- The higher T, the shorter the wavelength at the maximum.
- The higher T, the more intense the emission: The object glows brighter as it gets hotter.
- **No discrete lines** as in the atomic spectrum of hydrogen.

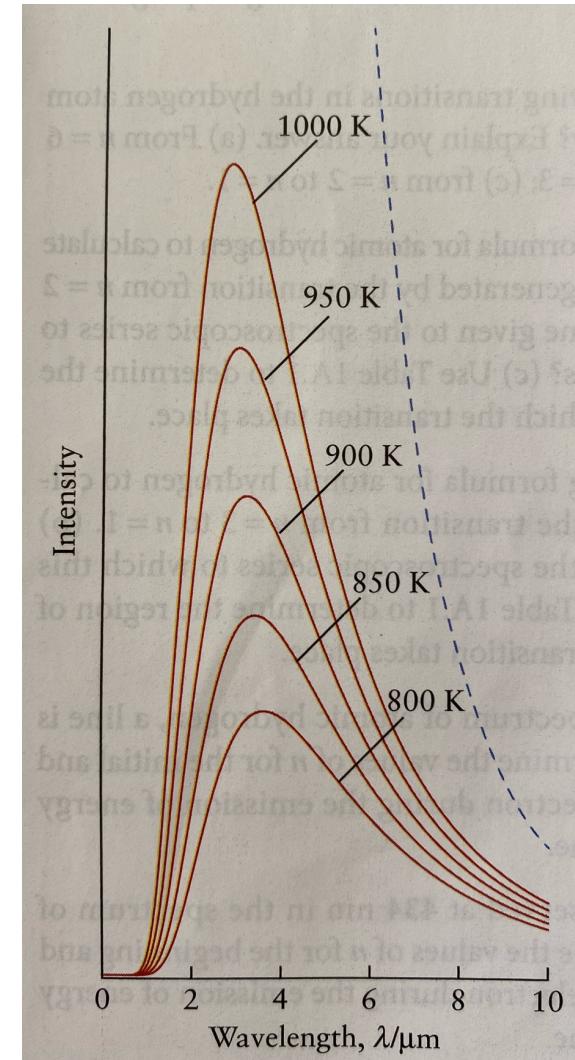
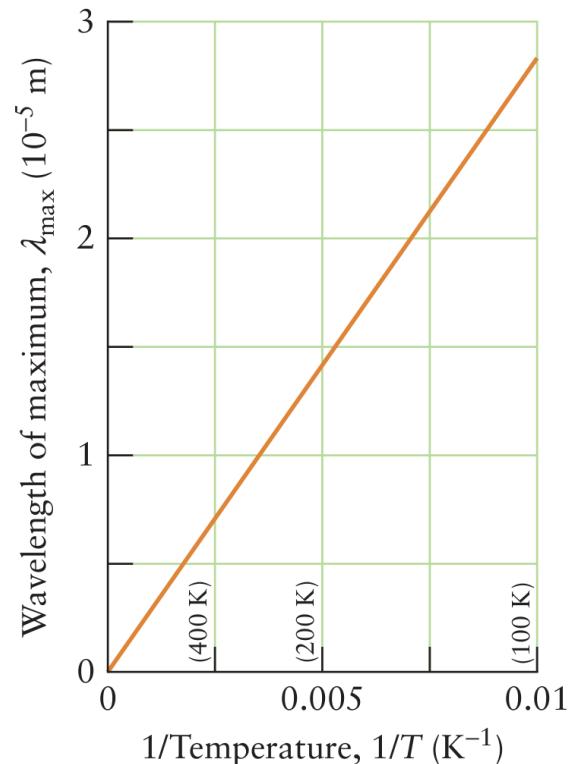


Figure 1.B1

1B.1 Radiation, quanta, and photons


Wien's law

- In 1893, Wilhelm Wien discovered:
- The wavelength corresponding to the maximum intensity, λ_{max} , is inversely proportional to the absolute temperature, T
- As T increases, the wavelength of maximum intensity decreases

$$T\lambda_{max} = \text{constant}$$

- Empirical value of constant: 2.9 mm K

Figure 1.B2

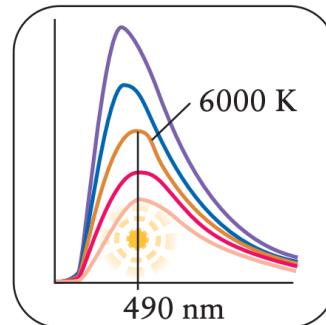
1B.1 Radiation, quanta, and photons

Example 1B.1: Determining temperatures from black-body radiation

What is the temperature of the surface of the sun, assuming the sun can be treated as a black body? The maximum intensity of solar radiation occurs at 490 nm.

Anticipate We should be aware that objects glowing white hot are at temperatures of several thousand degrees.

PLAN Use Wien's law in the form $T = \text{constant}/\lambda_{\max}$.


SOLVE

From $T = \text{constant}/\lambda_{\max}$,

$$T = \frac{\overbrace{2.9 \times 10^{-3} \text{ m} \cdot \text{K}}^{2.9 \text{ mm}}}{\underbrace{4.90 \times 10^{-7} \text{ m}}_{490 \text{ nm}}} = \frac{2.9 \times 10^{-3}}{4.90 \times 10^{-7}} \text{ K} = 5.9 \times 10^3 \text{ K}$$

Evaluate The surface temperature of the Sun is about 5900 K, in accord with our expectation.

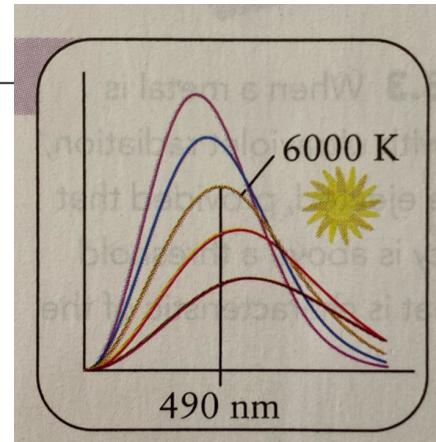
1B.1 Radiation, quanta, and photons

Example 1B.1: Determining temperatures from black-body radiation

What is the temperature of the surface of the sun, assuming the sun can be treated as a black body? The maximum intensity of solar radiation occurs at 490 nm.

Anticipate We should be aware that objects glowing white hot are at temperatures of several thousand degrees.

PLAN Use Wien's law in the form $T = \text{constant}/\lambda_{\max}$.


SOLVE

From $T = \text{constant}/\lambda_{\max}$,

$$T = \frac{\frac{2.9 \text{ mm}}{4.90 \times 10^{-7} \text{ m}}}{\frac{2.9 \times 10^{-3} \text{ m} \cdot \text{K}}{4.90 \times 10^{-7} \text{ m}}} = \frac{2.9 \times 10^{-3}}{4.90 \times 10^{-7}} \text{ K} = 5.9 \times 10^3 \text{ K}$$

Note: the newest book has updated figures that are sometimes useful. If so, I will post them as pictures on the slides.

Evaluate The surface temperature of the Sun is about 5900 K, in accord with our expectation.

1B.1 Radiation, quanta, and photons

The ultraviolet catastrophe

The observation in Figure 1.B1 is at odds with classical physics (Rayleigh-Jeans law), which predicts:

- Any hot body should emit intense ultraviolet radiation and even X-rays and γ (gamma) -rays.
- A hot object would devastate the countryside with high-frequency radiation.
- The human body at 37°C would glow in the dark.

Clearly, a new theory was needed.

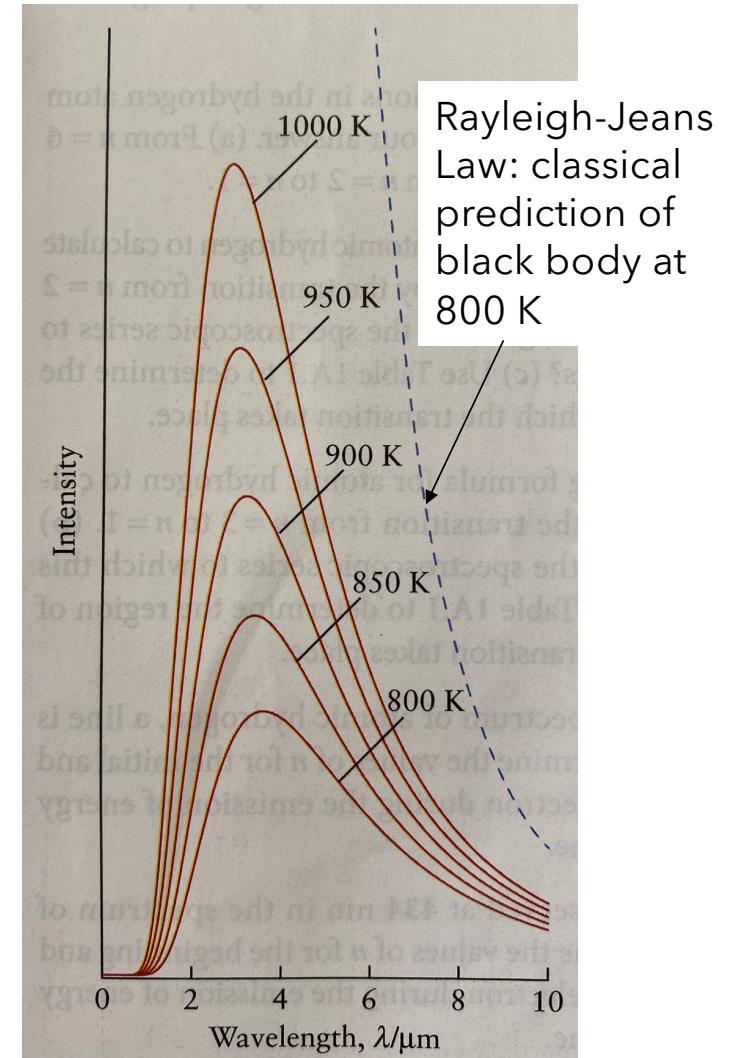


Figure 1.B1

1B.1 Radiation, quanta, and photons

The ultraviolet catastrophe

1B.1 Radiation, quanta, and photons

The answer

Energy is quantized!

1B.1 Radiation, quanta, and photons

Energy is transferred in quanta

- In 1900, Max Planck proposed that energy is exchanged between matter and radiation **in quanta, or packets, of energy.**
- A charged particle oscillating at a frequency ν can exchange energy, E , with its surroundings by generating or absorbing electromagnetic radiation only in discrete packets of energy of magnitude

$$E = h\nu$$

Planck's equation or Planck-Einstein relation

- The constant, h , is called Planck's constant ($6.626 \times 10^{-34} \text{ J s}$)
- **Interpretation:** If the oscillating atom releases a packet of energy of magnitude E into the surroundings, the radiation frequency $\nu = E/h$ will be detected.

1B.1 Radiation, quanta, and photons

Why the ultraviolet catastrophe is avoided

- At low temperatures, there is **not enough energy available to stimulate high-frequency oscillations**, so the object cannot generate UV radiation.
- As a result, the intensity curves in Fig. 1B.1 **die away at high frequencies** (short wavelengths).
- Planck's hypothesis also quantitatively matched experimental observations.
- Still, it was a revolutionary, new hypothesis:
More evidence was needed.

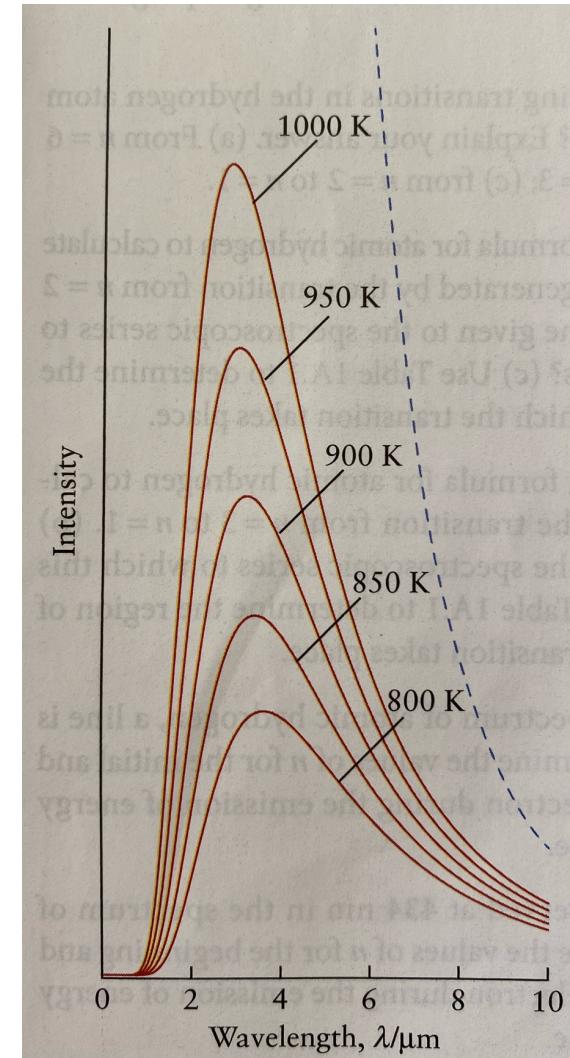


Figure 1.B1

1B.1 Radiation, quanta, and photons

Why is the distinct overlap of transitions useful in black body radiation?

Unlike the **discrete spectral lines** seen in the hydrogen atom (which correspond to specific electron transitions between energy levels), black body radiation has a **continuous spectrum**. This means that instead of emitting light at specific wavelengths, black bodies emit radiation across a wide range of wavelengths. Here's why this is useful:

1. Emission Over a Continuous Range of Wavelengths:

1. In black body radiation, the emitted light spans a **broad range of wavelengths** from infrared to visible light (and beyond), depending on the temperature. This makes black bodies useful for studying **thermal radiation** over a range of energies rather than just specific energy transitions.

2. No Spectral Lines = Simpler to Study Thermal Radiation:

1. Because there are **no distinct spectral lines** (as in the hydrogen atom's emission spectrum), the study of black body radiation focuses on the **overall distribution of energy** across different wavelengths, which is much simpler to model for idealized systems.
2. This continuous distribution is easier to compare to real-world objects like stars or heated metals, which don't exhibit discrete spectral lines as gases do.

1B.1 Radiation, quanta, and photons

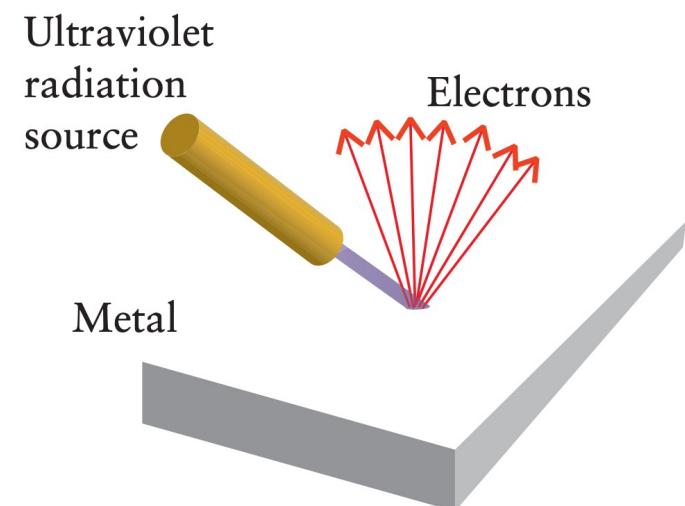
Summary: Why does black body radiation matter?

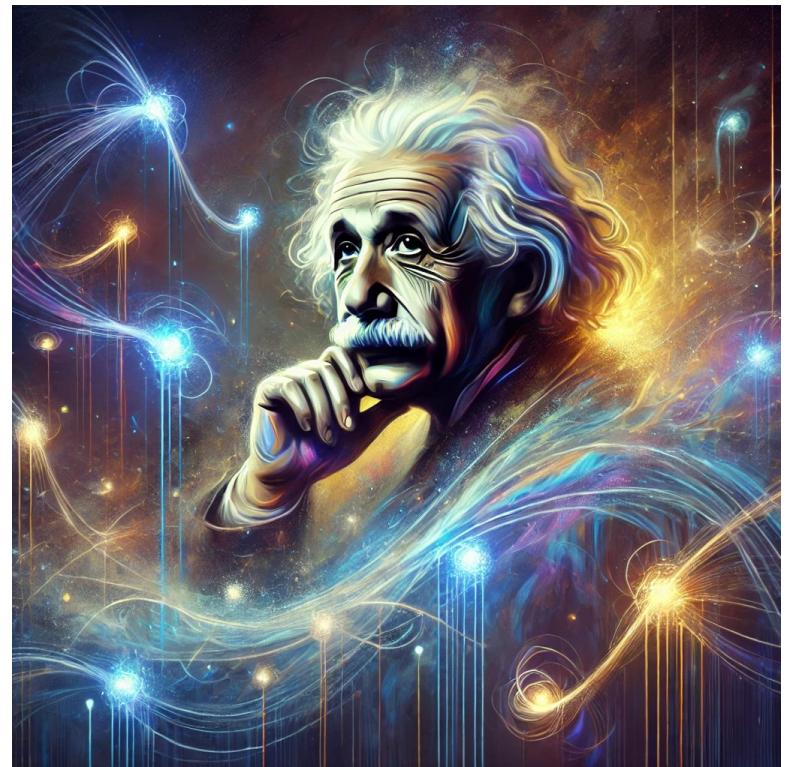
Understanding black body radiation was crucial in the early 1900s because it led to the development of **quantum theory**. Classical physics couldn't explain why black bodies behaved the way they did (this failure was called the **ultraviolet catastrophe**). It was only when physicist **Max Planck** proposed that energy is **quantized** (comes in discrete packets, or "quanta") that scientists could explain black body radiation correctly. This discovery opened the door to modern quantum mechanics!

1B.1 Radiation, quanta, and photons

The photoelectric effect

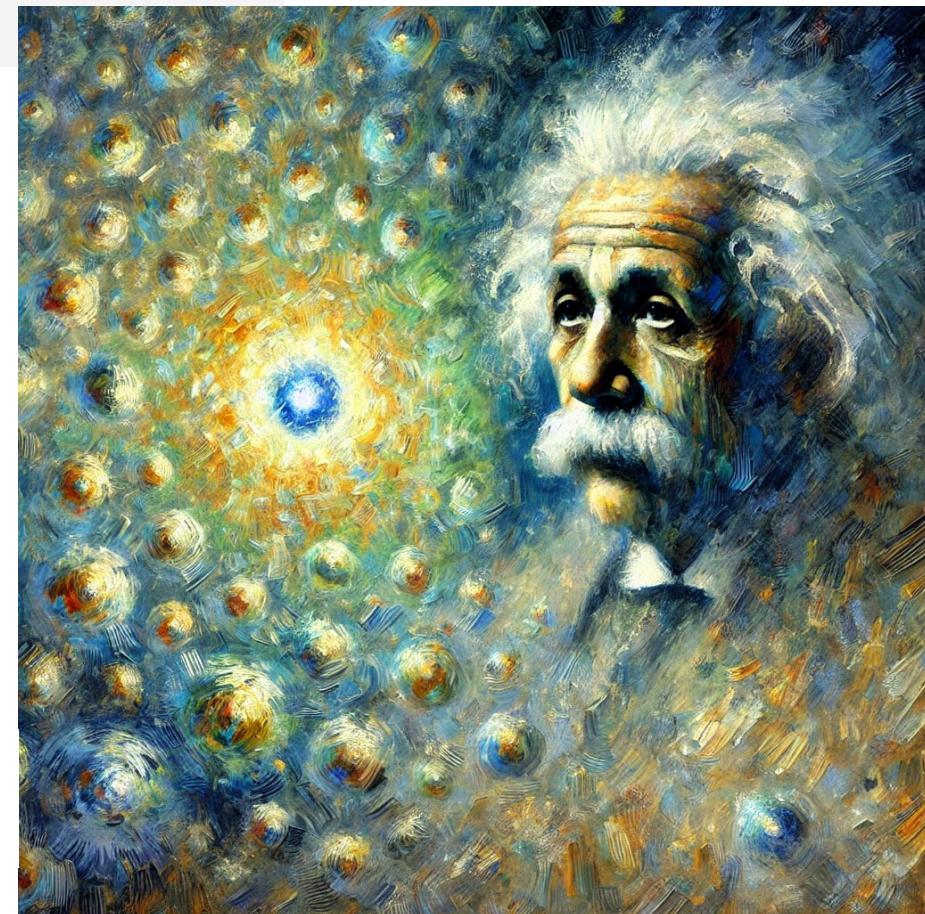
- **More evidence** came from photoelectric effect
- Electrons are ejected from metal when exposed to UV radiation.
- What was observed:
 1. No electrons are ejected unless the radiation has a **frequency above a certain threshold** value characteristic of the **metal**.
 2. Electrons are **ejected immediately**, no matter how low the intensity of the radiation.
 3. The **kinetic energy** of the ejected electrons increases linearly with the frequency of the incident radiation.




Figure 1.B3

1B.1 Radiation, quanta, and photons

The photon


Albert Einstein explained these observations:

- Proposed that electromagnetic radiation consists of particles, later called **photons**.
- **A photon is a packet of energy.**
- The energy of a single photon is related to the frequency of the radiation by the equation $E = h\nu$.
E.g. UV photons have more energy than photons of visible light.
- A beam of red light: a stream of photons, each having the same energy.
- A beam of yellow light: a stream of photons, each having the same and higher energy than red light.
- **Important distinction:** the intensity of radiation indicates how many photons are present. The equation $E = h\nu$ determines the energy of each individual photon.

1B.1 Radiation, quanta, and photons

can you make albert einstein and the photon in the style of an artist
at the time that he liked

Albert Einstein greatly admired artists like Paul Cézanne and was fond of impressionism and post-impressionism. For this version, I can blend Einstein's connection with photons into a Cézanne-inspired style, featuring bold, expressive brushstrokes and subtle transitions between colors.

1B.1 Radiation, quanta, and photons

could you paint the ultraviolet catastrophe in the style of cezanne

1B.1 Radiation, quanta, and photons

The photon

TABLE 1B.1 Photon Energy*

Radiation type	Energy of photon/ (10^{-19} J)	Energy per mole of photons/ $(\text{kJ} \cdot \text{mol}^{-1})$	Energy of photon/eV
X-rays and γ -rays	$\geq 1.0 \times 10^3$	$\geq 6.0 \times 10^4$	$\geq 6.2 \times 10^2$
ultraviolet	5.7	340	3.6
visible light			
violet	4.7	280	2.9
blue	4.2	250	2.6
green	3.8	230	2.4
yellow	3.4	200	2.1
orange	3.2	190	2.0
red	2.8	170	1.8
infrared	2.0	120	1.3
microwaves and radio waves	$\leq 2.0 \times 10^{-3}$	≤ 0.12	$\leq 1.3 \times 10^{-3}$

* Values are to 2 sf.

1B.1 Radiation, quanta, and photons

Example 1B.2: Calculating the energy of a photon

What is (a) the energy of a single photon of blue light of frequency 6.4×10^{14} Hz;
(b) the energy per mole of photons, in joules per mole, of this frequency?

SOLVE

(a) From $E(1 \text{ photon}) = h\nu$,

$$E(1 \text{ photon}) = (6.626 \times 10^{-34} \text{ J}\cdot\text{s}) \times (6.4 \times 10^{14} \text{ Hz}) = 4.2 \times 10^{-19} \text{ J}$$

(b) From $E(\text{per mole of photons}) = N_A E$,

$$\begin{aligned} E(\text{per mole of photons}) &= (6.022 \times 10^{23} \text{ mol}^{-1}) \times (4.2 \times 10^{-19} \text{ J}) \\ &= 2.5 \times 10^5 \text{ J mol}^{-1}, \text{ or } 250 \text{ kJ mol}^{-1} \end{aligned}$$

To derive the energy in part (a), we have used $1 \text{ Hz} = 1 \text{ s}^{-1}$, so $\text{J}\cdot\text{s} \times \text{Hz} = \text{J}\cdot\text{s} \times \text{s}^{-1} = \text{J}$.

1B.1 Radiation, quanta, and photons

The work function of a metal

- The energy required to remove an electron from a metal is called the **work function**, Φ (uppercase phi).
- Commonly expressed in eV (**electronvolt**), defined as the kinetic energy acquired by an electron when it is accelerated through a potential difference of 1 V.

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

- If the energy of a photon is less than the energy required to remove an electron from a metal, then the electron will not be ejected, regardless of the intensity of the radiation.
- If the energy of the photon, $h\nu$, is greater than Φ , then an electron is ejected with a kinetic energy E_k that is equal to the difference between the energy of the incoming photon and the work function:

$$E_k = h\nu - \Phi$$

$$E_k = \frac{1}{2} m_e v^2$$

$$\frac{1}{2} m_e v^2 = h\nu - \Phi$$

1B.1 Radiation, quanta, and photons

Einstein's photoelectric equation

$$\frac{1}{2}m_e v^2 = h\nu - \Phi$$

Kinetic energy of ejected electron Energy supplied by photon Energy required to eject photon

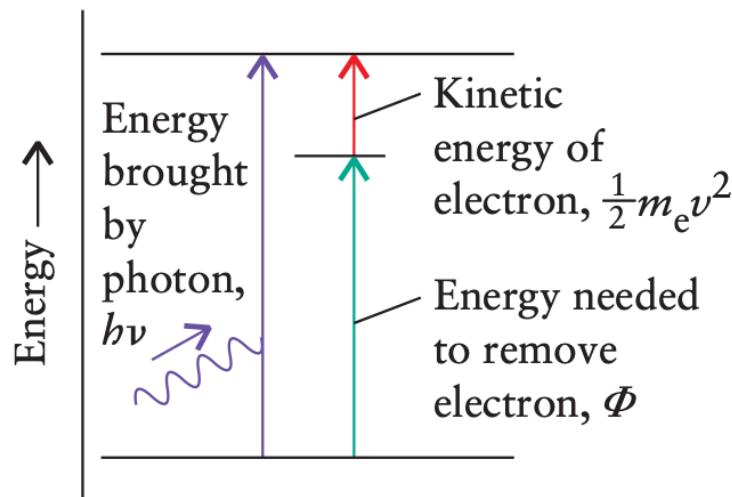
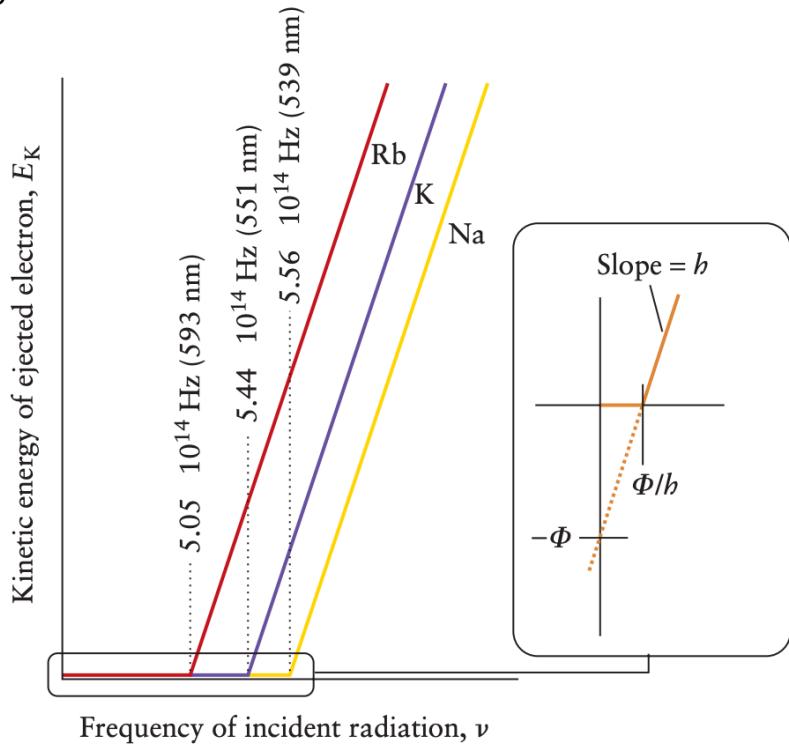



Figure 1.B4

1B.1 Radiation, quanta, and photons

What does this equation tell you?

Figure 1.B5

- Kinetic energy of an ejected electron varies linearly with frequency.
- Plot of kinetic energy vs. frequency:
 - Straight line of slope h , **same** for all metals
 - Extrapolated intercept with the vertical axis at $-\Phi$, **different** for each metal
 - The intercept with the horizontal axis corresponds to the zero kinetic energy of the ejected electron: Φ/h in each case.

1B.1 Radiation, quanta, and photons

Einstein's theory provides the following interpretation

1. An electron can be driven out of the metal only if it is hit by a photon with an **energy at least equal to the work function**, Φ . Therefore, the frequency of the radiation must have a certain minimum value, which necessarily depends on the work function of the metal.
2. If a photon has an energy that is greater than the work function, it can bring about the **immediate ejection** of an electron.
3. The **kinetic energy** of the electron ejected from the metal increases linearly with the frequency of the incident radiation.

1B.1 Radiation, quanta, and photons

Example 1B.3: Analyzing the photoelectric effect

You are developing a **radiation detector for a spacecraft**.

You use a thin layer of metallic potassium to detect certain ranges of electromagnetic radiation. You need to make some estimates of the physical properties involved. In one test, the speed of an electron emitted from the surface of a sample of potassium by a photon is 668 km s^{-1} .

- (a) What is the kinetic energy of the ejected electron?
- (b) The work function of potassium is 2.29 eV, corresponding to $3.67 \times 10^{-19} \text{ J}$. What is the wavelength of the radiation that caused the photoejection of the electron?
- (c) What is the longest wavelength of electromagnetic radiation that could eject electrons from potassium?

1B.1 Radiation, quanta, and photons

Example 1B.3: Analyzing the photoelectric effect

(a) What is the kinetic energy of the ejected electron?

1B.1 Radiation, quanta, and photons

Example 1B.3: Analyzing the photoelectric effect

(b) The work function of potassium is 2.29 eV, corresponding to 3.67×10^{-19} J. What is the wavelength of the radiation that caused the photoejection of the electron?

1B.1 Radiation, quanta, and photons

Example 1B.3: Analyzing the photoelectric effect

(c) What is the longest wavelength of electromagnetic radiation that could eject electrons from potassium?

1B.1 Radiation, quanta, and photons

Summary

Experimental observations on black-body radiation led to Planck's hypothesis of the quantization of energy. The photoelectric effect provides evidence for the particulate nature of electromagnetic radiation and the existence of photons.

Wave-particle duality

Topic 1B.2

1B.2 Wave-particle duality

The double-slit experiment

- Photoelectric effect → photons behave like particles
- Before: wave-like nature of electromagnetic radiation was well supported.
- Most compelling evidence for wave-like nature: **diffraction, the pattern of high and low intensities generated by an object in the path of a ray of light.**

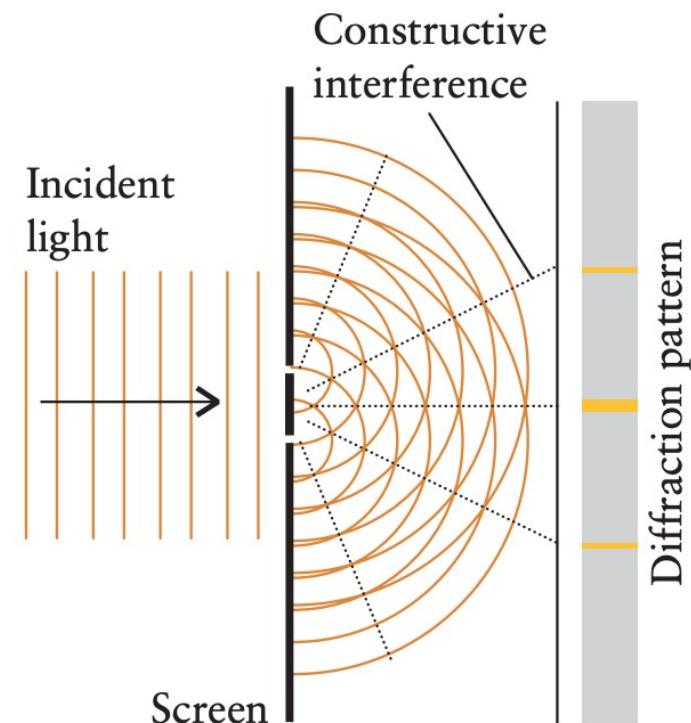


Figure 1.B6

1B.2 Wave-particle duality

The double-slit experiment

- Homework: watch Dr. Quantum (link on Moodle)

Dr. Quantum - Double slit experiment

1B.2 Wave-particle duality

Constructive and destructive interference

(a) **Constructive interference**: if peaks coincide, the amplitude of the wave (its height) is enhanced.

(b) **Destructive interference**: if the peaks of one wave coincide with the valleys of another wave, the amplitude of the wave is diminished.

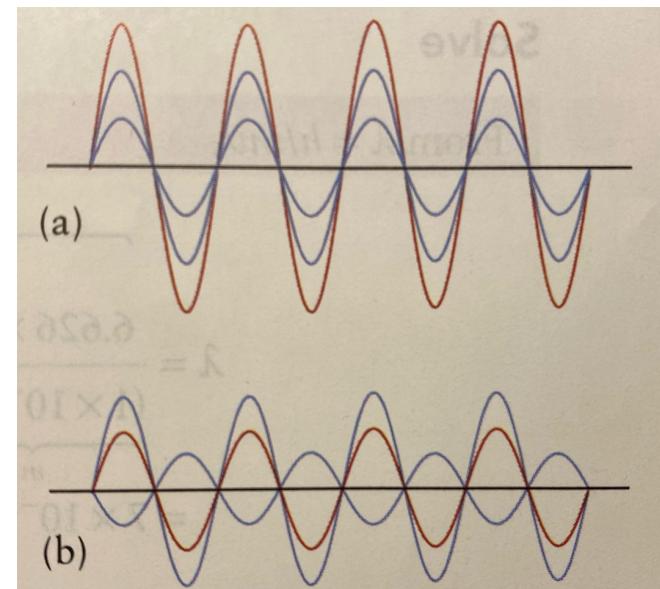


Figure 1.87

1B.2 Wave-particle duality

Wave or particle?

Photoelectric effect → particle

Diffraction → wave

This conundrum is the heart of modern physics.

Experiments force us to accept the wave-particle duality of electromagnetic radiation, in which the concepts of waves and particles blend together:

- In the wave model, the intensity of the radiation is proportional to the square of the amplitude of the wave.
- In the particle model, intensity is proportional to the number of photons present at each instant

1B.2 Wave-particle duality

Matter has wave-like properties: The de Broglie relation

If electromagnetic radiation, long thought as a wave, has dual character, **could it be that matter**, which has been thought as consisting of particles, **also has wave-like properties?**

In 1924, **Louis de Broglie** proposes that all particles should be regarded as having wave-like properties.

He suggested, the wavelength associated with a «**matter wave**» is inversely proportional to the particle's mass, m , and speed, v , and that

$$\lambda = \frac{h}{mv}$$

With $mv = p$, the linear momentum:

$$\lambda = \frac{h}{p}$$

1B.2 Wave-particle duality

Example 1B.4: Calculating the wavelength of a particle

Now suppose you were de Broglie and you had just devised your formula. A friend points out that the world obviously isn't wave-like. Maybe you should check whether your formula has worrying consequences for everyday objects.

Calculate the wavelength of a particle of mass 1 g traveling at 1 m s⁻¹.

1B.2 Wave-particle duality

Example 1B.4: Calculating the wavelength of a particle

SOLVE

From $\lambda = h/mv$,

$$\begin{aligned}\lambda &= \frac{6.626 \times 10^{-34} \text{ J}\cdot\text{s}}{(1 \times 10^{-3} \text{ kg}) \times (1 \text{ m}\cdot\text{s}^{-1})} = \frac{6.626 \times 10^{-34} \text{ kg}\cdot\text{m}^2\cdot\text{s}^{-2}\cdot\text{s}}{1 \times 10^{-3} \text{ kg}\cdot\text{m}\cdot\text{s}^{-1}} \\ &= 7 \times 10^{-31} \text{ m}\end{aligned}$$

Evaluate As expected, this wavelength is very—in fact, undetectably—small; the same is true for any macroscopic (visible) object traveling at normal speeds.

1B.2 Wave-particle duality

Summary

Electrons (and matter in general) and radiation have both wave-like and particle-like properties.

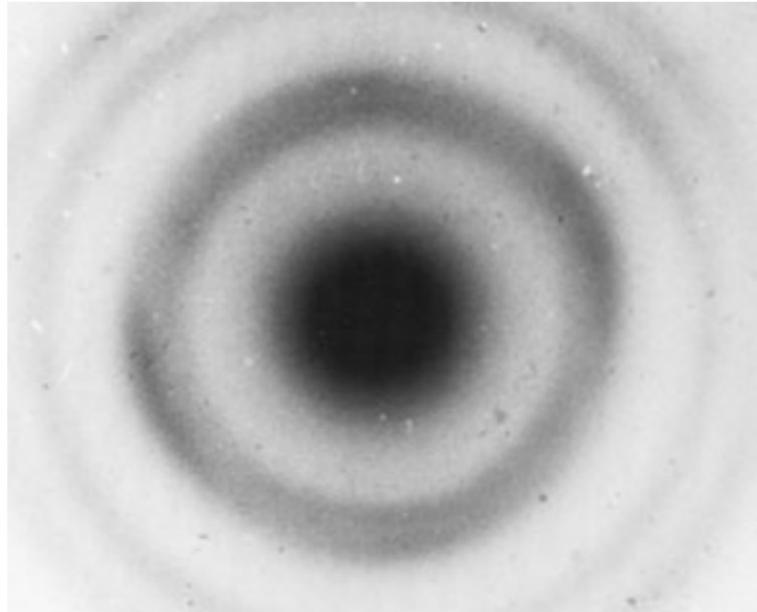


Figure 1.B8

The Uncertainty Principle

Topic 1B.3

1B.3 The uncertainty principle

Electrons do **NOT** have a definite trajectory

- **Classical mechanics:** a particle has a **definite trajectory** or path:
 - Location and linear momentum (speed, direction of movement) are known at each point.
 - Electrons have wave-like and particle-like properties.
 - You cannot specify the precise location of a particle if it behaves like a wave.
 - Wave-particle duality denies the possibility of specifying the location if the linear momentum is known, and so you cannot specify the trajectory of any particle exactly.
- **The uncertainty is negligible for heavy particles, but for subatomic particles, it can be huge.**

1B.3 The uncertainty principle

The Heisenberg uncertainty principle

- The impossibility of knowing the precise position if the linear momentum is known precisely is an aspect of the **complementarity** of location and momentum – if one property is known, then the other cannot be known simultaneously.
- The Heisenberg uncertainty principle, formulated in 1927 by Werner Heisenberg, expresses this complementarity quantitatively.
- It states that if the location of a particle is known to within an uncertainty Δx , then the linear momentum, p , parallel to the x -axis can be known simultaneously only to within an uncertainty Δp , where

$$\Delta p \times \Delta x \geq \frac{1}{2} \hbar$$

- The symbol \hbar , reads «h bar», stands for $\frac{h}{2\pi}$. Its value is $1.054 \times 10^{-34} \text{ J s}$.

1B.3 The uncertainty principle

A note of interest

What do we mean by the "uncertainty" ΔX in a property X ?

Formally, it is the «standard deviation» of X , which is defined as $\Delta X = \sqrt{\langle X^2 \rangle - \langle X \rangle^2}$, where the angle brackets denote mean values.

1B.3 The uncertainty principle

Example 1B.5: Calculating the wavelength of a particle

To what extent does the Heisenberg uncertainty principle affect your ability to specify the properties of objects you can see? Can you be confident about their location?

Estimate the minimum uncertainty.

- (a) in the position of a marble of mass 1.0 g given that its speed is known to within $\pm 1.0 \text{ mm/s}$ and
- (b) the speed of an electron confined to an atom within the diameter 200.0 pm.

1B.3 The uncertainty principle

Example 1B.5: Calculating the wavelength of a particle

(a)

1B.3 The uncertainty principle

Example 1B.5: Calculating the wavelength of a particle

(b)

1B.3 The uncertainty principle

Summary

The location and momentum of a particle are complementary; that is, the location and the momentum cannot both be known simultaneously with arbitrary precision.

The quantitative relation between the uncertainty of each measurement is described by the Heisenberg uncertainty principle.

The skills you have mastered are the ability to

- Use Wien's law to estimate the temperature of a hot source.
- Use the relation $E = h\nu$ to calculate the energy, frequency, or number of photons emitted from a light source.
- Analyze the photoelectric effect in terms of a metal's work function.
- Estimate the wavelength of a particle of known linear momentum.
- Use the uncertainty principle to estimate the uncertainty in the location or speed of a particle.

Summary: You have seen that not all classical concepts are applicable to subatomic particles, and you now know that the concepts of waves and particles blend together. You have learned that one consequence of this blending is that it is impossible to specify the trajectory of a particle with arbitrary precision.