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Analyse quantitative : approche statistique 
 

 

I Introduction 

 

L'analyse quantitative requiert le traitement des données analytiques par une approche 

statistique. La statistique est la science qui a pour objet de recueillir un ensemble de données 

numériques relatives à tel ou tel phénomène aléatoire et d'exploiter cette information pour 

établir toutes les relations de causalité par l'analyse pour son interprétation. 

 

Un phénomène aléatoire est un phénomène comportant des variables aléatoires, c'est à dire 

des variables liées au hasard et dont les valeurs ne peuvent, en conséquence, être connues 

d'avance comme par exemple le nombre de points marqués par un dé lorsqu’on le lance. 

Dans le concept de la statistique, on distingue : 

 

La statistique descriptive, ou statistique de constatation, qui concerne les tableaux de 

données, tableaux relatifs à des inventaires, les graphiques, des recensements… 

 

La méthode statistique qui concerne l'ensemble des procédés et méthodes utilisées pour 

l'analyse et l'interprétation des données. 

 

I.1 Domaine d’application 

 

Le domaine d'utilisation de la statistique est tellement étendu qu'il ne nous est impossible de 

citer toutes ses applications. Nous ne donnerons ici seulement que quelques exemples tels 

que : les domaines de recherche biologique, médicale, spatiale ; le contrôle de fabrication 

dans l'industrie ; les sondages d'opinion, enquêtes de marché, assurances ; la recherche 

opérationnelle ; les études de conjoncture, économiques… 

Dans tous les cas de figure, on doit définir un ensemble, ou référentiel statistique, composé 

d'éléments ou unités statistiques est appelé "population" ou "univers". 
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I.2 Caractères qualitatifs et quantitatifs, continus et discrets 

 

I.2.1 Les caractères qualitatifs et quantitatifs 

 

Les caractères quantitatifs sont ceux auxquels on peut attribuer une valeur numérique. En 

revanche, les caractères qualitatifs sont ceux auxquels on ne peut seulement associer qu’une 

valeur arbitraire, une indexation. Par exemple une taille est un caractère quantitatif alors 

qu’une couleur est un caractère qualitatif. 

Un ensemble ordonné de valeurs de caractère quantitatif constitue une suite ou série 

statistique. Un ensemble ordonné conventionnellement (indexation) de caractère qualitatif 

constitue une nomenclature. 

Dans le cadre de la convention fixée pour l'indexation (règle normalisée ou prescription 

légale), la nomenclature est parfois désignée sous le nom de code comme par exemple le code 

des départements applicables à l'immatriculation des automobiles françaises. 

 

I.2.2 Les caractères continus et discrets 

 

Un caractère continu est un caractère qui peut prendre n'importe quelle valeur numérique 

comme par exemple une masse, une surface, un prix… 

Un caractère discret (ou discontinu) est un caractère qui ne peut prendre que certaines valeurs 

(en général, des nombres entiers) comme par exemple le nombre de personnes constituant une 

famille. 

Dans le cas d'un caractère discret, l'interpolation est dénuée de sens. Très souvent on se sert de 

la représentation graphique pour illustrer les résultats. Les histogrammes et les distributions 

s'avèrent être des outils performants, clairs dans l'énonciation et compréhensifs vis-à-vis du 

lecteur. Les perfectionnements considérables des outils informatiques ont contribués à étendre 

les possibilités de la statistique. De nos jours, avec les nombreux logiciels à disposition, la 

représentation graphique des résultats ne pose plus guère de problèmes et l'avantage est 

évident; l'appréciation instantanée de la qualité du travail en tirant les conclusions qui 

s'imposent. Par exemple, une courbe symétrique provoque auprès de l'expérimentateur une 

satisfaction personnelle non cachée; qu'elle soit justifiée, reste encore à prouver. Les 

distributions à plusieurs sommets sont à considérer avec tout le respect que cela demande, il 

faut méditer sur le résultat et s'intéresser à d'éventuelles anomalies qui font surface. 
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II Les sources d’erreur et leurs quantifications 

 

II.1 Introduction 

 

Les sources d’erreur qui entachent la précision d’un résultat analytique sont de trois sortes : 

 

justesse (erreurs systématiques)

Qualité d'analyse précision (erreurs aléatoire)

sensibilité de la méthode analytique


 



 

 

Nous allons à présent, à travers des exemples, s’intéresser à ces différentes sources d’erreur 

ainsi qu’à leur quantification afin d’analyser aux mieux un résultat analytique. Chaque fois 

que l'on fait une mesure, on exprime par une valeur numérique xi l'estimation d'une grandeur, 

dont la valeur réelle, souvent inconnue, est x0. La détermination est d'autant plus juste que la 

différence xi - x0 est petite. Dans la plupart des cas, on effectue plusieurs mesures et l’on 

définit une moyenne. Si la moyenne la grandeur x est calculée à partir de N valeurs de x tel 

que N ≤ 20 alors elle sera notée  : x . Si par contre cette moyenne est calculée à partir de N 

valeurs de x tel que N > 20, alors elle sera notée  : x . Quel que soit la valeur de N, on 

associe à la moyenne un écart-type qui se notera sx pour N ≤ 20 et σx pour N > 20. Les calculs 

des moyennes et écart-types seront présentés ci-après. Dès lors, la valeur vraie est donc 

encadrée de la manière suivante : 

 

   x 0 xx s x x s  (N ≤ 20)   ou      x x 0 x xx     (N > 20) 

 

La qualité d’analyse est d’autant meilleure que l’intervalle autour de x0 est petit. Les 

différentes erreurs qui entachent la qualité d’analyse sont décrites ci-après. 

 

II.2 Moyenne 

 

La moyenne arithmétique est la plus couramment utilisée. Pour le calcul de la moyenne, il est 

inutile de dresser la série dans un ordre croissant ou décroissant, les termes sont additionnés 

dans un ordre quelconque. Deux propriétés caractérisent la moyenne : (i) la somme algébrique 

des écarts de chaque valeur de la série par rapport à la moyenne est nulle ; (ii) la moyenne 

arithmétique est la grandeur pour laquelle la somme des carrés des écarts par rapport à la 

moyenne est minimum. 
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La moyenne arithmétique désignée par x  (N ≤ 20) ou x  (N > 20) se calcule de la manière 

suivante : 

 



   
 


i N

i
1 2 3 N i 1

x

x
x x x ... x

x  ou 
N N

  

 

La moyenne arithmétique est une bonne approximation d'un ensemble d'une certaine 

population. Elle doit être la valeur la plus rapprochée de la moyenne idéale, souvent 

inconnue, qui représente la valeur vraie. 

 

II.3 Justesse : erreur systématique 

 

La justesse ou encore erreur systématique en français est décrite par les termes "accuracy" en 

anglais et "systematische fehler" en allemand. Les erreurs systématiques sont caractérisées par 

un écart à la valeur vraie x0 soit positif, soit négatif, elles e agissent toujours dans le même 

sens et affectent l'exactitude de la méthode. Cet écart à la valeur vrai peut être qualifié par 

rapport à une valeur précise d’un groupe de données ou par rapport à la moyenne du groupe 

de données. On peut donner comme exemple le mauvais calibrage d'une burette, un décalage 

de longueurs d'ondes d’un spectrophotomètre, un mauvais tarage de balance etc... Elles 

peuvent être corrigées lors de la détermination du facteur de décalibration. Si on peut 

quantifier cette erreur, par exemple au moyen d'une détermination à partir d'un étalon, le 

résultat doit être corrigé. Parfois, un facteur correctif est indiqué dans les méthodes d'analyse.  

 

II.3.1 Ecart d’une valeur précise d’un groupe de donnée par rapport à la valeur vraie 

 

Si on mesure une valeur xi pour l’échantillon i dont la valeur réelle est x0 on peut alors donner 

l’erreur systématique absolue xi ou relative Erxi (%) sur la mesure de l’échantillon i : 

 

i 0 i 0x ( x ) x x     et  i 0
r i 0

0

x ( x )
E x ( x ) 100

x


   
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II.3.2 Ecart d’une moyenne d’un groupe de données par rapport à la valeur vraie 

 

Dans le cas où la valeur trouvée pour la mesure de l’échantillon i est une moyenne déterminée 

à partir de N analyses : x  (N ≤ 20) ou x  (N > 20) on pourra la comparer avec la valeur vraie 

x0 : 

 

0 0x( x ) x x     ou  x 0 x 0( x ) x    

 

0
r 0

0

x( x )
E x( x ) 100

x


    ou   x 0

r x 0
0

( x )
E ( x ) 100

x


  

 

II.3.3 Ecart d’une valeur précise d’un groupe de donnée par rapport à moyenne du groupe de 

données 

 

Dans bien des cas en chimie analytique, on ne connaît pas la valeur vraie x0 d’une mesure. 

Dans ce cas il faut approximer la valeur vraie x0 par la moyenne des valeurs obtenues sur 

l’échantillon i mesuré N fois ( x  (N ≤ 20) ou x  (N > 20)). Dès lors, on ne peut que comparer 

une mesure xi par rapport à la moyenne x  : 

 

 i ix x x x     ou   i x i xx ( ) x    

 

   i
r i

x x
E x x 100

x


    ou   i x

r i x
x

x ( )
E x ( ) 100

 



 

 

On peut calculer une erreur expérimentale moyenne d sur N analyses comme : 

 

i N

i
i 1

x

x x
d

N









  ou  








i N

i x
i 1

x

x
d

N


 

 

Ici, on mesure en fait la dispersion de toutes les mesures par rapport à la moyenne des 

mesures. On visualise alors une erreur autour de la moyenne x  ou x  qui caractérise la 

précision de la mesure. Cette approche simpliste doit être traitée d’un point de vue statistique, 

par le calcul de l’écart-type. 
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II.4 Précision : erreur aléatoire 

 

La précision ou encore erreur aléatoire en français est décrite par les termes "precision ou 

standard deviation" en anglais et "zufallsfehler" en allemand. La non reproductibilité des 

résultats est souvent due à un grand nombre de petites sources d'erreur qui peuvent jouer dans 

les deux sens, positif et négatif (erreurs aléatoires). Elles trouvent leur nature à la fois dans la 

méthode analytique et dans l'appareil de mesure lui-même. Elles affectent la précision de la 

mesure. On peut alors utiliser les résultats des mesures pour fixer la limite de confiance au 

moyen des méthodes statistiques. 

 

II.4.1 Définitions 

 

L'erreur aléatoire ou fortuite se produit tantôt du côté positif, tantôt du côté négatif par 

rapport à la valeur moyenne. Pour un grand nombre de mesures, la somme algébrique de ses 

valeurs successives est nulle. Les erreurs aléatoires obéissent à la loi de Laplace-Gauss (loi 

normale). Toute erreur est de par nature fonction de la méthode d'analyse choisie, des 

conditions de travail, de l'habileté de l'expérimentateur, de l'homogénéité du produit à 

analyser. La densité de probabilité f(x) de la loi normale est :  

 

2
x

x

x1

2

x

A
f ( x ) e

2




 

 
  

   

où A est une constante de pondération et dont la représentation graphique est la suivante : 

 

 
 

Figure 1. densité de probabilité de la loi normale 
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Nous allons à présent décrire les grandeurs statistiques en termes de calcul : moyenne, écart-

type, écart-type relatif, coefficient de variation. 

 

II.4.2 Ecart-type 

 

L'écart-type symbolisé par s (N ≤ 20) ou σ (N > 20) désigne l'erreur aléatoire ou fortuite d’une 

série de mesures d’un même échantillon. En chimie analytique cette grandeur nous permet de 

nous faire une idée sur la méthode de travail utilisée. C'est donc s (N ≤ 20) ou σ (N > 20) qui 

fait foi quand il faudra se prononcer sur la qualité de la méthode d'analyse utilisée. Plus s sera 

petit, meilleur sera la méthode choisie. Il va de soi, qu'en répétant les mesures sur le même 

échantillon, il faut s'attendre à des fluctuations quant à la répétitivité de s. Cela est 

principalement dû au jeu du hasard parfaitement assimilable à l'analyse quantitative. Ce n'est 

qu'en exerçant un nombre infini de mesures sur un échantillon que l'on pourra se rapprocher 

de la vraie valeur de s qui devient alors σ car N >> 20. Comme dans la pratique, on ne peut 

pas se permettre d’analyser chaque échantillon une vingtaine de fois, nous devons nous 

contenter d'un nombre restreint de manipulations. Toute notre information est basée sur un 

échantillonnage relativement petit. La question qui se pose alors est la suivante : est-il 

possible de se prononcer fermement sur la qualité de la mesure et sur ses erreurs? 

La réponse est affirmative et l’on peut se prononcer avec une certaine aisance sur le résultat 

même avec un nombre limité de mesures et d’échantillons. Dès lors, on doit introduire la 

notion de niveau de confiance et de degré d'incertitude. La valeur déterminée sera alors 

comprise entre une valeur d'incertitude inférieure et supérieure. Ce degré d'incertitude est de 

lui-même fonction du nombre de degrés de liberté du système. Pour ce faire, on utilise les 

tables de distribution des lois de Student, test-F…, selon le cas. Ce dernier point sera étudié en 

détail au cours de votre cursus universitaire. Les points mesurés sont groupés autour d'une 

valeur moyenne définie par la loi de gauss. Pour calculer l’écart-type s (N ≤ 20) ou σ (N > 20) 

on utilise : 

 

 
i N

2

i
i 1

x

x x
s

N 1











  et  

 







i N

2

i x
i 1

x

x

N


  

 

Avec N-1 : le nombre de degré de liberté du système pour (N ≤ 20) 
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II.4.3 Ecart-type relatif et coefficient de variation 

 

On peut aussi, à partir de l’écart-type définir un écart-type relatif ("relative standard 

deviation" en anglais) sr (N ≤ 20) ou σr (N > 20) et le coefficient de variation CV : 

 x
rx

s
s

x
  ou   x

rx
x




  et   x
x

s
CV 100

x
  ou   x

x
x

CV 100



 

 

Attention, ces grandeurs ainsi définies sont adimensionnelles, ce qui n’est pas le cas de 

l’écart-type. 

 

II.5 Qualité d’analyse 

 

II.5.1 Expression du résultat analytique 

 

Dans tous les cas de figure, un résultat analytique doit être exprimé par une moyenne et un 

écart-type. Les erreurs systématiques, qui n’agissent que sur la moyenne des résultats, ne doit 

pas apparaître. On doit présenter la moyenne corrigée. La moyenne n’est corrigée que dans le 

cas où on a réussi à déterminer précisément les erreurs systématiques par recalibration de 

l’appareil de mesure par exemple. On aura donc pour un échantillon : 

 

   ou  x x xx s     

 

II.5.2 Comparaison entre les différentes sources d’erreur 

 

Voici un schéma synoptique qui illustre ces concepts : 
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Cas n°1 : juste et peu précis ; Cas n°2 : juste et précis ; Cas n°3 : pas juste et précis ; Cas n°4 : 

pas juste et peu précis 

Dans ces cas de figure, le meilleur résultat est 2 et le moins bon est 4. 

 

II.5.3 Sensibilité de la méthode analytique 

 

La précision d’une mesure peut être limitée par la sensibilité de la méthode analytique choisie. 

Elle peut être exprimée en écart-type, écart-type relatif ou coefficient de variation (le pouvoir 

de résolution). La sensibilité d’une méthode analytique est définie à la fois par la sensibilité de 

l’appareillage de mesure et par sa réponse à un analyte donné. Par exemple, en gravimétrie, on 

obtiendra une pesée moyenne de 500 mg ±2 mg avec une balance qui n'est sensible qu'à 1 mg, 

la masse ne pourra donc être connue qu'à 1 mg près au maximum. En sus de la sensibilité de 

l’appareillage vient se greffer la limite de détection (LOD) et la limite de quantification 

(LOQ) de l’analyte en question. Ces deux grandeurs sont déterminées à l’aide de la courbe 

d’étalonnage de l’analyte étudié obtenue sur l’appareil analytique en question. Dès lors, la 

sensibilité pourra être définie pour un couple appareil analytique-analyte donné. La 

détermination de ces deux grandeurs sera abordée dans le chapitre relatif à l’étalonnage des 

appareils analytiques. 

 

II.5.4 Exemple n°1 

 

Quatre étudiants ont fait le titrage de 10,00 mL d’une solution de NaOH (0,100 mol·L-1) par 

HCl (0,100 mol·L-1). Le calcul nous annonce une valeur de 10,00 mL de NaOH. Les étudiants 

ont obtenu les valeurs suivantes : 

 

Étudiant VHCl (1) VHCl (2) VHCl (3) VHCl (4) VHCl (5) 

1 10,08 10,11 10,09 10,10 10,12 

2 9,88 10,14 10,02 9,80 10,21 

3 10,19 9,79 9,69 10,05 9,78 

4 10,04 9,98 10,02 9,97 10,04 
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Etudiant ix  (mL) x  (mL)  ix x  (mL)   2

ix x  (mL2) 

1 

10,08 

10,11 

10,09 

10,10 

10,12 

10,10 

-0,02 

0,01 

-0,01 

0,00 

0,02 

0,0004 

0,0001 

0,0001 

0,0000 

0,0004 

Sommes 50,50  0 0,0010 

2 

9,88 

10,14 

10,02 

9,80 

10,21 

10,01 

-0,13 

0,13 

0,01 

-0,21 

0,20 

0,0169 

0,0169 

0,0001 

0,0441 

0,0400 

Sommes 50,05  0 0,1180 

3 

10,19 

9,79 

9,69 

10,05 

9,78 

9,90 

0,29 

-0,11 

-0,21 

0,15 

-0,12 

0,0841 

0,0121 

0,0441 

0,0225 

0,0144 

Sommes 49,50  0 0,1772 

4 

10,04 

9,98 

10,02 

9,97 

10,04 

10,01 

0,03 

-0,03 

0,01 

-0,04 

0,03 

0,0009 

0,0009 

0,0001 

0,0016 

0,0009 

Sommes   0 0,0044 

 

Pour l’étudiant 1 le détail des calculs est le suivant : 

 

Moyenne : 

i 5

HCl
i 1

HCl

V
5,50

V 10,10 mL
5 5



  

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Écart type : 
  

HCl

i 5 2

i HClHCl
i 1

V

V V
0,0010

S 0,0158 mL
5 1 4






  




 

 

Pour cet étudiant, il conviendra d’écrire le résultat comme étant : HClV 10,10 0,016  mL  . 

Attention, ici nous n’avons pris en compte que la variation du volume lu sur la burette, il 

s’agit de l’erreur de mesure. Pour être totalement rigoureux, l’écart-type global doit prendre 

ne compte aussi toutes les autres erreurs issues de la dilution de l’échantillon (pipette, ballon 

jaugé, précision de la burette) ainsi que l’erreur sur la solution de titrant. Dans ce cas, on 

effectue une étude de propagation d’erreur que l’on étudiera en détail plus loin. En effectuant 

ce même genre de calcul pour chaque étudiant, il vient : 

 

Étudiant HClV  (mL) 
HClVs  (mL)   r HCl 0 HClE V V (%) Conclusion 

1 10,10 0,016 1 Peu juste et très précis 

2 10,01 0,172 0,1 Très juste et peu précis 

3 9,90 0,210 1 Peu juste et très peu précis 

4 10,01 0,033 0,1 Très juste et précis 

 

 

III Propagation des erreurs à travers une chaîne de mesures 

 

III.1 Introduction 

 

En chimie analytique, il faut souvent estimer l’erreur systématique d’un résultat qui a été 

calculé à partir de plusieurs données expérimentales, ayant chacune une erreur systématique 

connue. Dans bien des cas, si l’appareil de mesure a bien été calibré et qu’il n’y a pas eu 

d’erreurs systématiques dans la préparation du calibrant et/ou des échantillons à analyser, 

cette opération n’a pas lieu d’être. Dans le cas contraire, l’erreur systématique du résultat final 

dépend des opérations mathématiques réalisées entre les différentes données expérimentales. 

Il est alors nécessaire d’effectuer un calcul combinant toutes les erreurs systématiques 

identifiées afin de corriger le résultat analytique final. De même, il faudra combiner les 

erreurs aléatoires attenantes à la chaîne de mesure qui elles ne peuvent être corrigées et qui 

seront reportées avec le résultat de mesure proposé. 
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III.2 Propagation des erreurs à travers une chaîne de mesures 

 

III.2.1 Propagation des erreurs systématiques 

 

L’erreur systématique sur chaque opération d’une chaîne de mesure doit être déterminée. 

Toutes ces erreurs doivent être combinées, en fonction de la chaîne de mesure mise en œuvre, 

afin que le résultat lié à l’enchaînement des diverses opérations soit corrigé. Si la correction 

sur le résultat final n’est pas apportée, alors on doit considérer le biais global de la méthode de 

détermination. Une méthode valide doit proposer un biais minimal et dans le cas absolu aucun 

biais. Ci-dessous un tableau qui retrace les différentes combinaisons d’erreurs systématiques 

liées à une chaîne de mesures : 

 

Opération Exemple Ecart-type du résultat final 

Addition 

Soustraction 
y a b c    y a b c       

Combinaison 

linéaire 
a b cy k a k b k c    a b cy k a k b k c       

Multiplication 

Division  

 a b
y

c


  

y a b c

y a b c

               
     

 

Fonction 

 y f x  

 

G f ( x, y,z )  

 

d y
y x

d x
   

f ( x, y,z ) f ( x, y,z ) f ( x, y,z )
G x y z

x y z
     

  
  

 

 

Dans ce tableau, ka, kb et kc sont des constantes.  et a,b,c,x, y z  représentent des moyennes. Il 

en résultera une erreur systématique globale, engendrant un biais rapport à la valeur 

vraie :  0 0biais y y y y    . 

 

III.2.2 Propagation des erreurs aléatoires 

 

L’erreur aléatoire sur chaque opération d’une chaîne de mesure doit être déterminée. Toutes 

ces erreurs doivent être combinées, en fonction de la chaîne de mesure mise en œuvre, afin 
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que la précision globale du résultat lié à l’enchaînement des diverses opérations soit reportée 

aux côtés de la moyenne de la détermination. Ci-dessous un tableau qui retrace les différentes 

combinaisons d’erreurs aléatoires liées à une chaîne de mesures : 

 

Opération Exemple Ecart-type du résultat final 

Addition 

Soustraction 
y a b c    2 2 2

y a b cs s s s    

Combinaison 

linéaire 
a b cy k a k b k c         2 2 2

y a a b b c cs k s k s k s    

Multiplication 

Division  

 a b
y

c


  

2 2 2
y a b c

s s s s

y a b c
            
     

 

Fonction 

 y f x  

 

G f ( x, y,z )  

 

y x

d y
s s

d x
  

2 2 2

2 2 2
G x y z

f ( x, y,z ) f ( x, y,z ) f ( x, y,z )
s s s s

x y z

       
          

       
 

 

Dans ce tableau, ka, kb et kc sont des constantes.  et a,b,c,x, y z  représentent des moyennes. Il 

en résultera une erreur aléatoire globale. Si cette dernière est plus grande que l’erreur 

systématique globale alors le biais de la méthode d’analyse ne doit pas être considéré. 

 

III.3 Exemples 

 

III.3.1 Exemple n°2 

 

Un échantillon de 3,4842 g d’un mélange solide qui contient de l’acide benzoïque 

(C6H5COOH, M = 122,123 g·mol-1) a été dissous et titré par une base en présence de 

phénolphtaléine. Au point d’équivalence on a jouté 41,36 mL de NaOH (0,2328 mol·L-1). 

Quel est la fraction massique de l’acide benzoïque dans le mélange solide ? 

 

A l’équivalence, l’acide benzoïque étant un mono-acide on aura : 

 

6 5C H COOH NaOH NaOH NaOHn n C V    
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Or la masse de C6H5COOH est donnée par : 

 

6 5 6 5 6 5C H COOH C H COOH C H COOHm n M   

 

On aura donc que le pourcentage massique sera donné par : 

 

6 5 6 5C H COOH NaOH NaOH C H COOH

solide solide

m C V M
100 100 33,749 %

m m

 
     

 

On a mesuré les incertitudes suivantes : 

Incertitude sur la lecture de la burette : ±0,02 mL 

Incertitude sur la masse : ±0,0001 g 

Incertitude sur la concentration de NaOH : ±0,0001 mol·L-1 

Incertitude sur la masse molaire : négligeable 

 

Pour déterminer l’incertitude sur le pourcentage massique en acide benzoïque, il faut penser 

que l’on a fait deux lectures de burette et donc deux erreurs, une à la mise à zéro et une à la 

lecture du volume d’équivalence : 

 

NaOH

2 2
VS (0,02 ) (0,02 ) 0,028 mL    

 

NaOH NaOH solide

2 2 2 2 2 2
C V m 4%

NaOH NaOH solide

s s Ss 0,0001 0,028 0,0001
8,02 10

0,2328 41,36 3,4842% C V m
                             

          
 

On aura alors : 

 

4
%s 8,02 10 % 0,0270     

 

On aura donc un pourcentage d’acide benzoïque dans le mélange solide de 33,75% ±0,03% 

 

Dans les exemples que nous avons vus précédemment, l’incertitude du résultat ne dépendait 

que de l’incertitude liée à la préparation de l’échantillon à analyser et à la précision de la 

burette. C’est typiquement le cas d’un dosage par indicateur coloré où l’incertitude liée à la 

mesure elle-même n’est pas quantifiable. En effet, le virage d’un indicateur n’est pas une 

grandeur quantitative, mais une grandeur qualitative qui dépendent de l’acuité visuelle de 

l’expérimentateur. Nous allons dès à présent nous intéresser au cas où l’on peut quantifier 
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l’incertitude liée à la mesure d’une grandeur. Ceci n’est possible que lorsque l’on utilise un 

appareil de mesure (pH-mètre, voltmètre…), ce qui est le cas le plus répandu en chimie 

analytique. Dans cette optique, on doit définir une incertitude totale sur la mesure d’une 

grandeur comme le pH par exemple. L’incertitude totale doit prendre en compte l’incertitude 

sur la mesure de l’échantillon analysé et l’incertitude sur la préparation de cet échantillon. 

D’un point de vue écart-type on aura : 

 

    
mes prép

22

pH pH pHs s s  

 

Dans le cas où l’incertitude sur la mesure est plus grande (au moins 100 fois) que 

l’incertitude sur la préparation, alors cette dernière est négligeable et donc 
mespH pHs s . 

 

III.3.2 Exemple n°3 

 

Pour mesurer le pH d’une solution, on doit étalonner le pH-mètre. Après étalonnage, pour 

vérifier la calibration, on prépare 1000 mL d’une solution test à pH 2. Nous avons à 

disposition de l’acide chlorhydrique concentré à 1 mol·L-1±0,0001 mol·L-1. A partir de cette 

solution d’acide concentré, il faut préparer une solution à 1·10-2 mol·L-1 en diluant par 100, 

c'est-à-dire introduire10 mL d’acide chlorhydrique dans la fiole jaugée et compléter jusqu’au 

trait de jauge. La mesure du pH de notre solution test donne les valeurs suivantes : 1,90 ; 

2,00 ; 2,20 ; 1,80 ; 2,10. 

Calculer l’incertitude sur la mesure du pH. 

On a : 

Solution d’acide chlorhydrique : ±0,0001 mol·L-1 

Pipette de 10 mL : ±0,02 mL 

Fiole jaugée de 1000 mL : ±0,40 mL 

 

Sachant que l’incertitude sur le pH dépend de la préparation de la solution test et de la mesure 

de cette dernière, il faut calculer les deux incertitudes. Pour ce faire, il faut d’abord calculer le 

pH moyen mesuré : 

 

pH moyen : 
1,90 2,00 2,20 1,80 2,10

pH 2,00
5

   
   

 

Incertitude sur la mesure du pH :  
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 
mes

2 2 2 2 2

pH

1,90 2,00 ( 2,00 2,00 ) ( 2,20 2,00 ) (1,80 2,00 ) ( 2,10 2,00 )
s 0,16

4

        
 

 

Incertitude sur la préparation de la solution test : 

 

3

0

H O
pH log

C

     
 
 

  et  H O3

prép

3

C

pH

H O

s
s 0,434

C





  

 

3

HCl HCl
H O

solution

C V
C

V



  

 

D’où : 

 

H O3 HCl HCl solution

3

2 2 2 2 2 2
C C V V

HCl HCl solutionH O

s s S S 0,0001 0,02 0,40
0,002

1 10 1000C C V V





                            
          

 

 

On a alors : 

 

H O3

prép

3

C

pH

H O

s
s 0,434 0,434 0,002 0,00087

C





     

 

L’incertitude totale sur le pH de la solution test est : 

 

       
mes prép

22 2 2

pH pH pHs s s 0,16 0,00087 0,1600      

 

Attendu que le pH d’une solution se donne à deux chiffres après la virgule alors quel que soit 

la formule utilisée on aura : 

 

pH 2,00 0,16   

 

On remarque à travers cet exemple que l’incertitude sur la mesure est souvent beaucoup 

grande que l’incertitude sur la préparation de l’échantillon. 
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IV Chiffres significatifs 

 

IV.1 Introduction 

 

Une manière simple d’indiquer le degré d’incertitude associé à une mesure expérimentale est 

d’arrondir le résultat afin qu’il ne contienne que les chiffres significatifs. 

Par exemple, la lecture d’une burette est estimable à ±0,02 mL. Ainsi, le volume devra être 

donné avec 4 chiffres significatifs comme 35,56 mL par exemple. 

 

IV.2 Chiffres significatifs de données brutes 

 

Par exemple, considérons l’ensemble des résultats : 61,60 ; 61,46 ; 61,55 ; 61,61. En calculant 

la moyenne et l’écart-type, on trouve : 61,555 ±0,069. Le résultat arrondi sera : 61,56 ±0,07. 

Lorsqu’un nombre finit par 5, il faut toujours arrondir au nombre pair le plus proche. 

 

IV.3 Chiffres significatifs de données calculées à partir de données brutes 

 

IV.3.1 Sommes et différences 

 

Pour l’addition ou la soustraction, on peut trouver le nombre de chiffres significatifs 

facilement : 

 

3,4 0,0020 7,31 10,73 10,7     

 

Ce résultat possède alors 3 chiffres significatifs. 

 

IV.3.2 Produits et quotients 

 

Pour la multiplication et la division, on a souvent tendance à arrondir le résultat avec le même 

nombre de chiffres significatifs que le terme qui en possède le moins. Regardons à présent ces 

deux exemples où les résultats sont exprimés selon la réponse que donne la calculatrice : 

 

24 4,52
1,0848

100,0


   et  

24 4,02
0,9648

100,0


  
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Selon la règle, les résultats devraient être : 

1,1  et  0,96

En effet, le premier résultat possède 2 chiffres significatifs comme 24 et le deuxième résultat 

possède lui aussi 2 chiffres significatifs car les zéro qui ne servent qu’à localiser la virgule ne 

sont pas significatifs. Maintenant examinons l’incertitude sur les chiffres de l’opération. 

L’incertitude relative sur ces nombres est de 1 pour 24 ; 0,01 pour 4,52 et 0,1 pour 100. 

L’incertitude relative sur le résultat est donné par : 

22 2
1 0,01 0,1

s 0,04
24 4,52 100

           
    

L’incertitude relative étant ±0,04, le résultat devra être 1,08 et non 1,1. Pour le deuxième 

résultat on a aussi une incertitude relative de ±0,04. Le résultat devra être 0,96. 

IV.3.3 Logarithmes et exponentielles

Pour le logarithme d’un nombre, on garde autant de chiffres après la virgule qu’il n y a de 

chiffres significatifs dans le nombre de départ : 

5log(6 ,000 10 ) 4,2218  

Pour l’exponentielle ou puissance d’un nombre, on conserve autant de chiffres qu’il y a de 

chiffres après la virgule dans le nombre de départ :  

12,5 1210 3 10 
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