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Analyse quantitative : approche statistique

I Introduction

L'analyse quantitative requiert le traitement des données analytiques par une approche
statistique. La statistique est la science qui a pour objet de recueillir un ensemble de données
numériques relatives a tel ou tel phénomene aléatoire et d'exploiter cette information pour

établir toutes les relations de causalité par l'analyse pour son interprétation.

Un phénoméne aléatoire est un phénomeéne comportant des variables aléatoires, c'est a dire
des variables liées au hasard et dont les valeurs ne peuvent, en conséquence, étre connues
d'avance comme par exemple le nombre de points marqués par un dé lorsqu’on le lance.

Dans le concept de la statistique, on distingue :

La statistique descriptive, ou statistique de constatation, qui concerne les tableaux de

données, tableaux relatifs a des inventaires, les graphiques, des recensements...

La méthode statistique qui concerne l'ensemble des procédés et méthodes utilisées pour

l'analyse et l'interprétation des données.

1.1 Domaine d’application

Le domaine d'utilisation de la statistique est tellement étendu qu'il ne nous est impossible de
citer toutes ses applications. Nous ne donnerons ici seulement que quelques exemples tels
que : les domaines de recherche biologique, médicale, spatiale ; le controle de fabrication
dans l'industrie ; les sondages d'opinion, enquétes de marché, assurances; la recherche
opérationnelle ; les études de conjoncture, économiques...

Dans tous les cas de figure, on doit définir un ensemble, ou référentiel statistique, composé

d'é¢léments ou unités statistiques est appelé "population" ou "univers".



1.2 Caractéres qualitatifs et quantitatifs, continus et discrets

1.2.1 Les caracteres qualitatifs et quantitatifs

Les caractéres quantitatifs sont ceux auxquels on peut attribuer une valeur numérique. En
revanche, les caractéres qualitatifs sont ceux auxquels on ne peut seulement associer qu’une
valeur arbitraire, une indexation. Par exemple une taille est un caractére quantitatif alors
qu’une couleur est un caractere qualitatif.

Un ensemble ordonné de valeurs de caractere quantitatif constitue une suite ou série
statistique. Un ensemble ordonné conventionnellement (indexation) de caractére qualitatif
constitue une nomenclature.

Dans le cadre de la convention fixée pour l'indexation (régle normalisée ou prescription
légale), la nomenclature est parfois désignée sous le nom de code comme par exemple le code

des départements applicables a I'immatriculation des automobiles francaises.

1.2.2 Les caractéres continus et discrets

Un caractére continu est un caractére qui peut prendre n'importe quelle valeur numérique
comme par exemple une masse, une surface, un prix...

Un caractere discret (ou discontinu) est un caractére qui ne peut prendre que certaines valeurs
(en général, des nombres entiers) comme par exemple le nombre de personnes constituant une
famille.

Dans le cas d'un caractére discret, I'interpolation est dénuée de sens. Trés souvent on se sert de
la représentation graphique pour illustrer les résultats. Les histogrammes et les distributions
s'averent €tre des outils performants, clairs dans 1'énonciation et compréhensifs vis-a-vis du
lecteur. Les perfectionnements considérables des outils informatiques ont contribués a étendre
les possibilités de la statistique. De nos jours, avec les nombreux logiciels a disposition, la
représentation graphique des résultats ne pose plus guére de problémes et l'avantage est
évident; l'appréciation instantanée de la qualité du travail en tirant les conclusions qui
s'imposent. Par exemple, une courbe symétrique provoque aupres de l'expérimentateur une
satisfaction personnelle non cachée; qu'elle soit justifiée, reste encore a prouver. Les
distributions a plusieurs sommets sont a considérer avec tout le respect que cela demande, il

faut méditer sur le résultat et s'intéresser a d'éventuelles anomalies qui font surface.



I1 Les sources d’erreur et leurs quantifications

1.1 Introduction

Les sources d’erreur qui entachent la précision d’un résultat analytique sont de trois sortes :

justesse (erreurs systématiques)
Qualité d'analyse oc { précision (erreurs aléatoire)
sensibilité de la méthode analytique

Nous allons a présent, a travers des exemples, s’intéresser a ces différentes sources d’erreur
ainsi qu’a leur quantification afin d’analyser aux mieux un résultat analytique. Chaque fois
que I'on fait une mesure, on exprime par une valeur numérique x; I'estimation d'une grandeur,
dont la valeur réelle, souvent inconnue, est xy. La détermination est d'autant plus juste que la
différence x; - xp est petite. Dans la plupart des cas, on effectue plusieurs mesures et 1’on
définit une moyenne. Si la moyenne la grandeur X est calculée a partir de N valeurs de x tel

que N < 20 alors elle sera notée : Xx. Si par contre cette moyenne est calculée a partir de N

valeurs de x tel que N > 20, alors elle sera notée : u_. Quel que soit la valeur de N, on

associe a la moyenne un écart-type qui se notera sy pour NV < 20 et o, pour /N > 20. Les calculs
des moyennes et écart-types seront présentés ci-aprés. Dés lors, la valeur vraie est donc

encadrée de la maniere suivante :
X—=8, <X <X+S, (N<20) ou u —o, <X <u —o, (N>20)

La qualit¢é d’analyse est d’autant meilleure que I’intervalle autour de Xo est petit. Les

différentes erreurs qui entachent la qualité d’analyse sont décrites ci-apres.

I1.2 Movyenne

La moyenne arithmétique est la plus couramment utilisée. Pour le calcul de la moyenne, il est
inutile de dresser la série dans un ordre croissant ou décroissant, les termes sont additionnés
dans un ordre quelconque. Deux propriétés caractérisent la moyenne : (i) la somme algébrique
des écarts de chaque valeur de la série par rapport a la moyenne est nulle ; (ii) la moyenne
arithmétique est la grandeur pour laquelle la somme des carrés des écarts par rapport a la

moyenne est minimum.



La moyenne arithmétique désignée par x (IV <20) ou g _ (N > 20) se calcule de la manicre

suivante :

XXt Xt Xy G
" N N

X ou u
La moyenne arithmétique est une bonne approximation d'un ensemble d'une certaine
population. Elle doit étre la valeur la plus rapprochée de la moyenne idéale, souvent

inconnue, qui représente la valeur vraie.

I1.3 Justesse : erreur systématique

La justesse ou encore erreur systématique en frangais est décrite par les termes "accuracy" en
anglais et "systematische fehler" en allemand. Les erreurs systématiques sont caractérisées par
un écart a la valeur vraie Xo soit positif, soit négatif, elles e agissent toujours dans le méme
sens et affectent I'exactitude de la méthode. Cet écart a la valeur vrai peut étre qualifié par
rapport a une valeur précise d’un groupe de données ou par rapport a la moyenne du groupe
de données. On peut donner comme exemple le mauvais calibrage d'une burette, un décalage
de longueurs d'ondes d’un spectrophotométre, un mauvais tarage de balance etc... Elles
peuvent étre corrigées lors de la détermination du facteur de décalibration. Si on peut
quantifier cette erreur, par exemple au moyen d'une détermination a partir d'un étalon, le

résultat doit étre corrigé. Parfois, un facteur correctif est indiqué dans les méthodes d'analyse.

11.3.1 Ecart d’une valeur précise d’un groupe de donnée par rapport a la valeur vraie

Si on mesure une valeur x; pour 1I’échantillon i dont la valeur réelle est xy on peut alors donner

I’erreur systématique absolue Ax; ou relative E,x; (%) sur la mesure de 1’échantillon i :

Axi(xo):Xi =X et ErXi(xO):wxloo



11.3.2 Ecart d’une moyenne d’un groupe de données par rapport a la valeur vraie

Dans le cas ou la valeur trouvée pour la mesure de 1’échantillon i est une moyenne déterminée

a partir de NV analyses : X (N <20) ou g, (N> 20) on pourra la comparer avec la valeur vraie

X0 :
AX(X) ) =X =X, ou Au (X)) =g, —X

|A%( %, )|

EX(x,) == X100 ou £ (%)= 1200 400

11.3.3 Ecart d’une valeur précise d’un groupe de donnée par rapport & moyenne du groupe de

données

Dans bien des cas en chimie analytique, on ne connait pas la valeur vraie xo d’'une mesure.
Dans ce cas il faut approximer la valeur vraie xy par la moyenne des valeurs obtenues sur

I’échantillon i mesuré V fois (X (N <20) ou g, (N> 20)). Dés lors, on ne peut que comparer

une mesure x; par rapport a la moyenne X :

AX (7): X =X ou Ax (4 ) =% — 4y

AX: (X _
EX,(Y)szlOO ou Erxl(ﬂx)zwxloo

X n

On peut calculer une erreur expérimentale moyenne d sur NV analyses comme :

i=N i=N
o2 ® 2 s
d=-—— oud ="t——
N N
Ici, on mesure en fait la dispersion de toutes les mesures par rapport a la moyenne des
mesures. On visualise alors une erreur autour de la moyenne X ou g, qui caractérise la

précision de la mesure. Cette approche simpliste doit étre traitée d’un point de vue statistique,

par le calcul de I’écart-type.



11.4 Précision : erreur aléatoire

La précision ou encore erreur aléatoire en frangais est décrite par les termes "precision ou
standard deviation" en anglais et "zufallsfehler" en allemand. La non reproductibilité¢ des
résultats est souvent due a un grand nombre de petites sources d'erreur qui peuvent jouer dans
les deux sens, positif et négatif (erreurs aléatoires). Elles trouvent leur nature a la fois dans la
méthode analytique et dans l'appareil de mesure lui-méme. Elles affectent la précision de la
mesure. On peut alors utiliser les résultats des mesures pour fixer la limite de confiance au

moyen des méthodes statistiques.

11.4.1 Définitions

L'erreur aléatoire ou fortuite se produit tant6t du coté positif, tantdét du coté négatif par
rapport a la valeur moyenne. Pour un grand nombre de mesures, la somme algébrique de ses
valeurs successives est nulle. Les erreurs aléatoires obéissent a la loi de Laplace-Gauss (loi
normale). Toute erreur est de par nature fonction de la méthode d'analyse choisie, des
conditions de travail, de l'habilet¢ de l'expérimentateur, de I'homogénéit¢ du produit a

analyser. La densité de probabilité f(x) de la loi normale est :

A
f(x)=me ?

ou A est une constante de pondération et dont la représentation graphique est la suivante :
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Figure 1. densité de probabilité de la loi normale



Nous allons a présent décrire les grandeurs statistiques en termes de calcul : moyenne, écart-

type, écart-type relatif, coefficient de variation.

11.4.2 Ecart-type

L'écart-type symbolisé par s (/V < 20) ou & (N > 20) désigne l'erreur aléatoire ou fortuite d’une
série de mesures d’'un méme échantillon. En chimie analytique cette grandeur nous permet de
nous faire une idée sur la méthode de travail utilisée. C'est donc s (IV < 20) ou ¢ (N > 20) qui
fait foi quand il faudra se prononcer sur la qualité de la méthode d'analyse utilisée. Plus s sera
petit, meilleur sera la méthode choisie. Il va de soi, qu'en répétant les mesures sur le méme
échantillon, il faut s'attendre a des fluctuations quant a la répétitivité de s. Cela est
principalement di au jeu du hasard parfaitement assimilable a l'analyse quantitative. Ce n'est
qu'en exerg¢ant un nombre infini de mesures sur un échantillon que 1'on pourra se rapprocher
de la vraie valeur de s qui devient alors & car N >> 20. Comme dans la pratique, on ne peut
pas se permettre d’analyser chaque échantillon une vingtaine de fois, nous devons nous
contenter d'un nombre restreint de manipulations. Toute notre information est basée sur un
échantillonnage relativement petit. La question qui se pose alors est la suivante : est-il
possible de se prononcer fermement sur la qualité de la mesure et sur ses erreurs?

La réponse est affirmative et I’on peut se prononcer avec une certaine aisance sur le résultat
méme avec un nombre limité de mesures et d’échantillons. Dés lors, on doit introduire la
notion de niveau de confiance et de degré d'incertitude. La valeur déterminée sera alors
comprise entre une valeur d'incertitude inférieure et supérieure. Ce degré d'incertitude est de
lui-méme fonction du nombre de degrés de liberté du systeme. Pour ce faire, on utilise les
tables de distribution des lois de Student, test-F..., selon le cas. Ce dernier point sera étudié en
détail au cours de votre cursus universitaire. Les points mesurés sont groupés autour d'une
valeur moyenne définie par la loi de gauss. Pour calculer 1’écart-type s (N < 20) ou & (N > 20)

on utilise :

Avec N-1 : le nombre de degré de liberté du systeme pour (V < 20)



11.4.3 Ecart-type relatif et coefficient de variation

On peut aussi, a partir de I’écart-type définir un écart-type relatif ("relative standard
deviation" en anglais) s- (V< 20) ou o, (/V > 20) et le coefficient de variation CV :

% ou o, =2 et CV,=2x100 ou CV, = Zxx100

Sy =—
X y78 X 78

rx

Attention, ces grandeurs ainsi définies sont adimensionnelles, ce qui n’est pas le cas de

I’écart-type.

I1.5 Qualité d’analyse

11.5.1 Expression du résultat analytigue

Dans tous les cas de figure, un résultat analytique doit étre exprimé par une moyenne et un
écart-type. Les erreurs systématiques, qui n’agissent que sur la moyenne des résultats, ne doit
pas apparaitre. On doit présenter la moyenne corrigée. La moyenne n’est corrigée que dans le
cas ou on a réussi a déterminer précisément les erreurs systématiques par recalibration de

I’appareil de mesure par exemple. On aura donc pour un échantillon :

Xts, ou u, to,

11.5.2 Comparaison entre les différentes sources d’erreur

Voici un schéma synoptique qui illustre ces concepts :

O, ©) ® ®

° ° ° °
° o ° °
[ [ ] [ ] [ ]
(] (] [ J
° :Io ° ®
° ° °
° ° ° °
° ° ° °
Xou p, =x X ou i, =x Xou . #xp X ou u, £xy



Cas n°1 : juste et peu précis ; Cas n°2 : juste et précis ; Cas n°3 : pas juste et précis ; Cas n°4 :
pas juste et peu précis

Dans ces cas de figure, le meilleur résultat est 2 et le moins bon est 4.

11.5.3 Sensibilité de la méthode analytique

La précision d’une mesure peut étre limitée par la sensibilité de la méthode analytique choisie.
Elle peut étre exprimée en écart-type, écart-type relatif ou coefficient de variation (le pouvoir
de résolution). La sensibilité d’une méthode analytique est définie a la fois par la sensibilité de
I’appareillage de mesure et par sa réponse a un analyte donné. Par exemple, en gravimétrie, on
obtiendra une pesée moyenne de 500 mg +2 mg avec une balance qui n'est sensible qu'a 1 mg,
la masse ne pourra donc étre connue qu'a 1 mg pres au maximum. En sus de la sensibilité de
I’appareillage vient se greffer la limite de détection (LOD) et la limite de quantification
(LOQ) de I’analyte en question. Ces deux grandeurs sont déterminées a 1’aide de la courbe
d’étalonnage de 1’analyte étudié obtenue sur I’appareil analytique en question. Dés lors, la
sensibilit¢ pourra étre définie pour un couple appareil analytique-analyte donné. La
détermination de ces deux grandeurs sera abordée dans le chapitre relatif a 1’étalonnage des

appareils analytiques.

11.5.4 Exemple n°1

Quatre étudiants ont fait le titrage de 10,00 mL d’une solution de NaOH (0,100 mol-L™!) par
HCI (0,100 mol-L!). Le calcul nous annonce une valeur de 10,00 mL de NaOH. Les étudiants

ont obtenu les valeurs suivantes :

Etudiant Vua (1) Vua (2) Vua 3) Vua (4) Vua (5)
1 10,08 10,11 10,09 10,10 10,12
2 9,88 10,14 10,02 9,80 10,21
3 10,19 9,79 9,69 10,05 9,78
4 10,04 9,98 10,02 9,97 10,04




Etudiant X; (mL) X (mL) (% —=X) (mL) | (x—X)" (mL?)
10,08 -0,02 0,0004
10,11 0,01 0,0001
1 10,09 10,10 -0,01 0,0001
10,10 0,00 0,0000
10,12 0,02 0,0004
Sommes 50,50 0 0,0010
9,88 -0,13 0,0169
10,14 0,13 0,0169
2 10,02 10,01 0,01 0,0001
9,80 -0,21 0,0441
10,21 0,20 0,0400
Sommes 50,05 0 0,1180
10,19 0,29 0,0841
9,79 -0,11 0,0121
3 9,69 9,90 -0,21 0,0441
10,05 0,15 0,0225
9,78 -0,12 0,0144
Sommes 49,50 0 01772
10,04 0,03 0,0009
9,98 -0,03 0,0009
4 10,02 10,01 0,01 0,0001
9,97 -0,04 0,0016
10,04 0,03 0,0009
Sommes 0 0,0044

Pour I’étudiant 1 le détail des calculs est le suivant :

i=5

ZVHCI
Moyenne : V, =-= c =?= 10,10 mL

10




[$)]

(Vi(HCI) ~Viei

)2
Ecart type : Sv, =\ = = /0’0210 =0,0158 mL

Pour cet étudiant, il conviendra d’écrire le résultat comme étant : V., =10,10+0,016 mL.

[

Attention, ici nous n’avons pris en compte que la variation du volume lu sur la burette, il
s’agit de I’erreur de mesure. Pour étre totalement rigoureux, 1’écart-type global doit prendre
ne compte aussi toutes les autres erreurs issues de la dilution de 1’échantillon (pipette, ballon
jaugé, précision de la burette) ainsi que ’erreur sur la solution de titrant. Dans ce cas, on
effectue une étude de propagation d’erreur que 1’on étudiera en détail plus loin. En effectuant

ce méme genre de calcul pour chaque ¢étudiant, il vient :

Etudiant | V,. (mL) | S, (mL) Er\m(vo(m.)) (%) Conclusion
1 10,10 0,016 1 Peu juste et tres précis
2 10,01 0,172 0,1 Tres juste et peu précis
3 9,90 0,210 1 Peu juste et trés peu précis
4 10,01 0,033 0,1 Tres juste et précis

III Propagation des erreurs a travers une chaine de mesures

I11.1 Introduction

En chimie analytique, il faut souvent estimer I’erreur systématique d’un résultat qui a été
calculé a partir de plusieurs données expérimentales, ayant chacune une erreur systématique
connue. Dans bien des cas, si 1’appareil de mesure a bien été calibré et qu’il n’y a pas eu
d’erreurs systématiques dans la préparation du calibrant et/ou des échantillons a analyser,
cette opération n’a pas lieu d’étre. Dans le cas contraire, I’erreur systématique du résultat final
dépend des opérations mathématiques réalisées entre les différentes données expérimentales.
Il est alors nécessaire d’effectuer un calcul combinant toutes les erreurs systématiques
identifiées afin de corriger le résultat analytique final. De méme, il faudra combiner les
erreurs aléatoires attenantes a la chaine de mesure qui elles ne peuvent étre corrigées et qui

seront reportées avec le résultat de mesure proposé.

11



I11.2 Propagation des erreurs a travers une chaine de mesures

111.2.1 Propagation des erreurs systématigues

L’erreur systématique sur chaque opération d’une chaine de mesure doit étre déterminée.

Toutes ces erreurs doivent étre combinées, en fonction de la chaine de mesure mise en ceuvre,

afin que le résultat li¢ a ’enchainement des diverses opérations soit corrigé. Si la correction

sur le résultat final n’est pas apportée, alors on doit considérer le biais global de la méthode de

détermination. Une méthode valide doit proposer un biais minimal et dans le cas absolu aucun

biais. Ci-dessous un tableau qui retrace les différentes combinaisons d’erreurs systématiques

liées a une chaine de mesures :

Opération Exemple Ecart-type du résultat final
Addition — - _ _
y=a+b-c Ay = Aa+ Ab+ Ac
Soustraction
Combinaison | — — _ _
y=k,a+kb-k.c Ay =k, da+k 4b+k_ Ac
linéaire
Multiplication _ <5><5) Ay [ Aaj [ Ab} ( ch
y=-— == = |+| = |[+| =
Division C y a b c
=169 ;
Ay = AX d—X
dx
Fonction L
G="1(xy.z) AG :Ax|af(x’_y’z)|+4|y|af(XQ"Z)|+AZ|0f(X'_y’Z)|
I e A e

Dans ce tableau, Ka, ko et ke sont des constantes. a

b.c.x,yetz représentent des moyennes. 11

en résultera une erreur systématique globale, engendrant un biais rapport a la valeur

vraie :biais = Ay (Y, )=y - Y,

111.2.2 Propagation des erreurs aléatoires

L’erreur aléatoire sur chaque opération d’une chaine de mesure doit étre déterminée. Toutes

ces erreurs doivent étre combinées, en fonction de la chaline de mesure mise en ceuvre, afin

12



que la précision globale du résultat 1i¢ a I’enchainement des diverses opérations soit reportée
aux cOtés de la moyenne de la détermination. Ci-dessous un tableau qui retrace les différentes

combinaisons d’erreurs aléatoires liées a une chaine de mesures :

Opération Exemple Ecart-type du résultat final
Addition - -
‘ y=a+b-c S, =+/S; +5; +5.
Soustraction
Combinaison | — K 3sk Bk o \/k 2 (s Vo (ks V
=K,a+ —K.C S, = 2S,) + S +K.S;
linéaire y ° Y ( ) ( " b) ( )
Multiplication _ (EXB) s, (Sa ]2 (Sb ]2 (Sc T
o y=-——= —=Wz=| Ntz
Division C y a b C
y=f (x) dy
Sy =35, |—
dx
Fonction
G="f(xy,2) o (x,y,2)) of(x.y,2)) o (x,y,2))
' Sg = (—‘_’ ] xsf+[—’_’ J xs§+[—’_’ j xs?
X oy 0z

Dans ce tableau, Ka, kb et ke sont des constantes. a,b,c,x,y et z représentent des moyennes. Il

en résultera une erreur aléatoire globale. Si cette derniére est plus grande que I’erreur

systématique globale alors le biais de la méthode d’analyse ne doit pas étre considéré.

I11.3 Exemples

111.3.1 Exemple n°2

Un échantillon de 3,4842 g d’un mélange solide qui contient de I’acide benzoique
(CéHsCOOH, M = 122,123 g'mol!) a été dissous et titré par une base en présence de
phénolphtaléine. Au point d’équivalence on a jouté 41,36 mL de NaOH (0,2328 mol-L).

Quel est la fraction massique de ’acide benzoique dans le mélange solide ?

A I’équivalence, I’acide benzoique étant un mono-acide on aura :

Ne pi.coon = Muaon = Craon X Vivaor
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Or la masse de CcHsCOOH est donnée par :

xM

Me, n,coon = Ne,H,cooH CH5COOH

On aura donc que le pourcentage massique sera donné par :

x M

xV

NaOH

m

Me. h.cooH %100 = CNaOH
m

C6H;C00R 100 = 33,749 %

solide solide

On a mesur¢ les incertitudes suivantes :

Incertitude sur la lecture de la burette : £0,02 mL
Incertitude sur la masse : £0,0001 g

Incertitude sur la concentration de NaOH : +0,0001 mol-L"!

Incertitude sur la masse molaire : négligeable

Pour déterminer I’incertitude sur le pourcentage massique en acide benzoique, il faut penser
que I’on a fait deux lectures de burette et donc deux erreurs, une a la mise a zéro et une a la

lecture du volume d’équivalence :

S, =4/(0,02)+(0,02) =0,028 mL

2 2 2
S S 2 2 2
S _ [ Scus | (St | [ Sre | _ [0,0001j +(0,028] +(o,oomj _8.02x10"
% \(Cuon) Vaaon M. 0,2328) (41,36 ) | 3,4842

On aura alors :

s,, =8,02x107* x% =0,0270

On aura donc un pourcentage d’acide benzoique dans le mélange solide de 33,75% +0,03%

Dans les exemples que nous avons vus précédemment, I’incertitude du résultat ne dépendait
que de I'incertitude liée a la préparation de I’échantillon a analyser et a la précision de la
burette. C’est typiquement le cas d’un dosage par indicateur coloré ou I’incertitude li¢e a la
mesure elle-méme n’est pas quantifiable. En effet, le virage d’un indicateur n’est pas une
grandeur quantitative, mais une grandeur qualitative qui dépendent de ’acuité visuelle de

I’expérimentateur. Nous allons deés a présent nous intéresser au cas ou 1’on peut quantifier

14



I’incertitude liée a la mesure d’une grandeur. Ceci n’est possible que lorsque ’on utilise un
appareil de mesure (pH-metre, voltmetre...), ce qui est le cas le plus répandu en chimie
analytique. Dans cette optique, on doit définir une incertitude totale sur la mesure d’une
grandeur comme le pH par exemple. L’incertitude totale doit prendre en compte I’incertitude
sur la mesure de I’échantillon analysé et I’incertitude sur la préparation de cet échantillon.

D’un point de vue écart-type on aura :

2 2
SPH = (SPH mes) +<SpHpre'p)

Dans le cas ou D’incertitude sur la mesure est plus grande (au moins 100 fois) que

I'incertitude sur la préparation, alors cette dernicre est négligeable et donc s, =S, .

111.3.2 Exemple n°3

Pour mesurer le pH d’une solution, on doit étalonner le pH-métre. Aprés étalonnage, pour
vérifier la calibration, on prépare 1000 mL d’une solution test a pH 2. Nous avons a
disposition de I’acide chlorhydrique concentré a 1 mol-L'+0,0001 mol-L!. A partir de cette
solution d’acide concentré, il faut préparer une solution a 1-102 mol-L! en diluant par 100,
c'est-a-dire introduire10 mL d’acide chlorhydrique dans la fiole jaugée et compléter jusqu’au
trait de jauge. La mesure du pH de notre solution test donne les valeurs suivantes : 1,90 ;
2,00;2,20; 1,80 ; 2,10.

Calculer I’incertitude sur la mesure du pH.

Ona:

Solution d’acide chlorhydrique : +0,0001 mol-L"!

Pipette de 10 mL : 0,02 mL

Fiole jaugée de 1000 mL : +0,40 mL

Sachant que I’incertitude sur le pH dépend de la préparation de la solution test et de la mesure
de cette derniére, il faut calculer les deux incertitudes. Pour ce faire, il faut d’abord calculer le
pH moyen mesuré :

1,90+2,00+2,20+1,80+2,10

pH moyen : PH = = =2,00

Incertitude sur la mesure du pH :
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SpHmes

\/(1,90—2,00)2 +(2,00-2,00)2 +(2,20~2,00) +(1,80 —2,00)% +(2,10—2,00 2
4

Incertitude sur la préparation de la solution test :

I:HSOJr} SCH ot
PH =~log| —5— | et sy, =0434—=
H,0"
Co XV
C_  ——Ha” Vha
e Vsolution
D’ou:
Sc s 2 S 2 S 2 000012 002 2 0.40 2
H30" — [ Chci j _}_( VHCIJ +( Vsolution J :\/( ) ] _I_( y ] +( y j =0’002
CH30+ CHC' VHCI Vsolution 1 10 1000
On a alors :
SC X
Spi,,, = 0,434 === =0,434x0,002 =0,00087
C|—|30+

L’incertitude totale sur le pH de la solution test est :

S 1 =\/(spHm ) (s, ) =4(0.16)" +(0,00087)" =0,1600

Attendu que le pH d’une solution se donne a deux chiftres apres la virgule alors quel que soit

la formule utilisée on aura :
pH =2,00 £0,16

On remarque a travers cet exemple que I’incertitude sur la mesure est souvent beaucoup

grande que I’incertitude sur la préparation de 1’échantillon.
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IV Chiffres significatifs

IV.1 Introduction

Une maniére simple d’indiquer le degré d’incertitude associé a une mesure expérimentale est
d’arrondir le résultat afin qu’il ne contienne que les chiffres significatifs.
Par exemple, la lecture d’une burette est estimable a 0,02 mL. Ainsi, le volume devra étre

donné avec 4 chiffres significatifs comme 35,56 mL par exemple.

IV.2 Chiffres significatifs de données brutes

Par exemple, considérons 1’ensemble des résultats : 61,60 ; 61,46 ; 61,55 ; 61,61. En calculant
la moyenne et I’écart-type, on trouve : 61,555 +0,069. Le résultat arrondi sera : 61,56 +0,07.

Lorsqu’un nombre finit par 5, il faut toujours arrondir au nombre pair le plus proche.

IV.3 Chiffres significatifs de données calculées a partir de données brutes

1V.3.1 Sommes et différences

Pour I’addition ou la soustraction, on peut trouver le nombre de chiffres significatifs

facilement :

3,4+0,0020+7,31=10,73=10,7

Ce résultat possede alors 3 chiffres significatifs.

1V.3.2 Produits et quotients

Pour la multiplication et la division, on a souvent tendance a arrondir le résultat avec le méme
nombre de chiffres significatifs que le terme qui en posséde le moins. Regardons a présent ces
deux exemples ou les résultats sont exprimés selon la réponse que donne la calculatrice :

24 x4,02

M:1,0848 et ————=0,9648
100,0 100,0
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Selon la régle, les résultats devraient étre :
1,1 et 0,96

En effet, le premier résultat posséde 2 chiftres significatifs comme 24 et le deuxiéme résultat
possede lui aussi 2 chiffres significatifs car les zéro qui ne servent qu’a localiser la virgule ne
sont pas significatifs. Maintenant examinons l’incertitude sur les chiffres de ’opération.
L’incertitude relative sur ces nombres est de 1 pour 24 ; 0,01 pour 4,52 et 0,1 pour 100.

L’incertitude relative sur le résultat est donné par :

2 2 2
5= (i) +(Mj {Ej _ 0,04
24) "\a52) "\ 100

L’incertitude relative étant +0,04, le résultat devra étre 1,08 et non 1,1. Pour le deuxieme

résultat on a aussi une incertitude relative de £0,04. Le résultat devra étre 0,96.

1V.3.3 Logarithmes et exponentielles

Pour le logarithme d’un nombre, on garde autant de chiffres apres la virgule qu’il n y a de

chiffres significatifs dans le nombre de départ :
log(6,000x107°)=-4,2218

Pour I’exponentielle ou puissance d’un nombre, on conserve autant de chiffres qu’il y a de

chiffres apres la virgule dans le nombre de départ :

10*2° =3x10%
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