Chemo-proteomics approaches
for in-depth profiling of drug-
target interactions in living cells



Protein environment dramatically changes the
chemical properties of amino-acids

—
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Key message: Intrinsic protein reactivities provide “handles” for chemical
biologists to mine protein’s biochemical and cellular functions



Protein Reactivity and Nucleophiles

Nucleophilic Substitution Reaction (Sy2) Some “guideline” rules for nucleophilicity:
: -NH,>RO>0OH>ArO>RNH,>NH;>H20
S ‘.’ \ L -S(e.g. cys) > O (e.g. ser)
Mu:. + »C —% MNui------C . XK —s MNu—C + X
d \\x \

Nucleophile(Nu) attacks an electron deficient center displacing a good leaving group(X)

Examples of catalysis:
Catalytic Triads in Serine Proteases

Nucleophile- i R4

'7%)—”(’ ) His 57

Ser 195 Asp 102 tripeptidyl peptidase 3

Figure 16.41 The Molecules of Life (© Garland Science 2013)



Protein Reactivity and Nucleophiles

Cysteine-based catalysis

Oxyreductases Transglutaminase

TRI BRI

-2 cysteine residues coordinate catalysis
-A more canonical catalytic triad with a nucleophilic cysteine




Formulating the problem in a chemical biology perspective

Cysteine Reactivity

pKa ~7/
SH

pKa ~8
SH

-Unlike “functional” and “non-functional” serines, cysteines are more
reactive/nucleophilic independently of their chemical environment

-Which problem does this poses ?



Formulating the problem in a chemical biology perspective

Cysteine Reactivity Cysteine labeling probe

pKa ~7 .\)Oku,\/
H
SH I I

lodoacetamide

pKa ~8
SH
Cysteine labeling mechanism

m HM Enzyme
HN 5 Cys —- P
W v “"\Er:m \H/\ 5 Cys
o [+]

-lodoacetamide will label cysteines that are accessible and not
involved in dissulfide bonds



Formulating the problem in a chemical biology perspective

Cysteine Reactivity Cysteine labeling probe

pKa ~7 .\)kn A

SH
/ lodoacetamide

pKa ~8
Cysteine labeling mechanism

H;N Enzyme
HN 5 Cys —- P
W v “"\Er:m \H/\ 5 Cys
o [+]

-lodoacetamide will label cysteines that area accessible and not
involved in dissulfide bonds



Chemical Probes
-Basic building blocks

-

-Specificity element
+ Chemical Reactivity
+ Binding component
+ Or both



Chemical Probes
-Basic building blocks

l -

-Specificity element

-Linker region
+ Non functional (just for solubility)
+ Functional
-encode cleavage site
-isotopic tag for MS



Chemical Probes
-Basic building blocks

-Specificity element
-Linker region

-Reporter element
+Directly attached
(biotin, dye)
+Latent
(azide, alkyne)



Chemical Probes
-Basic building blocks

-Specificity element An example:
-Linker region

-Reporter element

Where is what ?




Chemical Probes

-Basic building blocks

-Reporter element

Fluorescence Gel Microscopy MS analysis
JzL184 2+ _ET .8 i:,i», Nal LT;?
EEREEN IEER W o)
-- —_‘_;‘_-. ..-7-; ——=5 'y )'\/\/\/\/\/\/\/\/[ - |
o Einnge = <88

Trypsin digestion

1 Avidin enrichment

LC/LC-MS/MS

w——— - Light
PR e Heavy
—_— R = e

MudPIT SILAC

identification quantification



Chemical Probes
-Basic building blocks

-Linker region
(with additional functionality)

TEV protease recognition domain

b
N,

OH ) 0 OH il /r‘
Wu“ﬁ“wuw“iﬁ%fg@u U’Lﬁ"\dm&im -
E— Ao T D —

TEV protease
Biotin P Light/Heavy Azide
valine

cleavage site



Chemical Probes
-Basic building blocks

TEV protease recognition domain

-Linker region : . 5
(:I&\/\iu/\/\/\gnwuwniﬁuqujngju%iuw%u/\gm

O)/;H Y DEV protease __"_l

-Catch and release protocols ™ ST Loy sace

-Catch with Biotin
-Release with TEV protease



Chemical Probes
-Basic building blocks

-Specificity element

+ Chemical Reactivity

Electrophilic probes

0.0 Q o 0
W e pe 0 H
EODs F=p
b OEt mo’u\‘)\'r N
Cysteine Serine 0
proteases hydrolases

0 OH
0.1.0 o, 0
O\M P = B
K oY %0 fng®
O

Broad-spectrum
electrophiles

Cathepsins

Caspases Kinases



Take-Home Messages

-Bio-orthogonal chemistries are widely used in probe development

-They can be compatible with living cells or other processed
biological samples (cell lysates, tissues, etc)

-Often used together with unnatural aminoacids and chemical
probes

-Chemical probes have three basic elements: specificity, linker,
reporter



Typical strategies for target
identification/deconvolution

Biological
sample

Small
Molecule

Biochemical
processing

Protein
Identification

@ @m cccep

ABPP /|

Proteomics
approaches
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Mass Spectrometry — Quantitative
approaches

-The most used strategy is called Stable Isotope Labeling by Amino
acids in Cell culture (SILAC)

"8cq-Lys: "°C4H,,N,0

oCH, -Heavy lIsotopes of

Cells in light, 2 Cells in heavy, Whole proteome

“Celysmedum (M G lysmedum  encoded wih Clys arginines and lysines are
— \ - @ typically used
@ -Cells have to be passaged
a number of times for full
incorporation.
-But there are other
possibilities




Mass Spectrometry — Quantitative
approaches

-The most used strategy is called Stable Isotope Labeling by Amino
acids in Cell culture (SILAC)
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miz
Introduces a
6-Da mass shift

-Peptides containing heavy
amino acids have a distinct
an identifiable mass
signature
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Mass Spectrometry — Quantitative
approaches

-Typical SILAC experiment always include a reference state and a

perturbed state

Control Perturbed
State B (heavy %)

State A (light e
Mix celis/lysate
1:1

Optional protein or peptide fractionation
analyze sample with mass spectrometry

Intensity of MS signals between
light and heavy peptides give
relative protein abundance
between cell states A and B

%«

Intensity

m/z

- The perturbations can be diverse.
Specially amenable to treatment with chemical compounds for
20

guantitative analysis of downstream effects.



Quantitative Chemoproteomics

Cc SILAC/competition

-SILAC cells lysed an incubated
with compounds

-small molecule immobilize in
matrix

-Perturbed condition incubated
with competitor

-Eluted proteins are analyzed
by LC-MS/MS

-How do we distinguish the true
targets ?

21



Quantitative reactivity profiling predicts
functional cysteines in proteomes

Eranthie Weerapana'**, Chu Wang'**, Gabriel M. Simon'~, Florian Richter™*, Sagar Khare®, Myles B. D. Dillon?,
Daniel A. Bachovchin'?, Kerri Mowen?, David Baker™*~ & Benjamin F. Cravatt'?

Proteomes
(cell lysates)

@._.
X6

Gﬂ
“ec

Proteome B

-Initially the proteomes are handled separately )



Quantitative reactivity profiling predicts
functional cysteines in proteomes

Eranthie Weerapana"?*, Chu Wang"?*, Gabriel M. Simon'~, Florian Richter™*, Sagar Khare®*, Myles B. D. Dillon?,
Daniel A. Bachovchm“ Kerri \Iowen David Baker™*~ & BenjammF Cravatt™?

Proteomes lodoacetamide
(cell lysates) Probes

G nght TEV tag

Proteome A

Click chemlstry
10x more

G Heavy TEV tag
n— e
@ @ Click chemistry

Proteome B

-Proteome are incubated with different probe concentrations



Quantitative reactivity profiling predicts
functional cysteines in proteomes

Eranthie Weerapana"?*, Chu Wang'?*, Gabriel M. Simon'~, Florian Richter™*, Sagar Khare®*, Myles B. D. Dillon?,
Daniel A. Bac,hovchln“ Kerri \Iowen David Baker>*~ & BenjammF Cravatt'?

Proteomes lodoacetamide
(cell lysates) Probes

G Light TEV tag <+ =
N3—-—. N\. "
@@ @ . Protease ¥
Click chem|stry t\. Digestion @
>
Y
A

Proteome A
10x more
—_—

G Heavy TEV tag @—Q
—-—0
@ @ Click chemlstry @8

Proteome B

-In the lower concentration proteome proteins with more reactive
. . . 24
cysteines will be preferentially labeled



Quantitative reactivity profiling predicts
functional cysteines in proteomes

Eranthie Weerapana"?*, Chu Wang'?*, Gabriel M. Simon'~, Florian Richter™*, Sagar Khare®*, Myles B. D. Dillon?,
Daniel A. Bac,hovchln“ Kerri \Iowen David Baker>*~ & BenjammF Cravatt'?

Proteomes lodoacetamide
(cell lysates) Probes

G Light TEV tag <+ =
N3—-—. N\. "
@@ @ . Protease ¥
Click chem|stry t\. Digestion @
>
Y
A

Proteome A
10x more
—_—

G Heavy TEV tag @4—@
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Chemoproteomics

Proteome B

-In the lower concentration proteome proteins with more reactive
. . . 25
cysteines will be preferentially labeled



Quantitative reactivity profiling predicts
functional cysteines in proteomes

Eranthie Weerapana"?*, Chu Wang'?*, Gabriel M. Simon'~, Florian Richter™*, Sagar Khare®*, Myles B. D. Dillon?,
Daniel A. Bac,hovchln“ Kerri \Iowen David Baker>*~ & BenjammF Cravatt'?

Data collection and processing

Biochemical processing stage

G nght TEV tag 84—{ ?4_();\’
@8 Clkhmtry @@%\ Hiv

Proteome A

G@ HNavyTEvt g C%—CG | l LC-MS/MS
@ CI ok chemistry @

Proteome B l

Digested Petides :
from labeled proteins -Peptide sequence
P -Residue labeled

l -Proteins Identity
-Labeling Ratios

Chemoproteomics

26



Quantitative reactivity profiling predicts
functional cysteines in proteomes
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Biochemical processing stage P vpua v
CKB LCP1
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G nght TEV tag 84—{ ?4_();\’
@8 Clkhmtry @@%\ Hiv
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% “'ﬂl'
G Hea vyTEVtg C%—C 54_&
@8 Click chemistry @G

Proteome B

Data collection and processing

v

LC-MS/MS

!

-Peptide sequence
-Labeled Residue
-Proteins Identity
-Labeling Ratios 27




Quantitative reactivity profiling predicts
functional cysteines in proteomes

Eranthie Weerapana"?*, Chu Wang'**, Gabriel M. Sunon . Florian Richter™* Sagar Khare®, Myles B. D. Dillon?,
Daniel A. Bachovchin'?, 2 Kerri \Iowen David Baker>*~ & BenjammF Cra\att o

Biochemical processing stage P vpua v
CKB LCP1
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oG- mmz G fec,
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Data collection and processing % Heavy Tags or proteins
‘1’ B — with less
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LC-MS/MS Time .
isotopes(e.g.
l C13, N15, H2 ...)
-Peptide sequence
-Labeled Residue Ratio between light and heavy
-Proteins Identity | peptides serves as a measurement of
-Labeling Ratios cysteine reactivity 28




Quantitative reactivity profiling predicts
functional cysteines in proteomes

Eranthie Weerapana"?*, Chu Wang'**, Gabriel M. Sunonl Florian Richter™*, Sagar Khare®, Myles B. D. Dillon?,
Daniel A. Bachovchin'?, 2 Kerri \Iowen David Baker>*~ & BenjammF Cravatt'?

Biochemical processing stage P vpua v
CKB LCP1
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(3 nght TEV tag Gq—c ?4_();"
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Question: Which ones are the most reactive cysteines ?
Data collection and processing High or low ratio ?
LC-MS/MS

!

-Peptide sequence
-Labeled Residue
-Proteins ldentity
-Labeling Ratios 29




Quantitative reactivity profiling predicts
functional cysteines in proteomes

Eranthie Weerapana"?*, Chu Wang'?*, Gabriel M. Simon'~, Florian Richter™*, Sagar Khare®*, Myles B. D. Dillon?,
Daniel A. Bac,hovchln“ Kerri \Iowen David Baker>*~ & BenjammF Cravatt'?

Biochemical processing stage P vpua v
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l/ RT (min) RT (min)
-Peptide sequence Lower the ratio — higher the reactivity

-Labeled Residue
-Proteins Identity
-Labeling Ratios 30




Quantitative reactivity profiling predicts
functional cysteines in proteomes

Eranthie Weerapana"?*, Chu Wang"?*, Gabriel M. Simon'~, Florian Richter™*, Sagar Khare®*, Myles B. D. Dillon?,
Daniel A. Bachovchin'?, 2 Kerri \Iowen David Baker>*~ & Benjamm F. Cravatt'?

Biochemical processing stage Biological interpretation
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!

-Peptide sequence
-Labeled Residue
-Proteins ldentity
-Labeling Ratios 31




Quantitative reactivity profiling predicts
functional cysteines in proteomes

Eranthie Weerapana"?*, Chu Wang"?*, Gabriel M. Simon'~, Florian Richter™*, Sagar Khare®*, Myles B. D. Dillon?,
Daniel A. Bachovchin', 2 Kerri \Iowen David Baker™*~ & Benjamm F. Cravatt'?

Biochemical processing stage Biological interpretation
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-Peptide sequence Rigq <2.0 2.0<Ay, <50
-Labeled Residue Highly reactive cysteines (low ratio) are enriched
-Proteins Identity in functionally annotated residues (34.8% Vs 4.%)
-Labeling Ratios 32




Proteome-wide covalent ligand discovery in native
biological systems

Keriann M. Backus'*, Bruno E. Correia'*, Kenneth M. Lum', Stefano Forli?, Benjamin D. Horning', Gonzalo E. Gonzalez-Piez
Sandip Chatterjee?®, Bryan R. Lanning!, John R. Teijaro*, Arthur J. Olson?, Dennis W. Wolan? & Benjamin F. Cravatt
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) <

1£

o' ® O
@ O & What is the critical point that enables

the measurement of inhibition ?
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N3 ‘Click’

) Combine Digest
2) Enrich LC/ LC-
MS/ MS
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Proteome-wide covalent ligand discovery in native
biological systems

Keriann M. Backus'*, Bruno E. Correia'*, Kenneth M. Lum!, Stefano Forli%, Benjamin D. Horning', Gonzalo E. Gonzdlez-Péez?,
Sandip Chatterjee?®, Bryan R. Lanning!, John R. Teijaro*, Arthur J. Olson?, Dennis W. Wolan? & Benjamin F. Cravatt
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Proteome-wide covalent ligand discovery in native
biological systems

Keriann M. Backus'*, Bruno E. Correia'*, Kenneth M. Lum!, Stefano Forli%, Benjamin D. Horning', Gonzalo E. Gonzdlez-Péez?,
Sandip Chatterjee?®, Bryan R. Lanning!, John R. Teijaro*, Arthur J. Olson?, Dennis W. Wolan? & Benjamin F. Cravatt
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Proteome-wide covalent ligand discovery in native
biological systems

Keriann M. Backus'*, Bruno E. Correia'*, Kenneth M. Lum!, Stefano Forli%, Benjamin D. Horning', Gonzalo E. Gonzdlez-Péez?,
Sandip Chatterjee?®, Bryan R. Lanning!, John R. Teijaro*, Arthur J. Olson?, Dennis W. Wolan? & Benjamin F. Cravatt

o Ratio (R)
Fragment reactivity
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Proteome-wide covalent ligand discovery in native

biological systems

Fragment electrophiles screened by isoTOP-ABPP
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Chemical Probes
-Basic building blocks

-Specificity element

+ Binding specificity

IMPORTANT: Generally we always need a covalent bond
between protein target and the probe — merely binding
groups don’t have that functionality

SOLUTION: Photocrosslinkable group can be added to the
probe



Chemical Probes
-Basic building blocks

-Specificity element
SOLUTION: Photocrosslinkable group can be added to the
probe

Photoaffinity probes

‘Y"‘ F

F

To forge a covalent bond with the target these groups have to
be irradiated with UV light.



Chemical Probes
-Basic building blocks

-Specificity element
SOLUTION: Photoaffinity group can be added to the probe

Photoaffinity probes

0O i

Qleoyl (18:1) H
N

Lipid Probe |
: @)
(anandamide) X R

/N:N S




Chemical Probes
QOleoyl (18:1) H
N oH

O
NN
7\ I

One can map the interactions between lipids and proteins.

A Global Map of Lipid-Binding Proteins
and Their Ligandability in Cells

Micah J. Niphakis,'-2* Kenneth M. Lum,".2 Armand B. Cognetta lll," Bruno E. Correia,’ Taka-Aki Ichu,’ Jose Olucha,’
Steven J. Brown,’ Soumajit Kundu,’ Fabiana Piscitelli,” Hugh Rosen,’ and Benjamin F. Cravatt’”

The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, CA 92037, USA

2Co-first author

*Correspondence: mniphak@gmail.com (M.J.N.), cravatt@scripps.edu (B.F.C.)

http://dx.doi.org/10.1016/].cell.2015.05.045



Quantitative Chemoproteomics with
Activity based probes

What if could do this in live cells ?

A Global Map of Lipid-Binding Proteins
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WE CAN !
How ?

Bio-orthogonal Chemistry
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Th|s is all good and great !
But what is the main limitation of probe-based
approaches?
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Take-Home Messages

-A key challenge in drug discovery is to understand the mode of action of
small-molecule candidates.

-Understanding the targets of a small molecules is essential in drug discovery.

-Chemoproteomics allows for a broad characterization of the targets of small
molecules.

-Chemoproteomics together with bioorthogonal chemistry approaches can
characterize the target landscape in living systems.

-Powerful (quantitative) proteomics approaches are becoming ubiquitous in
biological research.(And most likely you will have to use them at some point)
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