
From the perspective of a male fruit fly,  
rotting fruit represents an opportunity. There, 
he can find and court a potential mate by 
chasing her, extending his wings and vibrat-
ing them to produce a fine-tuned ‘love’ song. 
Importantly, this courtship ritual depends 
on the male suitor receiving visual feedback 
from the female of interest1 — but how does 
the male’s eye instruct his brain during this 
courtship dance? Across species, visual sys-
tems transform patterns of light into features 
that are meaningful to an animal’s behaviour: 
for example, a looming shadow can trigger 
certain groups of neurons known as feature 
detectors, which drive fast and reliable preda-
tor avoidance2. Feature detectors can also be 
combined to discern more complex visual pat-
terns. On page 1100, Cowley et al.3 combine a 
machine-learning tool called an artificial neu-
ral network with genetics to explore how the 
male fly uses feature detectors to coordinate 
its movements with those of its dance partner.

Brains are dazzlingly complex. As a result, 
there is a growing interest in building artificial 
neural networks (ANNs) that serve as tractable 
proxies for understanding the flow of infor-
mation through real nervous systems. One 
way to do this is to teach an ANN to perform 
the same high-level task as an animal. Trained 
networks can then be studied to give insight 
into how biological neural circuits work — an 
approach that has previously been used to 
help researchers understand how the primate 
visual system categorizes objects4 and how the 
fruit fly detects visual motion5.

Although this work is exciting, how much 
trained ANNs can tell scientists about real 
brains remains unclear. Many different net-
work models can produce the same output, 
making it difficult to identify one that is bet-
ter than another. Cowley et al. reveal a way to 
overcome this challenge using the fruit fly 
Drosophila melanogaster. The authors focus 
on how a male fly chases and sings to a poten-
tial mate6, an activity that relies on visual sig-
nals that must pass through a diverse set of 
lobula columnar (LC) neurons. These neurons 

form a bottleneck between the retina of the eye 
and the central brain. LC neurons of particu-
lar subtypes converge on small regions of the 
brain called glomeruli, which contain compact 
collections of the neuronal processes (axons 
and dendrites) that transmit signals between 
neurons.

This glomerular organization suggests that 
different LC subtypes might be separate chan-
nels that are tuned to respond to specific visual 
features, driving particular actions. Indeed, 
artificial stimulation of one LC subtype that is 
responsive to visual looming can cause flies to 
carry out an escape behaviour2. However, the 
degree to which LC subtypes represent sepa-
rate sensorimotor channels in more natural 

settings is not so clear: several LC subtypes 
have been shown to respond to the same visual 
features and, in some cases, they make con-
nections with the same downstream neurons2.

To investigate how LC neurons contribute 
to courtship decisions, the authors trained 
ANNs that were optimized for the specific task 
of accurately predicting a male fly’s behaviour 
when presented with an approximate image of 
what the male would see during courtship. In 
a novel twist, they further constrained their 
model using an approach they call ‘knockout 
training’. Unlike classic machine-learning 
techniques that ‘silence’ random artificial 
units during training to limit overfitting — a 
problem whereby a model makes accurate pre-
dictions for training data but not for other data 
— knockout training instead silences specific 
units during training to predict the behaviour 
of animals in which real, identified neurons 
are also genetically silenced. This approach 
is expected to yield direct mapping between 
artificial units and real neurons.

The authors applied this technique to a large 
body of data in which one of 23 LC subtypes 
is genetically silenced in courting male flies. 
They then designed a task-optimized ANN that 
is given abstract images of the female fly, as 
experienced by the courting male, as its input. 
These images are processed by a ‘vision net-
work’ (representing the optic lobe of the fly 
brain) and then a bottleneck layer of ‘LC units’ 
(representing each of the 23 LC subtypes). 
Finally, the outputs of the LC units are passed 
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Artificial neural networks that model the visual system of a 
male fruit fly can accurately predict the insect’s behaviour in 
response to seeing a potential mate — paving the way for the 
building of more complex models of brain circuits. See p.1100

Figure 1 | An artificial neural network that mimics the fruit-fly visual system.  a, During courtship, a 
male fruit fly (Drosophila melanogaster) exhibits certain behaviours (such as movement and wing vibration) 
in response to visual information about a female (such as its position and size). In the fly brain, visual 
information passes from the optic lobe to the central brain through a ‘bottleneck’ of highly organized lobula 
columnar (LC) neurons, of which there are 23 distinct subtypes (only 3 subtypes are shown). b, Cowley et al.3 
trained an artificial neural network to represent the fly visual system: a vision network passes information 
to a decision network through a bottleneck of 23 LC units, each of which has been trained to correspond 
directly to one LC subtype. The trained model not only succeeded in predicting the fly’s behaviour on the 
basis of visual input, but also revealed that each LC subtype responds to more than one visual feature and is 
responsible for more than one behaviour.
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The brain is responsible for regulating how 
much is eaten and how many calories are 
burned throughout the day, but in obesity, this 
balance is disrupted, causing weight gain. Until 
a few years ago, the most effective strategy for 
sustained weight loss was surgery. Now, the 
popular anti-obesity drugs semaglutide (sold 
under the names Ozempic and Wegovy) and 
tirzepatide (sold as Mounjaro) are becom-
ing almost as effective as surgery at evoking 
weight loss. These drugs are based on a peptide 
made in the gut called GLP-1, and they act on 
GLP-1 receptors in the brain to suppress eat-
ing. However, these medications are costly, in 
high demand and produce variable results — 
driving the need for more obesity treatment 
options. On page 1133, Petersen et al.1 describe 
how combining a GLP-1 receptor activator with 
another drug that acts on the brain could be an 
effective treatment for obesity.

Activators (agonists) of the GLP-1 receptor 
have been shown to stimulate neurons that 
express the receptor in areas of the brain that 
are exposed to the blood circulation — namely 
the brainstem and the hypothalamus2. This 
leads to the activation of neural circuits in 
higher brain centres that regulate eating, 
appetite and reward. 

Petersen and colleagues designed a drug 
that consists of a GLP-1 receptor agonist 
linked to an inhibitor (antagonist) of another 
receptor found throughout the brain called 
the NMDA receptor. This receptor binds to 
the neurotransmitter molecule glutamate and 

has an important role in regulating synaptic 
plasticity — a process that allows communica-
tion between neurons to adapt to patterns of 
activity by strengthening or weakening neu-
ronal connections. NMDA receptors and gluta-
mate signalling have also been linked to obesity 
in human genome studies, strengthening the 
rationale for this pharmacological strategy3.

Although targeting NMDA receptors 
for weight loss is not a new idea, previous 
attempts failed because of side effects such 
as hyperthermia and hyperlocomotion 
(excessive movement) that occur when 
NMDA receptors in the brain are inhibited 
indiscriminately4. The authors’ dual-mode 
compound overcomes this problem: the 
NMDA-receptor antagonist (MK-801, also 
known as dizocilpine) is activated only after 
the drug has bound to the GLP-1 receptor and 
is internalized by the cell. MK-801 can then 
dampen neuronal excitability and, because it 
is combined with the GLP-1 receptor agonist, 
this action is isolated to neurons that express 
the GLP-1 receptor (Fig. 1). 

The authors found that, compared with 
a GLP-1 analogue alone and other GLP-1 
receptor agonists (including semaglutide), 
GLP-1–MK-801 was similarly processed by 
the body but was better at reducing body 
weight in both rats and mice. Petersen et al. 
showed that focusing NMDA-receptor inhibi-
tion specifically on neurons that express the 
GLP-1 receptor was necessary for this effect, 
whereas linking MK-801 to other gut peptides 
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A two-in-one drug that modulates neural pathways  
involved in appetite and reward might prove to be more 
effective and longer lasting than current weight-loss drugs  
on the market. See p.1133

through a decision network (representing 
the central brain) that predicts what the real 
male fly’s behaviour would be in response to 
those images (Fig. 1). Using knockout training, 
the authors generated a range of successful 
networks, each of which showed one-to-one 
mapping between artificial LC units and known 
LC neuron subtypes. The authors found that 
artificial and real fly LC neurons respond simi-
larly to abstract and naturalistic visual stimuli, 
partially validating the explanatory power of 
their best networks.

By ‘looking under the hood’ of successfully 
trained networks, Cowley et al. found that LC 
units encode visual information about the 
courted female in a combinatorial manner — 
that is, with highly overlapping visual tuning. 
They also observed that LC units regulate male 
courtship in a distributed and redundant way: 
many LC units must be silenced to profoundly 
disrupt behavioural predictions. In support 
of these network-based findings, a graph of 
all of the connections between neurons in the 
real fly brain, referred to as the connectome, 
shows that LC neuron subtypes share many 
visual inputs and also fan out to multiple, over-
lapping central brain regions.

As scientists are often reminded, “all models 
are wrong but some are useful”7. Therefore, 
perhaps the greatest value of knockout train-
ing comes from the predictions it generates 
for which LC subtypes are expected to drive 
specific aspects of courtship behaviour, such 
as whether the male fly’s wing vibrations create 
a song that is constant or pulsing. These pre-
dictions should be tested in future laboratory 
experiments. 

To increase the quality of predictions made 
by the network, knockout training could be 
improved in several ways. Unlike the feed- 
forward ANNs used in this study, LC neurons 
(and many brain circuits) are highly recurrent, 
meaning that they receive feedback from 
downstream areas. Moreover, sensorimotor 
mapping can be modulated8 by an animal’s 
ongoing behaviours9. If ANNs were to take 
neural and behavioural feedback into account, 
this might greatly improve what they can tell 
neuroscientists about the brain.

This study shows how precise, large-scale 
neural-perturbation data can be used to 
improve the interpretability of artificial mod-
els of the brain. The scope of this study might 
seem narrow at first — the authors focus on 
only one class of fly visual neurons during a 
single behavioural task. However, because 
distributed neural encoding improves 
robustness, multitasking and efficiency, it is 
likely to be found across species, including 
humans. Therefore, something similar to 
knockout training might ultimately be nec-
essary to understand larger brains, such as 
those of rodents. How this might be accom-
plished in animals in which neurons cannot 
be identified or silenced with such precision 

remains unclear. For now, as in the past, the 
simple fruit fly can help by illuminating the 
way forwards.
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