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Acquisition QC and filtering

Debris, doublets, flow
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... However, drop in intensity for few channels
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Cytof Drift
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Large scale Data Analysis

Clustering
* applied to flow cytometry

* characteristics of various algorithms



Manual gating uses a sequential approach to
address the multidimensionality of the data

.......

z %
@ Does not scale well on large data sets

(i.e. samples and markers)

Sequential — inaccuracies propagate and
amplify in the downstream steps
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Practical advantages of looking at all dimensions (1)
CD11b low/mid/high monocyte (sub)populations at resting state
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Practical advantages of looking at all dimensions (2)
CD11b low/mid/high monocyte (sub)populations at resting state
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Clustering can consider all data at the same time
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Revised gating strategy, considering new populations
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Clustering Algorithms

Algorithm Complexity Robust  Order User Mixed Arbitrary- Algorithm Complexity Robust  Order User Mixed Arbitrary-
to independence input datatypes shaped to independence input datatypes shaped
outliers cluster outliers cluster

Partitioning (k-means) Density-based

k-Means [76] O¢kN) No No 110 No No HIERDENC [97] o) Yes Yes - Yes -
Farth. First Trav. [77) O(NK) No No I Yes No MULIC [, 97) ONY Yes No - Yes -
k-Medoids (PAM) [78] OkN) Yes No 1 No No
CLARA [79] O(ks®+k(N-k)) Yes Yes 1 No Yes DBSCAN [98] O(NlogN) Yes Yes 37 No Yes
CLARANS [80] oNy Yes Yes 1 No Yes OPTICS [99] O(NlogN) Yes Yes 37 No Yes
Fuzzy k-means [43, 81] O¢kN) No No I No Yes DENCLUE [100] oY Yes No 7 No Yes
k-Modes [82) OkN) No No 1 No -
Fuzzy k-modes [83] 0¢kN) No No 1 No _ CACTUS [101] 'Scalable’ No Yes 1,4 No No
Squeezer [84] O(kN) No No 3 Yes No STIRR [102] "Scalable’ No No 12 No No
k-Prototypes [85] OkN) No No 1 Yes No CLICK (categ) [103] ‘Scalable’ No Yes - No -
COOLCAT [86] ONY No No 1 No No CLOPE [104] O(kdN) No Yes - No No
CLICK (gene expr) [36] ‘Fast’ - Yes - No No WaveCluster [105] O(N) Yes Yes 8,9 No Yes
Hierarchical STING [106] O(N) Yes Yes - No No
Agglomerative single, oNY single, No Yes 515 Yes Yes CLIQUE [107] O(N) Yes Yes 38 Yes Yes
average, complete-inkage O(NzlogN) Model-based
(145, 147] werags & SOMs (NeuralNet) [23]  O(N?) No No 1,25 No Yes
complete
Eisen gene expr. [I5, 87] oNY szingle. No Yes 5 Yes Yes COBWERB [108] O(Nd?) Yes No _ No _
:’fﬁa’;‘i';) BILCOM [109) ) Yes No 5 Yes -
complete AutoClass (ExpMax) [110]  O(kd*Ng) Yes Yes - Yes Yes
ctral [88, 89 (0] roughl No Yes Yes No
IS;I:CH [9[0] ! OEZ)) (roughly Yes Yes _ No No SVM clustering [111] O(N'®) No No - Yes Yes
CURE [91] O(N) Yes Yes - No Yes
ROCK [92] OKN?) No Yes L3 Yes - Graph-based
Chameleon [93] oy Yes Yes 13 No Yes MCODE [19] O(Nd*) No Yes 6 No -
LIMBO [94] O(NlogN) Yes Yes “ No - RNSC [112] oNY No Yes I No -
hMETIS [95) ‘Fast’ No Yes 510 No No SPC [65, 70] oY Yes Yes | No Yes
Power graphs [96] O(Nd*) Yes Yes 510,12,13 Yes - MCL [113) oON?) Yes Yes " No -

Source: A roadmap of clustering algorithms: finding a match for a biomedical application
B.Andreopoulos et al; Briefings in Bioinformatics (2009) VOL 10. NO 3. 297-314



Clustering Wishlist

Unaffected by the order in which the data are presented
Not assume any specific cluster shape

Proper separation of overlapping distributions
Automatically discover the “ideal” number of clusters
Resistant to noise (e.g. not assign outliers in clusters)

Capable of clustering millions of observations



Tests with synthetic data

comprising a total of 799,956 points
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Tests with synthetic data

comprising a total of 799,956 points
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Tests with synthetic data

INPUT: 14 shapes, comprising a total of 799,956 points

Spheres 1 (blue) and 4 (dark blue) and ellipse 1 (yellow) have 200,000 points
Spheres 2 (cyan) and 3 (light blue) and ellipse 2 (brown) have 20,000 points

Tores 1 (red) and 2 (dark red) have 16,652 points

Tores 3 (pink) and 4 (magenta) have 8,326 points

Bananas 1 (green) and 2 (orange) have 30,000 points and different curvatures
Bananas 3 (dark green) and 4 (dark grey) have 15,000 points and different curvatures
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DBscan
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Phenograph
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FlowSOM (run
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FlowSOM (run #2
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Megaclust / hdbscan
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* Number of Computations

Hierarchical Clustering

Memory
1e6 * 1e6 * 4 = 4Tb

Parallelization

observations computation
10 50
100 5000
1000 500000
10000 50000000
100000 5000000000
1000000 500000000000

time
60 us
6 ms
600 ms
1 mn
1 h 40 mn
7 days



Density-based hierarchical clustering

Compute all pairwise distances and retain only those that are equal
or smaller than a given distance threshold T

A cluster is formed by single linkage and retained if it contains at
least N points. Clusters too small are ignored

Hierarchical clustering is obtained by repeating the clustering for
increasing distance thresholds

I'from T, to T, in s steps



Density-based hierarchical clustering




Density-based hierarchical clustering

e D<1and N=3




Density-based hierarchical clustering

e D<2and N=3




Density-based hierarchical clustering

e D<3and N=3




Density-based hierarchical clustering
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Assignment to the final partition

« At the end of the hierarchical clustering, seed clusters are
determined and the points are re-attributed to the closest seed



A more realistic output
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Parameters affecting results

7141 — 7.000 — 6856 — 6633 — 6481 — 6325 — 6.164 — 5916 — 5745 — 5568 — 5385 — 5292 — 5099 — 4899 — 4690 — 4583 — 4359 — 4243 — 4000 — 3.873 — 3606 — 3464 — 3.317

-f first distance to test

-1 last distance to be tested

-s step increment for the distance test

-k minimum percent of events needed to retain a cluster
-n minimum number of events needed to retain a cluster
-P pctAssigned (Stop sampling as soon as pctAssigned

events have been assigned)
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@n120, Cluster 18 (1197 events, 0.005% live cells)
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Tests with noise

INPUT:
- 8 overlapping spheres with 125,000 points, comprising a total of 1e6 points
- random noise 500,000 points

100

o 0
200
400

600
800




K - means
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DBscan
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Megaclust
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Input and parameters affecting results

« numerical range of markers
» will each marker contribute equally to the distance metric ?

« data sampling
» will each sample contribute equally to the cluster discovery ?

« data acquisition calibration
e can samples be mixed in a single run ?

* input quality
« are acquisitions stable ?

Comp-BV711-A :: CD19

o
10° 10t 10°

Comn-APC-A :: CD3



Speed

Data Analysis Tradeoffs

Quality

Cost

Practical considerations

consider computer time

consider human time (to code or operate)
consider delivery time

consider desired outcome

consider quality really necessary



