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Cell and Gene Therapy (CGT) 1s one of the most
promising new frontiers in advanced therapies for

various diseases.
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Definition — what I1s Cell&Gene Therapy (CGT)

*Cell Therapy: The use of living cells (e.g., stem cells, iImmune
cells) to repair, replace, or regenerate damaged tissues.
Examples include CAR-T cells for cancer and encapsulated
pancreatic islets for diabetes.

*Gene Therapy: Modification of genetic material to treat
disease, Including gene replacement (e.g., Luxturna® for
iInherited blindness), gene silencing (e.g., SIRNA), and gene
editing (e.g., CRISPR/Cas9)



(Gene therapy research assesses three main
approaches

(1) introduce exogenous genes into diseased cells to produce normal gene
expression products to further supplement missing or loss-of-function
proteins (I.e., by upregulating gene expression);

(1) downregulating gene expression by using small interfering RNA (siRNA),
antisense oligonucleotides (ASQOs), short hairpin RNA (shRNA), or
MIcroRNA (mIRNA):;

(im)editing mutated genes using zinc finger nucleases, transcription
activator-like effector nucleases, or CRISPR/Cas9 technology, resulting in
gain or loss-of-function.



CGTs can be grouped into three broad types of
technologies

4 cell and gene-modified cell therapies
4 gene therapy and genome editing
O DNA and RNA therapeutics

Restoring or genetically modifying certain sets of
cells, or by using cells to carry a therapy through Oncology Kymriah
the body (including CAR-T)

Cell and Gene-Modified
Cell Therapies

Replacing, inactivating, or introducing genes into

Gene Therapy & Genome CNS, Ophthalmology, Rare

Editing cells or rnud.lf:-,nng genome sequences (e.g., AAV Diseases Luxturna
gene therapies)
Treating diseases by leveraging cellular mechanism

DNA & RNA Therapeutics to turn off or modify gene expression (e.g., RNA CNS, Gl / liver disease Onpattro

interference)
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Commercial examples

*Cell Therapy: Kymriah®, Yescarta® (CAR-T for blood
cancers)
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The first CGT was approved by the FDA in 2017
(Kymriah — developed by Novartis and indicated for
acute lymphoblastic leukemia and diffuse large B-cell
lymphoma)

*Gene Therapy: Luxturna® (AAV for retinal dystrophy),
Zolgensma® (AAV for SMA).

e
LUXTURNA
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for subretinal injection

AAV2 vector

Neural retina
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Luxturna, approved by the FDA in 2017, can restore
vision in children and young adults with a rare disease
that would otherwise lead to blindness.



FDA Approved and Marketed CGTs (2017-2021)
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Data until 2022

Number of Cell and Gene Therapy Assets in Pipeline

Cell and Gene-
Modified Cell 384 331
Therapies

Gene Therapy and
Genome Editing 95 182 l 212
DNA & RNA
Therapeutics 68 98 . 195

Phase | Phase Il mPhase lll

https://kxadvisors.com/wp-content/uploads/2022/06/CGT-Pipeline-Assets.png



Most Common Therapy Areas for CGT Assets in Pipeline

Cell and Gene-Modified Gene Therapy and .
Cell Therapies Genome Editing AL LT LG
Oncology 62% 12% 28%
Central Nervous 6% 16% 10%
System

Ophthalmology 2% 17% 7%
Gastro-Intestinal 2% 3% 10%
Musculoskeletal 6% 7% 5%
Total Assets 776 212 195

Cell and Gene Therapy: The Next Frontier in Healthcare
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How can biomaterials enhance Cell&Gene therapy?

Biomaterials: Engineered materials (natural or synthetic) that enhance
the delivery, stability, or function of therapeutic cells/genes.

Key roles include:

*Protecting nucleic acids from degradation (e.g., lipid nanoparticles for
MRNA).

*Providing structural support for cell survival (e.g., hydrogels for stem cell
delivery).

*Enabling targeted delivery (e.g., gold nanoparticles for tumor-specific
CRISPR delivery)



Major types of nucleic acids for therapy

Major types of nucleic acids used to modulate cell behavior and could serve as therapeutic agents.
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Exogenous Nucleic Acid
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There are three methods available
to address this obstacle:

(1) viral transduction;

(2) complexation with biological
materials (non-viral vector)

(2) physical stimulation
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Physical methods

(A) PS laser setup and optical light pathway
for irradiation.

(B) Hydroporator: hydrodynamic cell
deformation-induced intracellular delivery
of nanomaterials.

() the design and operation principles

(i) The delivery mechanism

(i) layout of hydroporator

(iv) High-speed microscope images

(v) FITC-dextran in K562 cells using

hydroporator.

(C) Principle of magnetofection
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Viral vectors

Studies have shown that viral vector-mediated gene delivery is the most efficient method of gene transfer. Viral
vectors are therefore the most commonly used gene therapy vectors. The production of nonpathogenic viruses for
gene therapy has increased in recent years. These viruses include retroviruses, lentiviruses, adenoviruses, and

AAVs.

Viral yeotors

Adenovirus Adeno-associated virus Lenti virus Herpes simplex virus

15



Nonviral vector delivery systems

three major categories: metallic, inorganic, and organic materials.

Including: liposomes and their derivatives, peptides, polymeric nanoparticles (polyesters, polyethyleneimine, PEG,
polyamino acids, and natural polymers), inorganic nanoparticles, dendrimers, extracellular vesicles (EVs), and so

on.
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COVID-19 mRNA vaccines
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Composition of Lipid nanoparticles (LNPs)

The Pfizer-BioNTech COVID-19 vaccine has not been approved or licensed by the U.S. Food and Drug
Administration (FDA), but has been authorized for emergency use by FDA under an Emergency Use
Authorization (EUA) to prevent Coronavirus Disease 2019 (COVID-19) for use in individuals 12 years of age
and older.

https://www.pfizer.com/news/hot-topics/the_facts_about_pfizer_and_biontech_s covid_19 vaccine

The ingredients are mRNA, lipids ((4-hydroxybutyl)azanediyl)bis(hexane-6,1-diyl)bis(2-hexyldecanoate), 2
[(polyethylene glycol)-2000]-N,N-ditetradecylacetamide, 1,2-Distearoyl-sn-glycero-3-phosphocholine, and
cholesterol), potassium chloride, monobasic potassium phosphate, sodium chloride, dibasic sodium phosphate
dihydrate, and sucrose.
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Fig. 6. Lipids used in the mRNA-LNP COVID-19 vaccines BNT162b2 (Comirnaty) and mRNA-1273. 19



Lipid nanoparticles (LNPs)
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Peptide—poloxamine
nanoparticles

Here, we show that peptides developed by
modular design approaches can
spontaneously form compact and
monodisperse nanoparticles with
poloxamines and nucleic acids via self-
assembly. Both messenger RNA and plasmid
DNA expression mediated by peptide-
poloxamine nanoparticles are greatly boosted
In vitro and in the lungs of cystic fibrosis mice
with negligible toxicity.

Nature Nanotechnology volume 14, pages287-297 (2019)
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https://www.nature.com/nnano

Peptide—poloxamine
nanoparticles

Peptide—poloxamine nanoparticles
containing integrating vectors enable
successful in vitro and in vivo long-term
restoration of cystic fibrosis transmembrane
conductance regulator deficiency with a safe
integration profile.

Nature Nanotechnology volume 14, pages287-297 (2019)
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Peptide—poloxamine

+ - binary N/P ratio of peptide 1 kb pDNA pDNA T704 N/P il of peptida

1 2 3 4 5 & - Dbinary

nanoparticles | S

SO
Based on this hypothesis, we developed a platform e
of synthetic peptides consisting of three functional PR —— o
moieties, namely:

(1) an anchor moiety containing hydrophobic

molecules used to interact with the

hydrophobic blocks of T704;
(2) a cationic moiety comprising several basic

amino acids to condense nucleic acids and

facilitate efficient endosomal escape; binary complex
(3) a targeting moiety that actively directs the

nucleic acid payloads to target cells or specific

organelles.

ternary complex

Nature Nanotechnology volume 14, pages287-297 (2019) 23
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Application to treat Cystic fibrosis

Cystic fibrosis, which is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance
regulator (CFTR)4, has been the subject at the forefront of these diseases.

cystic fibrosis bronchial epithelial cells (CFBE-delF)
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WT delF (transfectad)
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(transfected)

e, Semi-quantitative evaluation of the relative
amount of CFTR protein in western blot analysis
(n =3 independent experiments). The amount of
the CFBE-WT control protein was normalized to
100%.

¢, Confocal laser scanning microscopy images of untreated CFBE-WT cells (first
row), untreated CFBE-delF cells (second row) and pGM206-fLUC-
CFTR/T2 + SB100X-mRNA-transfected CFBE-delF cells (third row, two weeks after
transfection) with CFTR-antibody staining. For each panel, the images from left to
right show CFTR proteins (red), F-actin (Alexa Fluor 488 phalloidin, green), nuclei -

(DAPI, blue) and an overlay of the three images. Scale bars: 20 um. Nature Nanotechnology volume 14, pages287-297 (2019)
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a, Stable and long-term luciferase reporter gene expression in mouse lungs mediated by the S5 transposon system (pGM206-fLUC-CFTR/T2 + SB100X-
MRNA).

b, Bioluminescence intensity.
¢, Luciferase activity in lung homogenates of mice 2 or 18 weeks after dosing.
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CRISPR-Cas9 genome editing

The system consists of two essential parts:

-the Cas9 enzyme, which functions as molecular scissors

-the CRISPR array, which is made up of short, repetitive DNA sequences interspersed with distinctive “spacer”
sequences generated from previous viral contacts

the transcription of the CRISPR array into precursor molecules, which are subsequently transformed into distinct guide
RNAs (gRNAs). Every gRNA s designed to work in conjunction with a particular target DNA sequence.

target DNA
g:||||||||||||||||||||||||
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Year

1987

2005

2007

2011

2012

2013

2014

2015

2016

Discovery/Event

Discovery of CRISPR
First Evidence of CRISPR Function
Identification of tracrRNA
CRISPR/Cas9 Genome Editing
CRISPR/Cas9 Editing in Eukaryotic

Cells

Dual RNA Guided Cas9 System

RNA Editing with Catalytically Dead

Cas9

Base Editing with CRISPR/Cas9

CRISPR/Cas9 In Vivo Gene Editing

Description

Japanese researchers describe “clustered regularly interspaced short palindromic
repeats” (CRISPR) in E. coli

Scientists demonstrate that CRISPR sequences play a role in bacterial immunity
against phage infections

Researchers discovered trans-activating CRISPR RNA (tracrRNA), which is part

of the bacterial immune system

Jennifer Doudna and Emmanuelle Charpentier propose using CRISPR/Cas9 for

RNA-guided genome editing in bacteria

George Church’s lab demonstrates efficient CRISPR/Cas9 genome editing in

mammalian cells

Zhang Feng’s lab published a paper describing the use of the CRISPR/Cas9 system

for precise genome editing in eukaryotic cells

Researchers developed a version of Cas9 with inactivated nuclease activity, known
as “dead” Cas9 (dCas9), for RNA targeting and regulation

David Liu’s lab introduces base editing, allowing specific nucleotide changes
without causing double-strand breaks

Scientists use CRISPR/Cas9 for successful gene editing directly within living
animals

Reference

Ishino et al. (1987)

Barrangou et al. (2007)

Deltcheva et al. (2011)

Jinek et al. (2012)

Cong et al. (2013); Mali et al. (2013)

Ran et al. (2013)

Hsu et al. (2014)

Komor et al. (2018)

Cyranoski (2016)

2017

2018

2019

2020

2021

Clinical Trials for Genetic Disorders
Prime Editing
In Vivo, CRISPR/Cas9 Editing in
Humans

Nobel Prize in Chemistry Awarded

Continued Clinical Trials and
Therapeutic Applications

https://doi.org/10.3389/fchem.2023.1259435

The first clinical trials using CRISPR/Cas9 are initiated to treat genetic disorders
like beta-thalassemia and sickle cell anemia

David Liu and Doudna’s labs develop prime editing, a versatile genome editing
technique allowing precise insertion, deletion, and substitution

Researchers in China report the use of CRISPR/Cas9 to edit genes within the
human body for the first time in clinical trials

Jennifer Doudna and Emmanuelle Charpentier received the Nobel Prize in
Chemistry for the development of CRISPR/Cas9 genome editing

Clinical trials and research continue, exploring CRISPR/Cas9’s potential in
treating various genetic and acquired diseases

Frangoul etal. (2021); NCT03655678;
NCT03745287
Lapinaite et al. (2020)
Lu et al. (2020)

Westermann et al. (2021)

Li et al. (2020); Liu et al. (2021a);
NCT03872479
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Exosomes for delivery of Cas9 ribonucleoprotein (RNP)

Cas9 RNP
complexes

Ultracentrifugation

. . ; LX-2 cells
Delivery of Cas9 ribonucleoprotein

(RNP) owns competitive advantages
over other options; however, the
large size of RNPs exceeds the
loading  capacity of  currently
avalilable delivery vectors.

Purified exosome Purified exosomes electroporated ExosomeRNP
with Cas9 RNP nanocomplexes

Nonhomologous end joining Systemic administration

In this study, we developed a
method where Cas9 RNP can be Thempaie gahens St

loaded into exosomes from hepatic
stellate cells (HSCs; LX-2) for the / / \

treatment of different liver disorders. Genome editing of PUMA Genome editing of CcnE1 Genome editing of KAT5

& s

Orthotopic hepatocellular
carcinoma

Acute liver injury Chronic liver fibrosis
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(J) Exosome-mediated Cas9 RNP delivery for genome editing.
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Application to treat acute liver failure

A single overdose of acetaminophen (APAP) or therapeutic misadventure is the leading cause of drug-induced acute
liver failure (46, 47). Recently, Zhang and co-authors (48) have found that p53 up-regulated modulator of apoptosis
(PUMA) plays a critical role in APAP-induced liver injury and is markedly induced after APAP treatment. Thus, for the
therapy of acute liver injury, we designed sgRNA-targeting PUMA and delivered exosomeRNP to investigate its

therapeutic efficacy for the acute liver injury (Fig. 3A).

(Acetaminophen is a pain reliever and a fever reducer.)
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Application to treat hepatocellular carcinoma (HCC)

Because of the high recurrence rate and lack of effective therapy options, HCC is often associated with poor
patient survival (54-56). New therapeutic options for HCC, including CRISPR-based technologies (57), have
attracted wide attention in recent years. K (lysine) acetyltransferase 5 (KA75) is required for HCC growth, and
disruption of KA75 inhibited tumor growth both in vitro and in vivo (58). Therefore, we designed sgRNA -

targeting KAT5 and developed exosomeRNP to treat HCC (Fig. 6A).
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(C) In vivo luciferase expression of orthotopic HCC in the whole mice. (D) Survival rates after the specified

treatments. Statistical significance was calculated by log-rank test (means + SD, n = 6). (E) Frequency of indel
mutation detected by T7E1 assay from liver tissues after the specified treatments.
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Lipid nanoparticles (LNPs) encapsulating Cas9 mRNA
and sgRNA

CRISPR-LNP (cLNP) formulations containing Cas9 mRNA and an sgRNA were compared to Cas9 mRNA and
sgRNAs encapsulated with the clinically approved LNP formulation, used for siRNA therapeutics, based on
DLin-MC3-DMA as the ionizable cationic lipid (MC3-cLNPs).
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To explore the potential of therapeutic genome editing, as proof of concept, we
evaluated L8-cLNPs containing PLKI sgRNA (sgPLK1-cLNPs) or sgGFP-cLNPs
as control. PLK1 is a kinase required for mitosis; lack of it leads to G,-M
phase cell cycle arrest and cell death in dividing cells.

Gene editing (%
B [=2] =]
o o o
1 1 1

N
o
1

o

1 1 1
Mock sgGFP sgPLK1
cLNPs cLNPs

(A) Percentage of gene editing events (A) in the PLK1 loci as determined by
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(C) Cell cycle analysis of HEK293 cells treated with mock, sgGFP, or sgPLK1-
CcLNPs (0.5 pug/ml, 3.5 nM of total RNA) for 48 hours and analyzed by flow

cytometry. (C) Bar charts representing the percentage of G;-S and G,-M cell
cycle phases.
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(E) DAPI/annexin V assay of HEK293 cells treated with mock, sgGFP, or sgPLK1 -
cLNPs (0.5 pg/ml, 3.5 nM total RNA) for 96 hours and analyzed by flow

cytometry. (E) Bar charts representing the percentage of live cells normalized to 1207
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These targeted LNPs are coated with cell-targeting antibodies by binding to a lipid-anchored single-chain antibody linker that recognizes the Fc
region of rat immunoglobulin G2a [IgG2A; Anchored Secondary scFv Enabling Targeting (ASSET)] (Fig. 5A) and reduce the recognition of the targeting

antibody by Fc receptors (23).
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(A) Schematic illustration of targeted cLNP production using ASSET (23).
(B and C) Tumor targeting and accumulation of Cy5.5-cLNPs in OV8 tumor—bearing mice as analyzed by the IVIS in vivo imaging system, 4 hours after
Injection. (B) Representative fluorescence imaging of tumors extracted from mCherry-OV8-bearing mice. Top, mCherry OV8 tumors; bottom, Cy5.5-cLNP

signal accumulation.
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Tumor growth follow-up by IVIS LNPs conjugated to anti-hEGFR (T) or IgG isotype control (I) antibody
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Biomaterials to enhance cell therapy
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Genetic reprogramming using mMRNA nanocarriers
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The viral and electroporation methods used to create adoptive cell therapies are complex and
expensive. Consequently, we develop targeted mRNA nanocarriers that are simply mixed with
cells to reprogram them via transient expression.

Nature Communications volume 8, Article number: 389 (2017)

41


https://www.nature.com/ncomms

Foxol;,-NP-transfection improves the anti-cancer activities of CAR T-cells.
NSG mice were inoculated with CD19 + Raji-luc tumor cells. After 7 days the mice were injected with luciferin and imaged on an VIS before being

randomly sorted into groups (77 =9) with representative tumor burden. Next 2.5 x 106 CD8+ 19-41BBC CAR + T-cells (transfected with NPs loaded
either with Foxol;, mMRNA or GFP mRNA) were infused intravenously.
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Scaffolds expand primary T cells ex vivo

a
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A mesoporous silica microrod (MSR) scaffold for multivalent T cell expansion.

(a) Scheme showing the synthesis process of an MSR-scaffold that mimics APCs.

(b) For polyclonal T-cell expansion, anti-CD3 and anti-CD28 activating antibodies are attached (left). For antigen-
specific T-cell expansion, peptide-loaded MHC (pMHC) and anti-CD28 antibodies are attached (right).

Nature Biotechnology volume 36, pages160-169 (2018) 43
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(c) Expansion of 19BBz T cells treated with Dynabeads or the MSR-scaffold.

(d) Normalized tumor growth kinetics (represented by quantified bioluminescent signals) of NSG mice
treated with 19BBz T cells expanded for either 7 or 14 days with Dynabeads or the MSR-scaffold.

C d ¥ day- axpanded - Mock (M)
1.800 - 10t g 19BBz T caells -&- Dynabeads (D)
- o Dynabeads 3 - AFC-me )
g 5001 °¢ . '{ 2 10° 7 - Basoling
|- %
g oo | g 107 1 I
E -":... E ¥ :- -
L / _ 1
250 - I_r L vy '."_q_‘"'n._i:._?u.,.u- R T
ol p—o—% : 10° ; , .
al d¥ a4 0 10 20 30 40
Time () Tirne (d)

e

Morrralized tolal flux

14 day- expandad -4 Mock (M)
10* 7 19BBz T cells -~ Dynabeads (D)
~#- APC-ms (A)
107 1 - +- Basoling
10" 4 /I‘Ff .
10° ¥
0 £l 40

44



Hydrogel delivering CAR-T cells and anti-PDL1-conjugated platelets

A hyaluronic acid hydrogel for co-delivery of antigen-specific CAR-Ts and anti-PD-L1 antibody-conjugated platelets to prohibit post-

surgery tumor recurrence.
a
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(2) Immune checkpoint blockade augments CAR-T-cell efficacy

a, Schematic of the tumour resection model and implantation of the engineered HA hydrogel. Platelets activated during the wound healing process
after surgery release aPDL1 in the form of PMP-aPDL1. MHC, major histocompatibility complex; TCR, T-cell receptor.

Nature Biomedical Engineering volume 5, pages1038-1047 (2021)
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CAR-T cells Platelets Nuclei Merged

b, Confocal imaging of CAR-T cells and P-aPDL1 encapsulated in the hydrogel (CAR-T-P-aPDL1@gel). CAR-T cells and platelets were labelled with
CellTracker Green and rhodamine B, respectively. Hoechst 33342 was used to stain the nuclei. Cell number, 2 x 108 CAR-T cells; platelet number,
1 x 107. This experiment was performed three times with similar results. Scale bar, 100 um.

¢, Cryo-scanning electron microscopy imaging of CAR-T-P-aPDL1@gel. Cell number, 2 x 10% CAR-T cells; platelet number, 1 x 107. Scale bars, 10 um.
This experiment was performed three times with similar results.

d, Confocal imaging of the live/dead assay of CAR-T cells released from the hydrogel. Live cells and dead cells were labelled with green fluorescence

and red fluorescence, respectively. Scale bar, 100 um. This experiment was performed three times with similar results. 16

Nature Biomedical Engineering volume 5, pages1038-1047 (2021)
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CAR-T cells encapsulated in the hydrogel control WM115 melanoma growth in vivo.

a, Representative tumour bioluminescence. P-aPDL1@gel,
P—aPDL1 encapsulated in the hydrogel; CAR-T, CAR-T
cells directly inoculated into the resection cavity; CAR-

T+ P-aPDL1, CAR-T cells and aPDL1 directly inoculated
into the resection cavity; CAR-T@gel, CAR-T cells
encapsulated in the hydrogel; CAR-T@gel + P-aPDL1,
CAR-T cells encapsulated in the hydrogel and P-aPDL1;
CAR-T-P-aPDL1@gel, CAR-T cells and P-aPDL1 co-
encapsulated in the hydrogel. In all of the experimental
groups, IL-15 NPs (IL-15, 1 pg) were included. Cell
number, 2 x 106 CAR-T cells; platelet number, 1 x 10’. The
amounts of aPDL1 and IL-15 were both 1 ug.

b, Region-of-interest analysis of tumour bioluminescence
intensities.

¢, Comparison of tumour bioluminescence intensities at
week 3 after treatment.

d, Summary of the tumour volume at week 3 after
treatment.

e, Representative tumours after 3 weeks. Scale bar, 1 cm.

Nature Biomedical Engineering volume 5, pages1038-1047 (2021)
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