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Interactive Sequence

=M, i i . - i _ .

= Whiat is your background?
= What comes to your mind when you hear about microorbots for medicine?

@3 min



Trend towards precision medicine

nturelNSIGHT
e PRECISION
\ ) N MEDICINE

Produced with support from:

AstraZeneca’”fi>

What science can do

We need new tools to
Improve diagnosis at the
point of care and treat
diseases in a more
targeted fashion



Microrobots for medicine...

.

Google search result for “microrobot”



...might look more like that

Synthetic
Inorganic
Assgeirsson et al, Lab Chip, 2021
S_yntr_]etlc : Biological/Biohybrid
Organlc & Inorganlc Schuerle et al, Sci Adv, 2019
Schuerle et al, Nanoletters, 2016 Bio-inspired

Schuerle et al, Sci Adv, 2019



Principles from robotics
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Tissue stiffening as a driver in cancer progression

@2@ ECM Changes

g “ Normal /\ Tumor
9 N\ Architecture

Noo / Composition . 77
© Cancer Cells % _ \ L™
@ Endothelial Cells (g '

Mechanics
~ . /7 Fibroblasts

Micek et al., iScience, 2020

Understanding and altering tissue
mechanics at the microscale to inform
drug development
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Probing mechanical properties at the microscale

Cavitation Rheology =~ Shear Rheology
Modulus: Pa-kPa Modulus: Pa-MPa

Narayanan et al., Front. Bioeng.., 2020

Compression Testing
Modulus: kPa-GPa

in situ microprobe to infer
local shear moduli
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Magnetism

Interactive Sequence

00
00
g@'ﬂ'ﬂ‘ﬂ‘@ 'ﬁ'ﬂ‘ﬂ‘ ’H‘. w 'H‘ M e
= Form groups of 3-4 students
= Think about the following questions:
= What do you know about magnetism?

= Which classes of magnetism do you know?
= To which category belongs human tissue?

@5 min
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Classes of magnetism

Can utilize the susceptibility to categorize types of magneti X =

Diamagnetism

M
H

m=xH
;(=-(e216m02)r2

= X is small and negative (~ -10° -=10-%): DIAMAGNETIC

emu)

0

examples: gold, copper, silver, bismuth, silica, many molecules (and supercondt *

=X js small and positive (~ 102 or 106): PARMAGENTIC Parama o9
examples: aluminum, platinum, manganese

m = tanh (y)
y=gsluB/kBT

= X is large and positive (>>1; 50 — 10,000): FERROMAGNETIC
examples: iron, cobalt, gadolinium

Ferromagnetism

reteres [ o H (Oe)
AVt >R TV NEC | amagnetic M=0 . H‘L[“/[

A 44144144144 — Ferromagnetic M>0 jﬁ

A V2V AV AV AV A —— Antiferromagnetic M= 0 ”

T‘ v 1‘ % 1‘ W T ¥ 1‘ v T * Ferrimagnetic \] > ()



Levitating frog und strawberry

Levitating frog

https://www.youtube.com/watch?v=A1vyB-O5i6E

Levitating strawberry

https://www.youtube.com/watch?v=uY8btflZ9Z8
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Applying magnetic forces and torques

Magnetic Torque:

Magnetic Force:

ETH:z(rich
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Microrobots for wireless in situ probing of tissues

open loop control

Schuerle, Avalos, et al., Sci Rob, 2017

Kummer et al., IEEE Transactions on Robotics, 2010 Conflict of interest disclosure:
Schuerle et al., IEEE Transactions on Magnetism and Magnetic Materials, 2013 Simone Schuerle is co-founder of Magnebotix AG
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Fabrication of magnetic microrobots for tissue probing a

Microrobot synthesis Microrobot functionalization Dr. Asgeirsson

]

Dr. Christiansen

E e o Xl Yo XX a0y d

S Do oo/
A e e e N e N e N a2y
JS oo o oo/

1-3 um diameter,
10-20 pm length

In collabortaion by Prof. Salvador Pané, D-MATL 20% ND-PEG-CFASSA, S0% ND-PEGHIS

Dr. Valentin

Microrobot characterization Microrobot embedding

15— e 1
3 E
2107 Dr. Nima Mirkhani
g — »
0 m Width S
% 5 B Length
o
L

0

0 5 10 15
Dimension [um] Applied field yH [T]

Asgeirsson et al., Lab on a Chip, 2021 o



Microrobot actuation and readout: extracting local estimated shear moduli

i) Max. Angl
(i) ai_\nge
, mm)  Stiff
(ii) Max. Angle
mmm) | eSs stiff

-

Time [sec]

U(y,ar,@) = Umech(a) a5 Ufield(y’e) r Uani(y’a) |

l

Effective shear moduli G
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Probing the mechanical environment of a cell in vitro

uRed KD K
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Stiffness probing with temporal resolution
MRods sense matrix softening during enzymatic degradation

Collagenase

+ (-Telopeptide

EGPPGPQG (C2C
GPPGPQG (C1,2C

Max. deflection [°]

O—T— T 71T

immediately after 2h after incubation 0 S0 60 90 120

collagenase addition Timepoint [min]
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Applying controlled mechanical cues Lab on a Chip

Maximum Radius of Influence [um]

Our microrobots deflect collagen
matrices over several tens of micron and
can apply tens of pNm torques, similar to

cell contractile moments!

21

Asgeirsson et al., Lab on a Chip, 2021



Applying controlled mechanical cues to the tumor microenvironment

WS/ @2@ How do mechanical
» e / . cues affect cancer
’ia g' ﬂ invasion?

@ CancerCells ) e A
@ Endothelial Cells % ‘.

/57 Fibroblasts
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Applying controlled mechanical cues to the tumor microenvironment

How do Rot. @1 Hz BM(—:— : Circularity

mechanical cues | s Roundness
affect cancer Feret Diameter
invasion?

Area

~ L)
Speed Control

d LRl - -

In collaboration with Ece Su Ildliz and Nicola Acteo
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Mechanical cues drive cancer cell invasion

Top View

Side View

MDA MB 231 GFP

Normalized Feret Diameter

2.5- *
B
ns
2.0 | T
T
1.5
1.0

control

ho rotating
field field
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Magnetically induced mechanical deformation triggers expression

of migration- and mechano-related genes

1 1
15 - Significance ! . @ATF3
@ NotSignificant . !
© significantUp ¢ :
O FoldChangeUp : :
O FoldChangeDown . '
@ FoldChange&SignificantUp : I
‘ :
! \  @FOSB
1 1
10 B : :
1 1
m 1 1
=2 ' :
o 1 '
> 1 '
L] 1 '
m 1 ]
e ‘ ;
1 ]
o)) ' Y@ TUFT1
o ' 1
J 1 1
L] 1 |
1 1
51 : :
1 1
! ' _DUSP1
1 1
. :. ABL2
, RHOB g b1
1 NOCT{
COL12AT®CSRNP1

5.0 2.5 0.0 2.5 5.0
Log2 Fold Change

In collaboration with Ece Su Idliz and Nicola Acteo

TPM counts

3 Rods, No Field
El Rods, Rotating Field

Asgeirsson et al.,
Biomaterials Science, 2023

-ggvc»xﬁssﬁcs\%; rsc.li/biomaterials-science
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Proteases are an important hallmark of disease

Metalloproteases ‘
\& | @ » N .
“©® © @ Blooddisorders

Serine proteases r oy

Cysteine proteases \/‘ \;
2 'Y=\ Cancer
\ f 4 P~
C j\‘ @)
Aspartic proteases =~ /\" A
: / \/ \ Rl ey Arthritis
Threonine proteases 4 |

*

Disregulated
proteolysis

Elevated protease
expression

» Misfiring of protease

signaling

Distoreted
protease-inhibitor
equilibrium

27



Proteases are molecular scissors

VGFYESDV octapeptide cleaved by MMP-2

Proteases break peptide bonds via hydrolysis

€ )

Peptide

Protease activity can be measured with peptide substrates
and quenched fluorescent probes

on - ®

28



Biosensing of proteases

Fluorescence guided surgery

J.C. Widen et al., Nat. Bio. Med. Eng., 2021
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Ultrasound imaging

= 1 to 10 MHz sound waves

= Mechanical wave propagates at a speed dependent on the acoustic
impedance of the medium

= Respective echo signal is used to construct an image
= |maging depth limited in most organs to approx. 10 cm
= High resolution

= High endogenous contrast

Ultrasound
Fetus (ultrasound)

Transd ucerﬂ

—— Tissue
—> Original

Gambhir et al.,, Nature Rev Material, 2017.
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Microbubbles offer a platform to integrate responsiveness

Microbubble as ultrasound contrast agents

SPLEEN

SPLEEN

Primary lipid (90 %)

]

Emulsifier lipid (10 %)

Gas core

P.L. Allan et al., Clinical Ultrasound, 2011

SonoVue®
Powder for dispersion
tor injection

8 microlitres/mi

| s
(=~

|
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Chemical modulation
of shell parameters

Targeting ability

/ > \ Ny
/ W Thrombin / \'3
1 T N b I
=, = Wy

J. Lux et al., ACS Appl. Mater. Interfaces, 2017

Mechanical modulation of

shell through pH-based cleavage
Nonlinear ultrasound

$ §
pH < 5 2 e
C——
oH > 7 g %
[ 2

M.W.N. Burns et al., ACS Appl. Mater. Interfaces, 2020

Incorporation of responsiveness through modulation of the shell

Mechanical modulation of
shell through aptamer hybridization

Nonlinear ultrasound

- /

7R T

| o~ Thrombin N S
/

\\ \\\:-_—,//// ] - -."/ ( ,l

M.A. Nakatsuka et al., Adv. Mater, 2012

Mechanical modulation of
bacterial gas vesicles through protease

cleavage
Nonlinear ultrasound

A\

4 Protease g o
g T 2

A. Lakshmanan et al., Nat. Chem. Bio., 2020
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Protease responsive ultrasound contrast agents
(PRUCAS)

Dr. Dragana Ristanovic

E_—
= -
o §
~ 31, PAA-functionalized X
ME microbubble Metalloproteases

"\ Qg

» Time

Increase in
signal after
linker cleavage

Reflected energy of microbubbles
in an ultrasound field

0. oH DSPC (99 %)

‘LI]\ DSPE-PAA (1 %)
n Perfluorobutane

Poly (acrylic acid)

\ 4
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Crosslinking modulates mechanical properties of microbubbles

Polyacrylic acid
functionalized MB 4 links per DSPE-PAA

-
-

0 OH n—
¥ NHS/EDC W) ~’
\\ ) ‘\‘ \‘ \‘ _N
. n Crosslinker e *

. DSPE

”~

Poly (acrylic acid)

Different crosslinker designs

|
>
*
A

-
o i

-
-,-
-

Relative change
in attenuation [-]
h |

! 4 arm linker

o
1
fl

T I I | 1
0 4 8 12 16

Number of links [#]
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Network model predicts observed influence of crosslinker

Shell network

Node
“

2 3

5

X
Weighted

edge

DSPE-PAA
@ 4 arm crosslinker

Incidence matrix

3)

OO rh WN -
)
S lo o o N

O]

= Nr. of connections
] = Amount of arms
of the crosslinker

Bipartide projection

7 5

60 % connectivity

' 100 % connectivity

1

|

1

--------------------- -l

Predicted shell network

1= Yot arerorOreEOLeL O oL oL
o A
>
::' L]
2 (-
s ;"
c |4 -~ 4 arm
Q | -=- long 2 arm
O !
;) short 2 arm
0= I I I |
0 4 8 12 16
Number of links [#]
Experimental data
19 ek S 4
I' - =
‘ L2
- |
2 q0m
O )
a2 |
0=y | I T 1
0 4 8 12 16

Number of links [#]
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Peptide-crosslinked microbubbles report proteolytic activity

Peptide-crosslinked High proteolytic

; _ _ activity at pH 7
microbubble shell Amino acid sequence

il of peptide crosslinker <€ 9
Lo’ Proteinase K
" A - -
\‘ \‘ "" ~~~~
A} - -
SR [ { ¢
% “‘ Pepsin
A Y

-------

Dubey , Christiansen, Vizovisek, Gebhardt, Feike, Schuerle, Small, 2022, and EU Patent Application No.: EP19202465

No proteolytic
activity at pH 7

N
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Diagnostic targets

We are now working on applying this concept for Sl 5

Rheumatoid arthritis

» [nflammatory bowel disease

» Lung fibrosis

=  Skin fibrosis

Signal

= |nfection

Gut biopsy
samples

Synovial fluid e

4
samples M

LC-MS/MS analysis of the proteome
and the intrinsic peptidome

)

Pascal Poc

Ines Oberhuber
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The delivery problem of (cancer) nanomedicine

Mononuclear phagocyte system Nonspecific distribution Hemorheological limitations

Cell membrane internalization/
endosomal escape

Only a dismal fraction of nanoparticle-based
drugs reaches the tumor sites

Blanco, Shen, Ferrari, Nature Biotechnology, 33, 941-951 (2015)



Bioinspired microrobots as delivery vehicles

Video: Howard Berg

Non-reciprocal motion as
effective means for
propulsion at the Low
Reynolds numbers

" CWorCCW

Flagellum

Planar

Helical

\
\ .
+ Dyneins

4 ,
h 4
i 4
! \\
' S
g P Y
¢ -7 ___|Axoneme -
L7 %
" \
! Micro-
! tubules |
' i
\ 7 '
:
:
‘

Using magnetic fields
as external motor

Palagi, S., Fischer, P. Bioinspired microrobots. Nat Rev Mater 3, 113-124 (2018).
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Biological/biohybrid microrobots: a robotics perspective

=\ @\

Video: Howard Berg

Non-reciprocal motion as
effective means for
propulsion at the Low
Reynolds numbers

— Environmental
D sensor

Propeller T

Adapted from Forbes, Nat Rev Cancer, 2010
Christiansen et al, Annu Rev Control Robot Auton Sys, 2022

Bacteria are somewhat smart “microrobots”
= On board sensing, e.g. chemotaxis

= Self propulsion

41



Bacteria for medical applications—a (b)old idea

German physician W. Buschin R. Pearl finds lower
observes tumour regression after incidence of cancerin
administration of S. pyogenes patients with active TB

1868 1891 1929

American physician William ,“"“‘5
Coley treats hundreds of .
patients over 30 years with
his toxin consisting of

inactivated bacteria 3

BIOMED VALLEY

DISCOVERIES

B CNV-NT: Clostridium novyi-NT — Tumor-fighting
= Oldest form of immunotherapy, pacers
. . . Source: In-licensed from Johns Hopkins Universit
experiencing a renaissance Stge:Prse p '

* Anaerobic bacteria amplify in tumors
» They provoke immune response

» Native or genetically engineered for

on board drug production LlV'“g theraPEUtICS‘

Scientists genetically modify bacterla to deliver drugs
By Amy Maxmen

42



But... = Clinical trials limited to intratumoral injection
= Only about 1% of intravenously administered dose reaches tumor
= Limited tumor penetration

= Limited tolerable dose

Need for effective control to increase safety and efficacy at acceptable dosages

Effective powering .

Feedback and Tracking C@) %%

Controllablllty



Means to magnetically control living bacteria-based microrobots

Natural propulsion

RBC with
DOX and SPIONs

- ..,\\ Oxic-Anoxic Transition Zone
/ \ \ -~ \\ .-,1 (0ATZ) h'
/‘ Il\ ! O Clockwise Clockwise O
- oY 23 :
¥ :';‘.
I,I \
0.1 pN Alapan et al. Sci Rob, 2018 Schuerle et al., Sci. Adv., 2019

a4



Means to magnetically control living bacteria-based microrobots

Natural propulsion Directing magnetic field
—> . .
B | .
o
Y - -
- ’—\ -~ .d! ﬁ | ,//‘ v \Rs
v H\\ ;;‘\_-:/,‘: MagnebotiX
R | N\ ‘
oY e - y
0.1pN 0.1 pN

Limited by molecular motor
Limited to paraturmoral
injections

Conflict of interest disclosure: Simone Schuerle is co-founder of Magnebotix AG



Means to magnetically control living bacteria-based microrobots

Natural propulsion

0.1 pN

0.1 pN

Limited by molecular motor
Limited to paraturmoral
injections

Magnetic field gradient
VB

>

1pN
1300 T/m

Poorly scalable
Limited to
superficial targets
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Magnetic torque based bacterial swarm control is powerful

Effective powering
and control!

Schuerle et al., Sci Adv 2019



Ferrohydrodynamics with bacterial swarms as living ferrofluids

. .,

Velocity [um/s]

40-

30+

N
o
1

10+

Zahn et al., Appl Phys Lett 2007.
(c) ®

12A

v (mm/sec)

5A

500 1000 1500 2000
f (Hz)

- 12mT
- 4mT

O -

15 20 25

Hz

Response of bacterial swarms under rotating magnetic fields similar to synthetic ferrofluids
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Magnetotactic bacteria generate higher flow rates

= Relatively large and
elongated bacterial body

= Shape anisotropy and
magnetic ordering of
magnetosome chains

Mirkhani et al. Adv Functional Mat, 2020

100

50

-50

-100 -

600

B(t) TA

Deviation from the mean velocity (%)

S0l 0 0 T 5o

400 600
400
200

200

== MTB

Magnetic
material
L)
Deviation from the mean velocity (%)
SO T 50
100
50 "'I All‘"g
A -
0 "‘ . _~
-50 N .
.
o =
+100 -
600 v
400
400
200 200
0 0

600

b |

Dr. Nima Mirkha

ni

ADVANCED ~
FUIEMONA
' MATERIALS

k
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Living microrobots with liposomes as versatile drug nanocargo

DBCO-sulfo-NHS ester

\AAQ  DSPE-PEG2000

DiO liposomes Merge

MFI (a.u.)

Gwisai et al, Adv Therap, 2024

1500—
5 1000
500—
0—
MTB MTB-LP

Dr.
Tintotenda
Gwisai
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Torque driven magnetic control of living microrobots
Increases transport across physiological barriers

VE cadherin

DAPI

te

conjuga
®
e
ﬂ“>
o e

MTB-liposome \ \\

A

S

2x10
1x10"
0 T
Lower Upper
chamber chamber

5%107 — | *
I =
T

34X10 — - Jo}
E 4 Pl ‘
8 3x107+
8]
c
o
O 2x1074
m
}_
=

1x107

0 I
Control DMF

RMF

60

TEER (Q-cm?)

‘0

O <

& ¢

RMF =24 Hz, 20 mT, 1 hour, n = 3, *P < 0.05

[
Control

|
RMF
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Higher applied forces are needed to break and open cell-cell junctions

Total contact force, y component (pN)

Contact force caused by the Elastic resistance profile of a micron-sized Distributions of forces required to break
rotational actuation near a junction object passing through a junction single VE-cadherin/VE-cadherin bonds
Hm | ‘ I ‘ N/m? Hm ‘ U I 1 N/m?
3.5 x 1 41 32 | w200
22’ 1 oo _ 180 30 p
2t N e g8 I 1 e ;\; K B Experimental
151 N/ 1 0°%7 140 < B E B Monte Carlo
1t 1 Ho.6 120 i) I
0.5/ 1 Hos 100 ® 2L
0 1804 80 u>.l E
-0.5¢ 1 Bo3 60 E
1t "6 15
0.2 40 8
-1.5¢ N 1 - 20 Q =
2t 1 . o)) -
25— o~ l 0 S 10F
2 0 2 Hm - =
: . [ L
0.13 _ i o 5 [
0.12 zZ 20 (0] =
0.11 = 15l o e
0.[(]1.; g 10 ] o C
0.08 S s J 0 10 20 30 40 50 60 70 80
oor 5 o ] Rupture Force (pN)
0.05 H‘f: -S| 1
0.04 g -10f
0.03 g
0.02 3
0.01 e 207 1 Panorchan, P., et al, J. Mol. Biol. (2006) 358, 665-674
% 0.5 1 2% 0.2 04 7
t(s) t(s)

~ 0.1 pN < ~ 10 pN ~ 10 pN



Increased surface exploration as driving mechanism of translocation

Directing magnetic field

Bl(t)
20—
l S
""""" 3 15—
X X X ‘_§
B 10—
Rotating magnetic field S
§T(t] g 57
<& o
| Liposomes DMF  RMF

Escribano, J., PLoS Comput Biol, 2019,155) = = = = = = = = = =




Torque driven control increases infiltration in 3D tumor models

MCF-7 (breast adenocarcinoma)
spheroids model avascular solid tumors

. T
\,

. % - -
M;?_:f:lm Autonomous taxis-based navigation
I I I 1
i I A i
t=0h t=1h t=24h t=120h

Imaging Imaging

3D tumor model

\X /
D N
\o \aiooﬁj |

@

o °

N

o P
W2
i o ==

Gwisai, T., et al. Sci Rob, 2022

120 h

ty (RFU)
w A
o o
T 7

200

100

Fluorescence intensi

RMF =24 Hz, 20 mT, 1 hour; n = 3; *P < 0.05, **P < 0.01; Scale bar = 200um

Control RMF

Magnetic torque-driven motion with taxis-based
navigation results in robust tumor colonization
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Torgque driven control increases tumor infiltration of living microrobots

) Research highlights

Return End 30007 [ Control 'jl nature reviews bioengineering

.~ tocage poin

AN ; et W B RMF Microrobotics

Magnetlc| Autonomous | - .

lactuatlor\ | taxis-based navigation | 2000 le‘ng mlcrorObOtS ta rget cancer

A A A :
t=0h

1000

r:r—||.'l'_ 'rl-.-
Heart Lung Liver Kidney Spleen Tumor

o

Fluorescence intensity (RFUImmz)

We introduced a hybrid control approach
leveraging torque-driven control and autonomous tumor taxis
by combing robotics and biology

Gwisai et al., Sci Rob, 2022
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Live imaging of microrobot extravasation in embryos of X. laevis

I —— 80— sk
2 0 _ﬂk\l\m,\_!:7\:‘7.7_};_‘5};;;j_‘Eéi;x I . |
—_— [+
.E | 1 ]
- o
AMB-1 "g 60
injection o
- o
s \ ______
i e ™ = 40-
(@ ~TiTT— 2 )
e =
= ) ®
X 20= O
RMF sweep o -%-o-
=
(20 mT, 1 Hz) S - Q0. 5)
O O
0 1 1 1
S R R
\Q(Q\ & &
XS X
S S0 S0
xQ S\ X
) ,00 ?9
. . & X
Intravascular bacteria S

g A== extravascular bacteria

_ In collaboration with Taiyo Yamamoto, Lienkamp group (UZH, Institute of Anatomy)
unublished
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Can we increase spatial selectivity and scale to human patients?

>

7 § gradient field B uniform field §(t) rotating field v § +§ (t) gating field

rotatmg fleld
Scalable to human x & 4 //
Selectivity for deep targets % x

v e - o & v /
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Focussing torque to enhance safety and efficacy
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]
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|
0 Off- On-
Target Target

RMF + Permanent Magnet (PM)

Suppresion of trorque actuation in off target regions

Mirkhani et al., Nat Comm, 2024



Sweeping fields to actuate open loop in 3D: no position feedback needed

Off-target L T
E
14 ; '
Magnetic Taxis-based navigation & #
control and proliferatrion E
| | | o
A i A &)
= e - g‘
Off-target Off-target I I T o

B ‘:\ a f"{:j X
A, L’_-\\I"\ - ':,-.
d
. A
Off-target ' ‘

Sweeping RMF

South

Mirkhani et al., Nat Comm, 2024
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Torque focusing controls tumor colonization spatially

Center North East South

- Selection Field

m= On-Target
Off-Target

O
R
L
| o
e
+—
O
b
v
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+

Fluorescence Intensity (RFU)

Constant Sweeping Sweeping Control
RMF T RMF T RMF
Selection Selection Selection
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Design of an in vivo torque focusing setup

Permanent magnets
(“magic sphere” for zero point

“
o 150 (mm)
-
E
. - o
'L_;.:‘ 7 3
@ ™ 0
2
= @
c
&
/ =
. -150
DC coil for AC coil N —
shifting target for RMF
in plane

Mirkhani et al., Nat Comm, 2024 62



Design of an in vivo torque focusing setup

Permanent magnets
(“magic sphere” for zero point

/
DC coil for

shifting target
in plane

Mirkhani et al., Nat Comm,

'

1 -

o

A0 =

10

AC coill
for RMF

2024

DC Coils Off

63



Proof of concept demonstrates further increase in tumor accumulation

Anaesthesia Return End
o induction to cage point
Bacterial injection | Magnetic actuation | Taxis-based navigation | Tumor and blood analysis
i i 1
t=0h SN t=1h t=24h,48h . Histctmlcégica] Red Merge
Global RMF ;/" VN N Tumor extraction Study
P O p ﬂ,‘ S o Colopy
X S NN / ® R counting i
gxioeMTB . T Ty P AN s® oD =
( — - S s " measurement o
. PN = R, . 7 Cytokine n
Selective RMF &\4?%& oy - & analysis

Control

Global RMF

Increasing spatial selectivity down to mm
resolution through suppresion of actuation
Mirkhani et al., Nat Comm, 2024 in off target regions 64



Finally: integrating feedback via inductive detection

Dr. Michael

Christiansen
B
a
B(t) .
m
m - magnetic dipole moment
/ ‘ B - external magnetic field
> J,.»-". 0 - steady state lag angle

Making use of Faraday’s law of induction

Media source: Wikimedia Commons. CC BY-SA Ponor
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https://commons.wikimedia.org/wiki/File:Electromagnetic_induction_-_solenoid_to_loop_-_animation.gif

Inductive Detection Basics

ddg
E — _W\ Magnetic flux through the loop
Electromotive force
(~ Voltage)
d,=| B-dA
)
w

E Media source: Wikimedia Commons. CC BY-SA Ponor

10.04.2025 66


https://commons.wikimedia.org/wiki/File:Electromagnetic_induction_-_solenoid_to_loop_-_animation.gif

Inductive Detection Basics

= We drive the electromagnets (EM) with
sinusoidal voltages

+ o)
= V; = |Vi| coswt v, @Q
u VZ = |V2| sin wt — //12

pra 8
= This creates a rotating magnetic field (RMF) \

B, + B,. T -
» The RMF causes the magnetic robot to spin. i By él
» The time-varying magnetic fields ', + B, + BZ, S

create an emf (voltage) in the detection coill. .

,\
_C?,?’T ' Vd]__ G XV,
P

Inst. amp.
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Finally: integrating feedback via inductive detection

Working space

————————————————————————————————————————————
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Gwisai et al, Sci Rob, 2022
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Key Differences between Inductive Detection in MPI and Rotating Fields

Driving
Field

Magnetic
Response

MPI/MPS
alternating typical
magnetic : freq. (Hz)
field 10%
y 104
\_% 103
/ X 2
10
" k‘/‘\‘t 10
d— 1

periodic saturation
M m,
t

J N
71TV Y

Christiansen et al., PNAS Nexxus, 2023

Inductive Detection in
Rotating Magnetic Fields

rotating typical
Z) magnetic  freq. (Hz)
field (Hz) 108
y 104
=—=X§ 103
f/// ""“--._____*)( 102
“FV‘ 10
H — Hv 1
phase lag
m

> N AL
AR RVAY
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Key Differences between Inductive Detection in MP| and Rotating Fields

MPI/MPS

Inductive z

Signal 0
y X

Signal

Isolation FFT

Christiansen et al., PNAS Nexxus, 2023

Inductive Detection in
Rotating Magnetic Fields

Z V} H V,m

t
y;é|) =X

phase decompostion
V,m,

X

in-phase ——
out-of-phase ——-
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Investigating and engineering therapeutic pathways

MTB-liposome conjugate

&) Cancer cell

Extracellular matrix

Macrophage

Anti-tumor immune response
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Innate capability as living iron chelator

Deferoxamine (DFO)

AMB-1 / MDA-MB-435S ratio

100:1 10 yM 25 uM

AMB-1 upregulate TfR1 expression and induce apopotosis

Menghini et al, Int J Mol Sc, 2021, and Menghini et al, Cancer Metabolism, 2023

DEFEROXAMINE |

MESYLATE |
FOR INJECTION USP

For S, IM or IV Use

500 mgivial

100 —

80 —

60 -

40 -

Apoptotic Cells / %

20

.

:

Dr. Stefano
Menghini

ek

AFkkk
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And they trigger caspase activity and apopotic markers

oo
|

*kk 0 10 100 1000 DFO STS zVAD
o O | | _
> © Actin 42 kDa
-— ay 6_
= > *ok
X s | |
8% 4 - PARP . S e B S | 0 kDo
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© @
£ T PARP
£Q 2- 1 f t - 23 kDa
Z © ragmen
S T
0 | | |
Q N :
S S

Menghini et al, Cancer Metabolism, 2023 74



AMB-1 proliferate under physiological conditions

Dr. Tino Gwisai

1.25%109—
/,- ____________
LS TTEE - °
g 1:0x10° L 1o
E /// _!
S 7.5%108 0 =TT ,E “““““““ o __
IS i T . op, oo, _t1A4 Tt .
£ 5.0x10°- et Cra OD, wmmp ,OE g?‘\
/ - ~
g iy @ 1.0 & - Frrrses e 0
3 2.5x108 e
//‘:/
O—I.'/'— T ; T " I T . T T I ODJ_ 0.9 T T T T [ T T T T [
0 5 10 0 5 10
Time (days) Time (days)
-®- 30 °C MSGM -®- 37 °C MSGM -®- 37 °C DMEM

MTB proliferate at 37°C, which has implications for tumour colonisation

Gwisai, et al Adv Therap, 2024 75



And remain viable with comparatively low clearance in human whole blood

Clearance
4 N

Magnetic actuation —
should be applied
Lb/ within 1 hour when
viable, magnetic
MTB may still be in
e circulation
SCIENCE IMMUNOLOGY | RESEARCH ARTICLE
1h'3h

INNATE IMMUNITY

Deep-sea microbes as tools to refine the rules of
innate immune pattern recognition

Anna E. Gauthier"*3, Courtney E. Chandler®, Valentina Poli’, Francesca M. Gardner®,
Aranteiti Tekiauﬁ, Richard Smith4, Kevin S. Bonham7, Erik E. Cordesa, Timothy M. Shankg,
Ivan Zanonis, David R. Goodlett""m, Steven J. Biller7, Robert K. Ernst4,

Randi D. Rotian>#, Jonathan C. Kagan'*

“[...JLPS receptors were
unable to detect 80% of deep-

sea bacteria examined [...] w

1Th 3h
Gwisai et al, Adv Therap, 2024 10.04.2025
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AMB-1 increases expression of proinflammatory cytokines

Neutrophil migration
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Gwisai, et al Adv Therap, 2024
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AMB-1 induce moDC maturation and increase the uptake of cancer
cell material

%k %k %k
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Bacterial microrobots: AMB-1 with cargo trigger desired immune response

F
o HCT116 4T1
X 0.4- o 0.4- *
1 1
o
HN NH [
\[]/ 5 0.3 5 0.3
O & g T
5-FU 8 .| 8 o)
S 0.2 202
8 8 T
E E :
$ 0.1 2 0.1 I D,
0.0 0.0 T T T
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I | 1
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o o
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Increased serum level cytokines with positive
consequences regarding differentiation and
recruitement of T helper cells

Gwisai, et al Adv Therap, 2024
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Can we make synthetic microrobots similar to the desired
properties of bacteria?

Yimo Yan

Droplet-based microfluidics for synthesis of ®M°“;l\ Surfacetension
x -

. N . . ¢c¢€
microrobots inspired by magnetotactic bacteria 7' ® ¢ t

Hydrogel: Poly(ethylene glycol) diacrylate (PEGDA) @) Model
Photo imitator: Lap 0w
Magnetic particle: Magnetite MNPs, 10nm i

Focus UV
laser beam

_ Nitrogen
protection

Halbach array

Micro motor

Magnetic hydrogel droplet generation | > Photopolymerization under magnetic field

in collaboration with Prof. Andrew deMello 81



Encoding magnetic responsiveness

MAS,

Ellipsoid

on-chip gelation

without magnetic field

Multi-chain

uniform mangetic field h

increased MNPs
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Medical microrobots that can travel inside
your body are (still) on their way

Microrobots released into the body could bust up clots, deliver cancer drugs,
and even guide listless sperm to their target.

By Cassandra Willyard December 8,2023 MlcrorObOtS are helprI tOOIS
= To study mechanical cues at the cellular scale
= To locally report protease for diagnostics

= To improve efficacy of drug delivery

Vast biomedical application space to explore
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