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Connectome-constrained networks predict 
neural activity across the fly visual system

Janne K. Lappalainen1,2,3, Fabian D. Tschopp3, Sridhama Prakhya3, Mason McGill3,4, 
Aljoscha Nern3, Kazunori Shinomiya3, Shin-ya Takemura3, Eyal Gruntman3,5, 
Jakob H. Macke1,2,6 & Srinivas C. Turaga3 ✉

We can now measure the connectivity of every neuron in a neural circuit1–9, but we 
cannot measure other biological details, including the dynamical characteristics of 
each neuron. The degree to which measurements of connectivity alone can inform the 
understanding of neural computation is an open question10. Here we show that with 
experimental measurements of only the connectivity of a biological neural network, 
we can predict the neural activity underlying a specified neural computation. We 
constructed a model neural network with the experimentally determined connectivity 
for 64 cell types in the motion pathways of the fruit fly optic lobe1–5 but with unknown 
parameters for the single-neuron and single-synapse properties. We then optimized 
the values of these unknown parameters using techniques from deep learning11, to 
allow the model network to detect visual motion12. Our mechanistic model makes 
detailed, experimentally testable predictions for each neuron in the connectome.  
We found that model predictions agreed with experimental measurements of neural 
activity across 26 studies. Our work demonstrates a strategy for generating detailed 
hypotheses about the mechanisms of neural circuit function from connectivity 
measurements. We show that this strategy is more likely to be successful when 
neurons are sparsely connected—a universally observed feature of biological neural 
networks across species and brain regions.

Electrical signals propagating through networks of neurons form the 
basis of computations such as visual motion detection. The propaga-
tion of neural activity is shaped by both the functional properties of 
individual neurons and their synaptic connectivity. Additional fac-
tors10,13, including electrical synapses, neuromodulation and glia, are 
known to further influence neural activity on multiple timescales. 
Volume electron microscopy can now be used to comprehensively 
measure the connectivity of each neuron in a neural circuit, and even 
entire nervous systems1–9. However, we do not yet have the means to 
also comprehensively measure all other biological details, including 
the dynamical properties of every neuron and synapse in the same 
circuit13. For these reasons, there has been considerable debate about 
the utility of connectome measurements for understanding brain func-
tion14. It is unclear whether it is possible to use only measurements of 
connectivity to generate accurate predictions about how the neural 
circuit functions, especially in the absence of direct measurements 
of neural activity from a living brain. There is considerable evidence 
from computer science and neuroscience that there is not necessar-
ily a strong link between the connectivity of a neural network and its 
computational function. Universal function approximation theorems 
for artificial neural networks15 imply that the same computational task 
can be performed by many different networks with very different neural 
connectivity. Empirically, there exist many classes of general-purpose 

artificial neural network architectures that can be trained to perform 
the same computational task11. Such differences in connectivity can 
correspond to qualitatively different computational mechanisms16. 
Similarly, in neuroscience there have been competing proposals for the 
same computation (for instance, the computation of visual motion)17,18. 
Furthermore, even circuits with the same connectivity can function 
differently19. Thus, neither the connectivity of a circuit alone, nor its 
computational task alone, can uniquely determine the mechanism of 
circuit function20.

Here we show that the connectivity of a neural circuit, together with 
knowledge of its computational task, enables accurate predictions of 
the role played by individual neurons in the circuit in the computational 
task. We constructed a differentiable21 model neural network with a 
close correspondence to the brain, whose connectivity was given by 
connectome measurements and with unknown single-neuron and 
single-synapse parameters. We optimized the unknown parameters 
of the model using techniques from deep learning11, to enable the 
model to accomplish the computational task22. We call such models 
connectome-constrained and task-optimized deep mechanistic net-
works (DMNs) (Fig. 1a).

We applied this approach to model the motion pathways in the optic 
lobe of the Drosophila visual system. We constructed a DMN with experi-
mentally measured connectivity1–5, and unknown parameters for the 
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single-neuron dynamics and the strength of a unitary synapse. We 
optimized the model parameters on the computer vision task of detect-
ing motion in dynamic visual stimuli12. Visual motion computation 
in the fly and its mechanistic underpinnings have been extensively 
studied23. Thus, we were able to compare the detailed predictions 
of our model with experimental measurements of neural activity in 
response to visual stimuli, on a neuron-by-neuron basis. We found 
that our connectome-constrained and task-optimized DMN accurately 
predicts the separation of the visual system into light-increment (ON) 
and light-decrement (OFF) channels, as well as the generation of direc-
tion selectivity in the well-known T4 and T5 motion detector neurons24. 
We release our model as a resource for the community (https://github.
com/TuragaLab/flyvis).

DMN of the fly visual system
The optic lobes of the fruit fly are equivalent to the mammalian retina. 
They comprise several layered neuropils whose columnar arrangement 

has a one-to-one correspondence with the ommatidia, both possessing 
a remarkably crystalline organization in a hexagonal lattice. Visual input 
from the photoreceptors is received by the lamina and medulla, which 
send projections to the lobula and lobula plate25 (Fig. 1b). Many com-
ponents of the optic lobe are highly regular, with columnar cell types 
appearing once per column, and multicolumnar neurons appearing 
with only small deviations from a well-defined periodicity in columnar 
space25,26. Several studies have reported on the local connectivity in the 
optic lobe and its motion pathways1–5. We assembled these separate 
local reconstructions into a coherent local connectome spanning the 
retina, lamina, medulla, lobula and lobula plate (Fig. 1c, Supplementary 
Note 1, Supplementary Fig. 1 and Supplementary Data files 1–3).

We approximated the circuitry across the entire visual field as per-
fectly periodic2,26, and tiled this local connectivity architecture in a 
hexagonal lattice across retinotopic space to construct a consensus 
connectome for 64 cell types across the central visual field of the right 
eye (Fig. 1d, Methods, Extended Data Fig. 1, Supplementary Fig. 2 and 
Supplementary Data file 4). By this assumption of translation invariance 

Retina Lamina, medulla intrinsic cells, CT1 T-shaped, transmedullary cells

R1R1R1

R2R2R2

R3R3R3

R4R4R4

R5R5R5

R6R6R6

R7R7R7

R8R8R8

L1L1L1

L2L2L2

L3L3L3

L4L4L4

L5L5L5

Lawf1Lawf1Lawf1

Lawf2Lawf2Lawf2

AmAmAm

C2C2C2

C3C3C3

CT1(Lo1)CT1(Lo1)CT1(Lo1)

CT1(M10)CT1(M10)CT1(M10)

Mi1Mi1Mi1

Mi2Mi2Mi2

Mi3Mi3Mi3

Mi4Mi4Mi4

Mi9Mi9Mi9

Mi10Mi10Mi10

MiMiMi 111111

Mi12Mi12Mi12

Mi13Mi13Mi13

Mi14Mi14Mi14

Mi15Mi15Mi15

T1T1T1

T2T2T2

T2aT2aT2a

T3T3T3

T4aT4aT4a

T4bT4bT4b

T4cT4cT4c

T4dT4dT4d

T5aT5aT5a

T5bT5bT5b

T5cT5cT5c

T5dT5dT5d

Tm1Tm1Tm1

Tm2Tm2Tm2

Tm3Tm3Tm3

Tm4Tm4Tm4

Tm5YTm5YTm5Y

Tm5aTm5aTm5a

Tm5bTm5bTm5b

Tm5cTm5cTm5c

Tm9Tm9Tm9

Tm16Tm16Tm16

Tm20Tm20Tm20

Tm28Tm28Tm28

Tm30Tm30Tm30

TmY3TmY3TmY3

TmY4TmY4TmY4

TmY5aTmY5aTmY5a

TmY9TmY9TmY9

TmY10TmY10TmY10

TmY15TmY15TmY15

TmY18TmY18TmY18

ba

MedullaLaminaRetina

Lobula plate

Light

Lobula

Central brain

R1–R8

Lawf

Tm

Mi

T4
T5

T2
T3

L1–L5

Visual
input

Connectome
measurements

Neural activity
measurements

Neural activity
predictions

Match?

Task optimizationDMN

c

Postsynaptic

P
re

sy
na

p
tic

R1–R8

L1–L5
Lawf

Mi

T

Tm

C2–C3
CT1

Am

R
1–

R
8

L1
–L

5

La
w

f

M
i

Tm

C
2–

C
3

C
T1A
m T

Retina MedullaLamina

Lobula plate

Light

Lobula
Central brain

d

Optic �owVideo

g

Motion
decoder

Decoded
(putative

output
neurons)

Fly eye
rendering

... ...

...

Sintel
video
clip

Passive point-neuron
dynamics

Instantaneous-graded-
release synapses

wij = ααtitjσtitj
Ntitj,ui–uj,vi–vj

sij = wij f(Vj )

fe

Synapse count 20 70 120–20–70–120

T4d

–8.2
–7.9

–2.1

–1.1

–2.9

Mi9

Anterior

Dorsal

u v

0º
30º90º

ττtiVi = –Vi + Σsij + V rest
tij

Fig. 1 | Connectome-constrained and task-optimized models of the fly visual 
system. a, DMNs aim to satisfy three constraints: the architecture is based on 
connectome measurements (b–e); cellular and synaptic dynamics are given  
by simple mechanistic models (f); and free parameters are task-optimized by 
training the model to perform optic flow estimation (g). Graphics of fruit fly 
and microscope were created with BioRender.com. b, Schematic of optic lobe 
of D. melanogaster with several processing stages (neuropils) and cell types, 
including photoreceptor (R1–R8), lamina monopolar (L), lamina wide-field 
(Lawf), medulla intrinsic (Mi), transmedullary (Tm) and T-shaped (T) neurons 
(adapted from ref. 25, Springer Nature). Scale bar, 10 μm. c, Identified 
connectivity between 64 modelled cell types, represented by total number of 
synapses from all neurons of a given presynaptic cell type to a postsynaptic cell 
of a given type. Amacrine (Am), centrifugal (C2–C3) and complex tangential (CT) 
neurons are also included. Blue (red) colour indicates putative hyperpolarizing 
(depolarizing) inputs; size of squares indicates number of input synapses.  

d, Retinotopic hexagonal lattice columnar organization of visual system model. 
Each lattice represents a cell type; each hexagon represents an individual cell. 
Positions of photoreceptor ommatidia are aligned with downstream columns. 
The model comprises synapses from all neuropils (Supplementary Fig. 1).  
e, Example of convolutional filter, representing Mi9 inputs onto T4d cells. 
Values represent the average number of synapses projecting from presynaptic 
Mi9 cells in columns with indicated offset onto the postsynaptic dendrite of T4d 
cells. f, Single-neuron and synaptic dynamics are given by simple mechanistic 
models. Free parameters (magenta) are optimized by training the recurrent 
network model to perform optic flow estimation. g, Illustration of DMN 
performing optic flow estimation. Each hexagonal lattice shows a snapshot of 
simulated voltage levels of all cells of each type in response to input to the 
photoreceptors (R1–R8). Edges illustrate connectivity between cell types. A 
decoder receives the simulated neural activity of all output neurons to compute 
optic flow. Parameters of DMN and decoder are optimized using deep learning.
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due to periodic tiling, the synapse count between each pair of neurons 
was the same across all pairs of neurons with the same presynaptic 
and postsynaptic cell type and relative location in retinotopic space. 
For simplicity, we refer here to this partial connectome of the motion 
pathways as the connectome.

We built a recurrent neural network modelling these first stages of 
visual processing in the optic lobe based on the connectome for the 
right eye. Each neuron in this DMN corresponds to a real neuron in the 
fly visual system, belonging to an identified cell type, and is connected 
to other neurons only if they are connected by synapses in the connec-
tome (Fig. 1e). We constructed a model with detailed connectivity, but 
simplified models of single neurons and chemical synapses (Fig. 1f). 
We used passive leaky linear non-spiking voltage dynamics to model 
the time-varying activity of single neurons, as many neurons in the 
early visual system are non-spiking. We modelled neurons with a single 
electrical compartment, as this has previously been shown to be a good 
approximation given the small size of many neurons in the optic lobe27. 
The CT1 (complex tangential) neuron, which is among the largest in the 
brain, spanning the entire optic lobe, was modelled with one compart-
ment per column in the medulla and lobula, as it is highly electrotoni-
cally compartmentalized28 (Supplementary Note 2). We modelled the 
graded-release chemical synapses between non-spiking neurons with a 
threshold-linear function to approximate the nonlinear voltage-gated 
release of neurotransmitters. The resulting network model follows 
well-known threshold-linear dynamics and is piece-wise differentiable. 
Such dynamics are typically used to approximate the firing rates of a 
network of spiking neurons with the nonlinearity arising from spike 
generation, whereas in our network, the nonlinearity represents the 
voltage-gated neurotransmitter release. We used the cell-type struc-
ture of the connectome to reduce the number of free parameters in the 
model (Fig. 1f). We assumed that neurons of the same cell type shared 
the same neuron time constant and resting membrane potential. We 
modelled synaptic weights as proportional to the discrete number of 
synapses as reported in the connectome between a connected neuron 
pair29, with a scale factor representing the strength of a unitary synapse. 
The unitary synapse scale factor and the sign of each synapse was the 
same for all pairs of neurons with the same pre- and postsynaptic cell 
type. In other words, a connection of five synapses from an Mi1 (medulla 
intrinsic) neuron to a T4 (T-shaped) neuron is assumed to be exactly 
half as strong as ten synapses between another pair of neurons of the 
same presynaptic and postsynaptic cell types, but could be stronger or 
weaker than five synapses between neurons of a different cell-type pair, 
for instance, from a Tm3 (transmedullar) neuron to a T4 neuron. The 
sign of each cell-type connection was determined by neurotransmitter 
and receptor expression profiling30 (Methods and Supplementary Data 
file 2). In total, the connectome-constrained model comprises 45,669 
neurons and 1,513,231 connections, across 64 cell types arranged in 
a hexagonal lattice consisting of 721 columns, modelling the central 
visual field of the roughly 700–900 ommatidia typically found in the 
fruit fly retina31. Connectome constraints, and our assumption of spa-
tial homogeneity (that is, the hexagonally convolutional structure of 
the network), result in a marked reduction to just 734 free parameters 
for this large network model. The only free parameters in our model 
are the single-neuron time constants and resting membrane potentials 
(two parameters per cell type), and the unitary synapse strengths (one 
parameter per type-to-type connection). In the absence of connectome 
measurements, we would have needed to estimate well in excess of  
a million parameters corresponding to the weights of all possible  
connections (Methods).

We used task optimization22 to further constrain the parameters of 
the model (that is, by training the model to perform a computational 
task that is thought to approximate the computations carried out by 
the circuit). We therefore implemented our recurrent DMN using the 
PyTorch library21 (Methods) and used automatic differentiation to opti-
mize the model using gradient-based deep learning training methods11.

As the computational task constraining the input–output function 
of the circuit, we chose the computation of visual motion from natu-
ralistic stimuli12. Motion computation in the fly visual system and its 
mechanistic underpinnings have been extensively studied23. This com-
putation requires the neural circuit to compare visual stimuli across 
space and time, and thereby critically relies on temporal integration 
of visual information by the dynamics of the network. We reasoned 
that training our model to perform the computer vision task of optic 
flow computation12 could help us identify circuit elements involved in 
motion computation. As our model contains many of the circuit ele-
ments that have been experimentally characterized and implicated in 
the computation of visual motion, we could then validate our model 
predictions.

To decode optic flow from the DMN, we used a decoding network to 
map the representation of motion used in the fly nervous system to the 
representation of optic flow specified by the computer vision task. This 
two-layer convolutional decoding network is given only the instanta-
neous neural activity of the medulla and downstream areas as input. 
Importantly, the decoding network cannot by itself detect motion, 
which requires the comparison of current and past visual stimuli, but 
must instead rely on the temporal dynamics of the DMN to compute 
motion-selective visual features. The resulting combination of our 
recurrent connectome-constrained DMN model and the feedforward 
decoding network was then trained end-to-end: we rendered video 
sequences from the Sintel database12 as direct input to the photore-
ceptors of the connectome-constrained model, and used gradient 
descent (backpropagation through time11) to minimize the task error 
in predicting optic flow (Fig. 1g and Methods).

DMN ensemble predicts known activity
We used only connectome and task constraints to construct our DMN, 
without any measurements of neural activity. We can therefore vali-
date the model by comparing predictions of neural activity for each 
of the 64 identified cell types to experimental measurements. As it is 
possible that these constraints might not uniquely constrain model 
parameters32, we generated an ensemble of 50 models, all constrained 
with the same connectome, and optimized to perform the same task. 
Each model in the ensemble corresponds to a local optimum of task 
performance. As the models achieved similar (but not identical) task 
performance, the ensemble reflects the diversity of possible models 
consistent with these constraints. The ensemble of models found a 
variety of parameter configurations (Supplementary Fig. 3), and exhib-
ited superior task performance to both the decoder network alone and 
models with random parameter configurations (Extended Data Fig. 2a). 
We focused on the ten models that achieved the best task performance 
(Fig. 2a). We simulated neural responses to multiple experimentally 
characterized visual stimuli, and comprehensively compared model 
responses for each cell type to experimentally reported responses 
from 26 previously reported studies (Supplementary Note 3 and Sup-
plementary Data files 5 and 6).

First, neural responses in the fly visual system are known to segregate 
into ON- and OFF-channels33 defined by whether a neuron depolar-
izes more strongly to an increase or decrease in stimulus intensity, 
respectively, a hallmark of visual computation across species34,35. We 
probed the contrast preference of each cell type using flash stimuli36 
and found that the ensemble predicts the segregation into ON- and 
OFF-pathways with high accuracy: the median flash response index 
(FRI) across the ensemble predicts the correct ON- and OFF-preferred 
contrast selectivity for all 32 cell types for which contrast selectivity 
has been experimentally established (terminals of CT1 in the medulla 
and lobula are listed as CT1(M10) and CT1(Lo1)). This is also the case 
for the model with the best task performance (task-optimal model), 
which correctly predicts the preferred contrast of 30 of 32 cells (Fig. 2b). 
Furthermore, the ensemble provides predictions for the remaining  
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33 cell types, and consistency across the ensemble provides a measure 
of confidence in the predictions (Fig. 2b).

Second, a major result in fly visual neuroscience has been the 
identification of the T4 (ON) and T5 (OFF) neurons as the first 
direction-selective neurons with four subtypes (T4a, T4b, T4c and 
T4d, and T5a, T5b, T5c and T5d), each responding to motion in the 
four cardinal directions37. We characterized the motion selectivity of 
all 64 cell types by their responses to ON- and OFF-edges moving in 12 
different directions. We found that the ensemble of models correctly 
predicts that T4 neurons are ON-motion selective, and T5 neurons are 
OFF-motion selective (Fig. 2c). The ensemble also correctly predicts 

the lack of motion tuning in the input neurons to T4 and T5 motion 
detector neurons (Mi1, Tm3, Mi4, Mi9, Tm1, Tm2, Tm4, Tm9 and CT1; 
Methods and Supplementary Data file 7).

Our models also suggest the possibility that the transmedullary 
cell types, TmY3, TmY4, TmY5a, TmY13 and TmY18, might be tuned to 
ON-motion. Of these cell types, TmY3 neurons do not receive inputs 
from other known motion-selective neurons suggesting the possi-
bility that these neurons constitute a parallel motion computation 
pathway from T4 and T5 neurons (Extended Data Figs. 3 and 4 and 
Supplementary Note 4). We questioned whether our model predicted 
motion selectivity for all cell types with asymmetric, multicolumnar 
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inputs, as this is a necessary connectivity motif for direction selectivity. 
On the basis of their local spatial connectivity profiles, we estimated 
that 19 cell types receive asymmetric, multicolumnar inputs (Methods  
and Extended Data Fig. 5b), but found that only 12 are predicted to be 
motion selective by the ensemble (Methods). Spatial offset of excita-
tory and/or inhibitory inputs did not correlate strongly with direction 
selectivity (Extended Data Fig. 5c,d). This suggests that our model inte-
grates connectivity across the entire network with the task constraint 
to determine which neurons are most likely to be motion selective, 
rather than simply focusing on local connectivity.

Connectome and task are both necessary
We investigated the importance of connectome constraints and task 
optimization to enable accurate predictions of neural activity. We found 
that both task optimization and detailed connectome constraints at 
the single-neuron resolution were critical to the prediction of the pre-
ferred contrast of the 32 characterized cell types, and the preferred 
direction of motion for the T4 and T5 subtypes (Fig. 2d and Extended  
Data Fig. 2).

We conducted ‘ablation’ studies comparing the DMN ensemble stud-
ied in this paper (full DMN) with a range of models with other modelling 
assumptions. First we verified the importance of task optimization by 
constructing an ensemble (random DMN) with random single-cell and 
synapse parameters, and full connectome constraints. This ensemble 
yielded accurate predictions of preferred contrast, but poor predic-
tions of direction selectivity and preferred direction.

We then studied which aspects of the connectome must be measured 
accurately to lead to accurate predictions. We found that task-optimized 
models with access to only cell-type connectivity predicted neural 
activity poorly. We then considered several scenarios adding more 
connectome measurements beyond cell-type connectivity. We con-
sidered several scenarios: access to synapse signs and single-neuron 
connectivity but not strength, requiring task optimization of synapse 
counts; access to signs, but requiring optimization of single-neuron 
connectivity and synapse counts; full connectome measurements but 
optimization of synapse signs; access to connectivity but optimization 
of both synapse counts and signs. Across these modelling assumptions, 
we found that accurate predictions of contrast preference (FRI) were 
possible as long as measurements of the connection-signs were avail-
able, and that accurate predictions of the direction selectivity—but 
not preferred direction—could be achieved with measurements of 
cell connectivity, without the need for synapse count measurements 
(Extended Data Fig. 2c). This demonstrates the importance of both 
detailed connectome measurements and task optimization to achieve 
accurate predictions of neural activity.

Across the ensemble constrained by all connectome measurements 
and task training, we found that models that exhibited lower task 
error (Methods) also had more realistic tuning: models with higher 
task performance predict the direction selectivity index of T4 and 
T5 cells and their inputs better (r = 0.60, P = 2.6 × 10−6; Extended Data 
Figs. 2e and 6b). This suggests the possibility of using task error to 
rank models in terms of their likelihood to accurately predict neural  
activity.

Our model relies on an accurate classification of neurons into cell 
types to share single-neuron and synapse parameters across all neurons 
of the same cell type. We investigated the degree to which we could 
coarse-grain the cell-type categorization, leading to fewer cell types and 
fewer parameters (Extended Data Fig. 2a–d). We found that grouping 
the four T4 subtypes into a single T4 cell type, and grouping the four 
T5 subtypes into a single T5 cell type, had no negative impact on the 
quality of ensemble predictions. However, grouping all 37 excitatory 
cell types into a single E-type, 22 inhibitory cell types into a single I-type, 
and 4 mixed cell types into a single mixed type, led to poor performance 
on par with the random DMN.

Predictions cluster across DMN ensemble
We sought to determine how similar or dissimilar the predictions of 
different models in an ensemble with the same connectome constraints 
and task optimization are. To address this for each cell type, we simu-
lated neural activity in response to naturalistic video sequences from 
the Sintel dataset. We then used uniform manifold approximation 
and projection38 to perform nonlinear dimensionality reduction on 
high-dimensional activity vectors of a representative neuron of each 
cell type across the model ensemble, and clustered the models in the 
resulting two-dimensional projections (Fig. 3a and Methods). For many 
cell types, we found that models predict strongly clustered neural 
responses (Supplementary Data file 7). For T4c neurons, for exam-
ple, we found three clusters corresponding to qualitatively distinct 
responses of this cell type for naturalistic inputs: two clusters con-
tain models with direction-selective T4c cells (Fig. 3a,b) with up- and 
down-selective cardinal tuning, respectively, whereas neurons in the 
third cluster are not direction-tuned. The direction-selective cluster 
with the (correct) upward preference has the lowest average task error 
(circular marker, average task error 5.297), followed by the cluster with 
the opposite preference (triangular marker, average task error 5.316). 
The non-selective cluster has the worst performance (square marker, 
average task error 5.357), suggesting that models with accurate tuning 
correlate with lower task error (see also Extended Data Fig. 2e).

We sought to determine what differences in circuit mechanisms 
underlie the different predictions for direction selectivity in the three 
clusters (Fig. 3c). Our results showed that direction selectivity in the two 
tuned clusters is associated with opposite preferred contrast tuning of 
Mi4 and Mi9 neurons, which provide direct flanking inhibitory input 
to T4 neurons (Fig. 3d). Models with the correct direction selectivity 
for T4 neurons also predict the correct contrast selectivity for Mi4 and 
M9 neurons, and vice versa (Fig. 3e).

Thus, the ensemble can be used to provide hypotheses about differ-
ent circuit mechanisms that might underlie the response properties of 
individual cells. Furthermore, it shows that experimentally measuring 
the tuning of one neuron automatically translates to constraints on 
other neurons in the circuit. Here, filtering models in the ensemble with 
the experimentally measured direction selectivity for the T4c neurons 
(by only selecting models from the correct cluster) is sufficient to cor-
rectly constrain the tuning of both Mi4 and Mi9 neurons.

Predicted mechanism of T4 and T5 tuning
Our DMN modelling approach enables a large number of model-based 
analyses, which can illuminate the mechanistic basis of computation in 
a circuit and suggest new visual stimuli for experimental characteriza-
tion. We illustrate these analyses using averages from the model cluster 
with the best task performance (task-optimal cluster), focusing on 
the well-studied T4 and T5 neurons (Fig. 4). See Supplementary Data 
file 7 for a comprehensive set of analyses for all cell types and mod-
els. In the task-optimal cluster, the four subtypes of the T4 neurons 
respond strongly to bright (ON) edges, and the four subtypes of the T5 
neurons to dark (OFF) edges, moving in the four cardinal directions, in 
agreement with experimental findings27,37,39,40 (Fig. 4a). We probed the 
mechanism of direction selectivity in T4 and T5 neurons (Fig. 4b and 
Extended Data Figs. 7 and 8). Examining the input currents to a single 
T4 neuron (Extended Data Fig. 7a), we found that fast excitatory input 
and offset delayed inhibitory input currents enable T4 in the model 
to detect motion, in agreement with experimental findings27. The dif-
ferential response of T4 neurons to motion in the preferred versus null 
direction is primarily produced by the differential timing of inhibition 
from Mi4. Additionally, excitatory T4-to-T4 currents between neurons 
with the same preferred direction lead to an increased response to 
coherent motion across the visual field. Although research into T4 
motion selectivity has largely focused on the role of feedforward inputs, 
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our modelling predicts an important role for the lateral connectivity 
between T4 neurons. The mechanisms in our model for T5 motion 
computation are similar (Extended Data Fig. 8a), with differential timing 
of inhibition from CT1, as well as excitation from Tm9, contributing to 
motion-selective responses.

To relate the mechanism of direction selectivity to the well-studied 
mechanisms of preferred direction enhancement and null direc-
tion suppression, we compared the responses of T4 and T5 neurons 
to moving bars and static bars as in ref. 27. Consistent with voltage 
measurements27,40, voltage response predictions by our model show 
null direction suppression but no preferred direction enhancement 
(Extended Data Figs. 7b and 8b).

We computed and compared the spatial and temporal receptive 
fields of the major columnar input neurons to T4 and T5 neurons. These 
input neurons have been the focus of multiple experimental studies 
of the motion detection pathways28,41–45 (Fig. 4d). In agreement with 
experimental findings28,43, the prediction of the DMNs is that Tm3 and 
Tm4 have broad spatial receptive fields (two-column radius, 11.6°), 
whereas Mi1, Mi4, Mi9, Tm1, Tm2, Tm9 and CT1 compartments in both 
medulla and lobula have narrow spatial receptive fields (single-column 
radius, 5.8°).

We characterized the temporal response properties of cells in the 
motion pathways, including the lamina monopolar cells (L1–L5) and 
direct inputs to the T4 and T5 neurons. We simulated neural responses 
to single-ommatidium flashes of varying contrast and duration and 
compared them to empirically characterized temporal responses 
(Fig. 4e). The model accurately predicts the preferred contrast of each 
cell type33 (that is, whether they depolarize more strongly to ON or OFF 

single-ommatidium flashes; 5 ms to 300 ms duration; Methods). These 
cells either depolarize (which we call ON-selective) or hyperpolarize 
(which we call OFF-selective) in response to light-increment flashes. The 
temporal response properties are correctly predicted for all except the 
Tm4 cell in this model: for major T4 inputs, Mi1, Tm3 and Mi4 respond 
with transient depolarization to ON-flashes. By contrast, CT1(M10) 
responds with a longer sustained depolarization. Mi9 hyperpolarizes. 
For major T5 inputs, Tm1, Tm2, Tm9 and CT1(Lo1) respond with tran-
sient hyperpolarization. Tm4 is incorrectly predicted to depolarize. 
For lamina cell types, the DMNs predict biphasic hyperpolarization 
in L1 and L2 and monophasic hyperpolarization in L3 and L4, as well 
as depolarization in L5.

For motion-selective neurons such as T4 and T5, the spatio-temporal 
receptive fields are not separable in space and time. We character-
ized the full spatio-temporal receptive field for T4c and T5c neu-
rons (Fig. 4f) using single-ommatidium ON- and OFF-flashes (20 ms; 
Methods). ON-flashes on the leading side of the receptive field of the 
ON-contrast, upwards-direction-selective T4c cell lead to fast depo-
larization, whereas ON-flashes on the trailing side lead to delayed 
hyperpolarization, again matching experimental findings27. As T5c 
is OFF-selective, its OFF-impulse responses are inverted, resembling 
the T4c spatio-temporal receptive field (Extended Data Fig. 9a). This 
reflects that T5c implements a similar motion-tuning mechanism  
to OFF-edges as T4c to ON-edges, in agreement with experimental 
findings40.

Finally, we show that the model can be used to design optimized 
stimuli. We used the task-optimal model to screen for video sequences 
from the Sintel dataset that elicited the largest responses in the 
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qualitatively different tuning mechanisms. a, Responses of T4c cells exhibit 
three clusters, two with ON-motion direction selectivity (circular and triangular 
marker) and one (square marker) without. b, T4c tuning in the three clusters. 
Circular marker: upwards tuning (cluster with lowest average task error 5.297; 
black: known tuning of T4c). Triangular marker: downwards (5.316 error). 
Square marker: no motion tuning (5.357 error). c, Schematic of corresponding 
ON-motion detection pathway. d, Connectivity of major input elements to T4c. 

Blue and red colour: putative hyper- and depolarizing inputs. Saturation: 
average number of input synapses for each offset location. e, Tuning properties 
within each cluster reveal dependencies between T4 tuning and that of Mi4 and 
Mi9 cells in the ensemble: switching Mi4 (known ON-contrast selective) and 
Mi9 (known OFF-contrast selective) contrast preferences results in directionally 
opposite motion-tuning solutions in T4. DMNs in first cluster (T4c in DMN 
upwards tuned, circle) exhibit ON-selectivity for Mi1, Tm3, Mi4 and CT1(M10), 
and OFF-selectivity for Mi9. For ON-motion stimuli, in these DMNs T4c receives 
central depolarizing input from Mi1 and Tm3 and dorsal hyperpolarizing input 
from Mi4 and CT1(M10).
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motion-selective neurons (Fig. 4f, Methods and Supplementary Data 
file 7 for all cell types). One might expect that pure ON- or OFF-stimuli 
would elicit the largest responses in T4 and T5, respectively. However, 
we found both ON-and OFF-elements in optimized stimuli, suggesting 
an interplay between ON- and OFF-pathways. The stimulus that elicited 
the strongest response in the T4c cell was a central OFF-disc followed 
by an ON-edge moving upwards, matching the preferred direction of 
the cell. Similarly, for the T5c cell, the stimulus that elicits the strongest 
response is a central ON-disc followed by an OFF-edge moving upwards 
in the preferred direction of the cell (Extended Data Fig. 9c for corre-
sponding full-field naturalistic stimuli, numerically optimized stimuli 
and preferred moving-edge stimuli). Taken together, these findings 
show that the model predicts a large number of tuning properties for 
the T4 and T5 cells and their inputs.

Sparsity leads to accurate predictions
Here we consider when connectome-constrained and task-optimized 
DMN models might accurately predict neural responses at single-neuron 

resolution. Sparse connectivity is a hallmark of biological neural cir-
cuits. We questioned whether sparse connectivity enables DMNs to 
make accurate predictions of neural activity. For sparsely connected 
circuits—assuming the connectome is known—there are fewer synapse 
parameters left to estimate using task optimization. We reasoned that 
such networks might support fewer possible mechanisms by which to 
perform a given task, and so that a task-optimized DMN model is more 
likely to find the true mechanism and accurately predict single-neuron 
activity.

We tested this hypothesis in a simulation (Fig. 5), by constructing 
feedforward artificial neural networks solving the classic MNIST (Mod-
ified National Institute of Standards and Technology) handwritten 
digit classification task. These networks had varying degrees of sparse 
connectivity, and random assignment of neurons as excitatory and 
inhibitory respecting Dale’s law (25 ground-truth networks for each 
sparsity level, Methods). We then simulated the process of making 
connectome measurements from these ground-truth networks, and 
building connectome-constrained task-optimized DMN simulations 
of each ground-truth network (Fig. 5a).
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As the degree to which connection strength can be inferred from 
noisy connectome measurements is still unknown, we simulated two 
settings. In the first, we assumed that connectome measurements 
reveal connectivity but not connection strength. In this setting, DMNs 
were task-optimized to infer both the resting membrane potential of 
each neuron, and the connection strength of each connected pair of 
neurons. In the second, we assumed that the measurements additionally 
reveal a noisy estimate of strength, which was used as a soft constraint 
during task optimization.

Consistent with our hypothesis, our results showed that sparsity 
in the connectome greatly improves the accuracy of neural activity 
predictions with measurements of connectivity alone (Fig. 5b and 
Supplementary Fig. 8; median Pearson correlations of 0.85 for 10% 
connectivity versus 0.38 for 80% connectivity, 100 randomly selected 
neurons from 25 randomly generated ground-truth networks). How-
ever, with the additional availability of connection strength estimates, 
we find that DMN simulations accurately predict neural activity even 
in the absence of sparse connectivity (median Pearson correlation of 
>0.9 across all connectivities).

Our model of the fly visual system lies in an intermediate regime with 
regards to our knowledge of connection strength. We assumed that 
connectome measurements provided relative connection strength 
but not absolute connection strength, as we assumed that the unitary 
synaptic strength was unknown but the same for connections of the 
same cell-type pair. Thus, we attribute the success of our visual system 
model at predicting neural activity to both the sparse structure of con-
nectivity in this circuit and also the estimates of connection strength 
from the synapse count.

Discussion
We constructed a neural network with connectivity measured at the 
microscopic scale. We also required that, at the macroscopic scale, the 
collective neural activity dynamics across the entire network result in an 
ethologically relevant computation. This combination of microscopic 
and macroscopic constraints enabled us to constrain a large-scale 
computational model spanning many tens of cell types and tens of 
thousands of neurons. We showed that such large-scale mechanis-
tic models could accurately make detailed predictions of the neural 
responses of individual neurons to dynamic visual stimuli, revealing 
the mechanisms by which computations are performed. Knowledge 

of the connectome played a critical role in this success, in part by lead-
ing to a massive reduction in the number of free model parameters.

We have taken a reductionist modelling approach, simplifying the 
modelling of individual neurons and synapses, to focus on the role 
played by the connectivity of a neural network. We found that for the 
motion pathways of the fruit fly visual system, this model correctly 
predicts many aspects of visual selectivity. We considered only the role 
of this circuit in detecting motion, which is but one of many computa-
tions performed by the visual system24. Our reductionist model cannot, 
for example, account for the role played in this circuit by electrical 
synapses46, nonlinear chemical synapses47 and neuromodulation48. 
However, richer models of neurons, synapses, plasticity and extrasyn-
aptic modulation, along with a broader range of ethologically relevant 
tasks, can enable accurate modelling of these and other effects in the 
fly visual system and beyond.

Task-optimized artificial neural network models, for instance of 
mammalian visual pathways22, have previously demonstrated only 
a coarse correspondence of the population neural activity between 
model layers and brain regions. By contrast, every neuron and synapse 
in our connectome-constrained model49–53 has a direct correspondence 
to neurons and synapses in the brain. This correspondence enables 
highly detailed experimentally testable predictions at the single-neuron 
resolution. Thus, our study more directly links artificial neural network 
models to the biological neural network.

Our modelling approach provides a discovery tool, aimed at using 
connectome measurements to generate detailed, experimentally test-
able hypotheses for the computational role of individual neurons. 
Measurements of neural activity are necessarily sparse and involve 
difficult trade-offs. Activity can be measured in limited contexts, 
and either for a limited number of neurons or for a larger number of 
neurons with poorer temporal resolution. Connectome-constrained 
DMN models generate meaningful predictions even in the complete 
absence of neural activity measurements, but can be further con-
strained by sparse measurements of neural activity as we showed 
(Fig. 3), or indeed directly fitted to measured neural activity51 and  
behaviour54.

Whole-brain connectome projects have just been completed for 
the larval and adult fruit fly7,8,55,56, including two new connectomes of 
the entire fruit fly optic lobe6,9, and whole-mouse-brain connectome 
projects are now being discussed57. Large-scale whole-nervous-system 
models51,52,58 will be of critical importance for integrating connectomic, 
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transcriptomic, neural activity and animal behaviour measurements 
across laboratories, scales and the nervous system13. Furthermore, with 
the recent development of detailed biomechanical body models for 
the fruit fly59,60, we can now contemplate constructing whole-animal 
models spanning brain and body.
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Methods

Construction of spatially invariant connectome from local 
reconstructions
We built a computational model of the fly visual system that is con-
sistent with available connectome data1–5, has biophysically plausi-
ble neural dynamics, and can be computationally trained to solve an 
ethologically relevant behavioural task, namely the estimation of optic 
flow. To achieve this, we developed algorithms to blend annotations 
from two separate datasets by transforming, sanitizing, combining 
and pruning the raw datasets into a coherent connectome spanning all 
neuropils of the optic lobe (Supplementary Note 1 and Supplementary 
Data files 1–3).

The original data stem from focused ion beam scanning electron 
microscopy datasets from the FlyEM project at Janelia Research  
Campus. The FIB-25 dataset volume comprises seven medulla col-
umns and the FIB-19 dataset volume comprises the entire optic lobe 
and, in particular, detailed connectivity information for inputs to 
both the T4 and T5 pathways2–4. The data available to us consisted 
of 1,801 neurons, 702 neurons from FIB-25 and 1,099 neurons from 
FIB-19. For about 830 neurons, the visual column was known from 
hand annotation. These served as reference positions. Of the 830 
reference positions, 722 belong to neuron types selected for simula-
tion. None of the T5 cells, whose directional selectivity we aimed to 
elucidate, was annotated. We therefore built an automated, proba-
bilistic expectation maximization algorithm that takes synaptic con-
nection statistics, projected synapse centre-of-mass clusters and 
existing column annotations into account. We verified the quality of 
our reconstruction as described in Supplementary Note 1. Only the 
neurons consistently annotated with both 100% and 90% of reference 
positions used were counted to estimate the number of synapses 
between cell types and columns, to prune neuron offsets with low  
confidences.

Synaptic signs for most cell types were predicted on the basis 
of known expression of neurotransmitter markers (primarily the 
cell-type-specific transcriptomics data from ref. 30). For a minority 
of cell types included in the model, no experimental data on transmit-
ter phenotypes were available. For these neurons, we used guesses of 
plausible transmitter phenotypes. To derive predicted synaptic signs 
from transmitter phenotypes, we assigned the output of histaminergic, 
GABAergic and glutamatergic neurons as hyperpolarizing and the out-
put of cholinergic neurons as depolarizing. In a few cases, we further 
modified these predictions on the basis of distinct known patterns 
of neurotransmitter receptor expression (see ref. 30 for details). For 
example, output from R8 photoreceptor neurons, predicted to release 
both acetylcholine and histamine, was treated as hyperpolarizing or 
depolarizing, respectively, depending on whether a target cell type is 
known to express the histamine receptor gene ort (which encodes a 
histamine-gated chloride channel).

Representing the model as a hexagonal convolutional neural 
network
Our end-to-end differentiable61 DMN model of the fly visual system 
can be interpreted as a continuous-time neural ordinary differential  
equation62 with a deep convolutional recurrent neural network63 
architecture that is trained to perform a computer vision task using 
backpropagation through time64,65. Our goal was to optimize a simu-
lation of the fly visual system to perform a complex visual informa-
tion processing task using optimization methods from deep learning. 
One hallmark of visual systems that has been widely exploited in such 
tasks is their convolutional nature66–69 (that is, the fact that the same 
computations are applied to each pixel of the visual input). To model 
the hexagonal arrangement of photoreceptors in the fly retina, we 
developed a hexagonal convolutional neural network (CNN) in the 
widely used deep learning framework PyTorch21 (ignoring neuronal 

superposition70), which we used for simulation and optimization of  
the model. We model columnar cell types, including retinal cells, lamina 
monopolar and wide-field cells, medulla intrinsic cells, transmedullary 
cells and T-shaped cells, as well as amacrine cells. The model comprises 
synapses from all neuropils and downstream- and upstream-projecting 
connections from the retina, lamina and medulla.

Neuronal dynamics
In detail, we simulated point neurons with voltages Vi of a postsynap-
tic neuron i, belonging to cell type ti using threshold-linear dynam-
ics, mathematically equivalent to commonly used formulations of 
firing-rate models71

∑τ V V s V e= − + + + . (1)t i i
j

ij t i
rest

i i
̇

Neurons of the same cell type share time constants, τti
, and resting 

potentials, V t
rest

i
. Dynamic visual stimuli were delivered as external input 

currents ei to the photoreceptor (R1–R8), for all other cell types, ei = 0. 
In our model, instantaneous graded synaptic release from presynaptic 
neuron j to postsynaptic neuron i is described by

s w f V α σ N f V= ( ) = ( ), (2)ij ij j t t t t t t ΔuΔv ji j i j i j

comprising the anatomical filters in terms of the synapse count from 
electron microscopy reconstruction, Nt t ΔuΔvi j

, at the offset location 
Δu u u= −i j and Δv v v= −i j in the hexagonal lattice between two types 
of cells, ti and t j, and further characterized by a sign, σ ∈ {−1, + 1}t ti j

, and 
a non-negative scaling factor, αt ti j

.
The synapse model entails a trainable non-negative scaling factor 

per filter that is initialized as

α
N

=
0.01

⟨ ⟩
,t t

t t Δu Δv
,
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i j
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with the denominator describing the average synapse count of the 
filter. Synapse counts, Nt t ΔuΔvi j

 from the connectome, and signs, σt ti j
 

from the neurotransmitter and receptor profiling, were kept fixed. The 
scaling factor was clamped during training to remain non-negative.

Moreover, at initialization, the resting potentials were sampled from 
a Gaussian distribution

V μ σ~ ( , )t V V
rest 2

rest
i

restN

with mean μ = 0.5V rest  (a.u.) and variance σ = 0.05V
2

rest  (a.u.). The time 
constants were initialized at τ = 50 msti

. The 50 task-optimized DMNs 
were initialized with the same parameter values. During training, in 
Euler integration of the dynamics, we clamped the time constants as 
τ τ Δt= max( , )i i , so that they remain above the integration time step Δt 
at all times.

In total, the model comprises 45,669 neurons and 1,513,231 syn-
apses, across two-dimensional (2D) hexagonal arrays 31 columns 
across. The number of free parameters is independent of the number 
of columns: 65 resting potentials, 65 membrane time constants, 604 
scaling factors; and connectome-determined parameters: 604 signs 
and 2,355 synapse counts. Thus, the number of free parameters in the 
visual system model is 734.

In the absence of connectome measurements, the number of 
parameters to be estimated is much larger. With T = 65 cell types 
(counting CT1 twice for the compartments in the medulla and  
lobula) and C = 721 cells per type for simplicity, the number of cells 
in our model would be TC = 46,865. Assuming a recurrent neural net-
work with completely unconstrained connectivity and simple dynam-
ics τV V w f V V= − + ∑ ( ) +i i i j ij j i

rest , we would have to find TC TC( ) + 2( ) =2

2, 196, 421, 955 free parameters. Assuming a convolutional recurrent 
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neural network with shared filters between cells of the same post-
synaptic type, shared time constants and shared resting potentials, 
the amount of parameters reduces markedly to T C T+ 2 = 3, 046, 3552 .  
Further assuming the same convolutional recurrent neural network 
but additionally that convolutional filters are constrained to F = 5 
visual columns (that is, the number of presynaptic input columns in 
the hexagonal lattice is P F F= 3 ( + 1) + 1), the amount of parameters 
reduces to T P T+ 2 = 384, 6052 . Assuming as in our connectome that 
only Q = 604 connections between cell types exist, this reduces the 
number of parameters further to QP T+ 2 = 55, 185. Instead of para-
metrizing each individual synapse strength, we assume that synapse 
strength is proportional to synapse count from the connectome times 
a scalar for each filter, reducing the number of parameters to 
Q T+ 2 = 734 while providing enough capacity for the DMNs to yield 
realistic tuning to solve the task.

Convolutions using scatter and gather operations. For training the 
network, we compiled the convolutional architecture specified by the 
connectome and the sign constraints to a graph representation con-
taining: a collection of parameter buffers shared across neurons and/
or connections; a collection of corresponding index buffers indicating 
where the parameters relevant to a given neuron or connection can be 
found in the parameter buffers; and a list of pairs (presynaptic neuron 
index, postsynaptic neuron index) denoting connectivity. This allowed 
us to efficiently simulate the network dynamics through Euler integra-
tion using a small number of element-wise, scatter and gather opera-
tions at each time step. We found that this is more efficient than using a 
single convolution operation or performing a separate convolution for 
each cell type as each cell type has its own receptive field—some much 
larger than others—and the number of cells per type is relatively small.

Optic flow task
Model training. An optic flow field for a video sequence consists of a 
2D vector field for each frame. The 2D vector at each pixel represents 
the magnitude and direction of the apparent local movement of the 
brightness pattern in an image.

We frame the training objective as a regression task

n nˆ [ ] = Decoder(DMN( [0], . . . , [ ])) ,Y X X

with Ŷ being the optic flow prediction, and X being the visual stimulus 
sequence from the Sintel dataset, both sampled to a regular hexagonal 
lattice of 721 columns. With the objective to minimize the square error 
loss between predicted optic flow and target optic flow fields, we jointly 
optimized the parameters of both the decoder and the visual system 
network model described above.

In detail, for training the network, we added randomly augmented, 
greyscaled video sequences from the Sintel dataset sampled to a reg-
ular hexagonal lattice of 721 columns to the voltage of the 8 photore-
ceptor cell types (Fig. 1f and equation (1)). We denote a sample from a 
minibatch of video sequences as X ∈ N C,R , with N being the number of 
time steps, and C being the number of photoreceptor columns. The 
dynamic range of the input lies between 0 and 1. Input sequences dur-
ing training entailed 19 consecutive frames drawn randomly from the 
dataset and resampled to match the integration rate. At the original 
frame rate of 24 Hz, this corresponds to a simulation of 792 ms. We did 
not find that an integration time step smaller than 20 ms (that is, a 
frame rate of 50 Hz after resampling) yielded qualitatively superior 
task performance or more realistic tuning predictions. We interpolated 
the target optic flow in time to 50 Hz temporal resolution. To increase 
the amount of training data for better generalization, we augmented 
input and target sequences as described further below. At the start of 
each epoch, we computed an initial state of the network’s voltages after 
500 ms of grey stimulus presentation to initialize the network at a 
steady state for each minibatch during that epoch. The network 

integration for a given input X results in simulated sequences of volt-
ages V ∈ N T, CR , with TC being the total number of cells. The subset of 
voltages, ∈ N D C

out
, ,V R , of the D cell types in the black rectangle in Fig. 1g 

was passed to a decoding network. For decoding, the voltage was rec-
tified to avoid the network finding biologically implausible solutions 
by encoding in negative dynamic ranges. Furthermore, it was mapped 
to Cartesian coordinates to apply PyTorch’s standard spatial convolu-
tion layers for decoding and on each time step independently. In the 
decoding network, one layer implementing spatial convolution, batch 
normalization, softplus activation and dropout, followed by one layer 
of spatial convolution, transforms the D feature maps into the 2D rep-
resentation of the estimated optic flow, Ŷ ∈ N C,2,R .

Using stochastic gradient descent with adaptive moment estimation 
(β1 = 0.9, β2 = 0.999, learning rate decreased from 5 × 10−5 to 5 × 10−6 in 
ten steps over iterations, batch size of four) and the automatic gradient 
calculation of the fully differentiable pipeline, we optimized the bio-
physical parameters through backpropagation through time such that 
they minimize the L2-norm between the predicted optic flow, Ŷ, and 
the ground-truth optic flow, Y:

Y Y Y Ŷ ̂L( , ) = − .

We additionally optimized the shared resting potentials for 150,000 
iterations, using stochastic gradient descent without momentum, with 
respect to a regularization function of the time-averaged responses 
to naturalistic stimuli of the central column cell of each cell type, tcentral, 
to encourage configurations of resting potentials that lead to non-zero 
and non-exploding activity in all neurons in the network. We weighted 
these terms independently with γ = 1, encouraging activity greater than 
a, and δ = 0.01, encouraging activity less than a. We chose λ = 0.1V  and 
a = 5 in arbitrary units. With B being the batch size and T being the num-
ber of all cell types, the regularizer is


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We regularly checkpointed the error measure L( , ˆ)Y Y  averaged across 
a held-out validation set of Sintel video clips. Models generalized on 
optic flow computation after about 250,000 iterations, yielding func-
tional candidates for our fruit fly visual system models that we analysed 
with respect to their tuning properties.

Task-optimization dataset. We optimized the network on 23 sequences  
from the publicly available computer-animated film Sintel12. The  
sequences have 20–50 frames, at a frame rate of 24 frames per second 
and a pixel resolution of 1,024 × 436. The dataset provides optical flow 
in pixel space for each frame after the first of each sequence. As the 
integration time steps we use are faster than the actual sampling rate 
of the sequences, we resample input frames accordingly over time and 
interpolate the optic flow.

Fly-eye rendering. We first transformed the RGB pixel values of the 
visual stimulus to normalized greyscale between 0 and 1. We translated 
Cartesian frames into receptor activations by placing simulated pho-
toreceptors in a 2D hexagonal array in pixel space, 31 columns across 
resulting in 721 columns in total, spaced 13 pixels apart. The transduced 
luminance at each photoreceptor is the greyscale mean value in the 
13 × 13-pixel region surrounding it.

Augmentation. We used: random flips of input and target across one 
of the three principal axes of the hexagonal lattice; random rotation 
of input and target around its six-fold rotation axis; adding element- 
wise Gaussian noise with mean zero and variance σ = 0.08n  to the  
input X (then clamped at 0); random adjustments of contrasts, 



c σlog (0, = 0.04)c
2N , and brightness, b σ(0, = 0.01)b

2
N , of the input 

with X c X cb′ = ( − 0.5) + 0.5 + .
In addition, we ‘strided’ the fly-eye rendering across the rectangu-

lar raw frames in width, subsampling multiple scenes from each. We 
ensured that such subsamples from the same scene were not distributed 
across training and validation sets. Input sequences in chunks of 19 con-
secutive frames were drawn randomly in time from the full sequences.

Black-box decoding network. The decoding network is feedforward, 
convolutional and has no temporal structure. Aspects of the architec-
ture are explained in the section entitled Model training. The spatial 
convolutions have a filter size of 5 × 5. The first layer transforms the 
D = 34 feature maps to an eight-channel intermediate representa-
tion, which is further translated by an additional convolutional layer 
to a three-channel intermediate representation of optic flow. The 
third channel is used as shared normalization of each coordinate of 
the remaining 2D flow prediction. The decoder uses PyTorch-native  
implementations for 2D convolutions, batch normalization, softplus 
activation and dropout. We initialized its filter weights homogene-
ously at 0.001.

Model characterization
Task error. To rank models on the basis of their task performance, we 
computed the standard optic flow metric of average end-to-end point 
error (EPE)72, which calculates the average over all time steps and pixels 
(that is, here columns) of the error

∑ ∑NC
y n y n y n y nEPE( , ˆ) =

1
( [ ] − ˆ [ ]) + ( [ ] − ˆ [ ])

n c
c c c c1 1

2
2 2

2Y Y

between predicted optic flow and ground-truth optic flow and averaged 
across the held-out validation set of Sintel sequences.

Importance of task optimization and connectome constraints.  
We generated DMNs with different constraints to assess their relative 
importance for predicting tuning properties. First, we studied the  
importance of task optimization of DMN parameters. We cre-
ated 50 DMNs with random Gaussian-distributed parameters, and 
task-optimized only their decoding network, to obtain baseline values 
for both the task error and the accuracy of predicting tuning curves 
without task optimization of the DMN.

In the full DMN, we constrained single synapses by connectome 
cell-type connectivity, cell connectivity, synapse counts and synapse 
signs (equation (2)) and task-optimized the non-negative type-to-type 
unitary synapse scaling factor t t,i j

α . Next, we trained five additional 
task-optimized DMNs with different connectome constraints (Fig. 2d 
and Extended Data Fig. 2a–d).

In these five additional types of DMN, we additionally task-optimized 
the terms in bold, rather than using connectome measurements, related 
to synaptic currents from a presynaptic cell j to a postsynaptic  
cell i: known single-cell connectivity, unknown synapse count: 

mw σ=ij t t t t Δu Δv, , , ,i j i j
, in which t t Δu Δv, , ,i j

m  is non-negative; known cell- 
type connectivity, unknown single-cell connectivity and synapse 
counts: mw σ=i j t t t t Δu Δv Δu Δv, , , ,−3< , , + <3i j i j

 (that is, for all connected cell 
types, a connection weight was learned for all cells up to a distance of 
three columns in hexagonal coordinates, with known signs); known 
single-cell connectivity and synapse counts, but unknown synapse 
signs: w N=i j t t t t t Δu Δv, , , , ,i j j i j

α σ  (that is, connection weights were fixed by 
measurements, but signs optimized); known single-cell connectivity, 
but unknown synapse signs and synapse counts: w =i j t t Δu Δv, , , ,i j

w , (that 
is, all non-zero connection weights were optimized, including their 
signs); or known cell-type connectivity, unknown single-cell connectiv-
ity, synapse counts and synapse signs: w =i j t t Δu Δv Δu Δv, , ,−3< , , + <3i j

w  (that 
is, for all connected cell types, a connection weight and sign was learned 
for all cells up to distance of three columns). We trained 50 models per 

DMN type. The task-optimized parameters in each case are highlighted 
using bold symbols. We randomly initialized the models with 

N ( ), 0,t t t t n, ,
2

ini j i j
m w , in which nin is the number of cell connections 
and m is non-negative, and σ ∈ {−1, 1}t j

 with equal probability.

Unconstrained CNN. We trained unconstrained, fully convolutional 
neural networks on the same dataset and task to provide an estimate of 
a lower bound for the task error of the DMN. Optic flow was predicted 
by the CNN from two consecutive frames

Y n X n X nˆ [ ] = CNN( [ ], [ − 1]) .

with the original frame rate of the Sintel film. We chose 5 layers for the 
CNN with 32, 92, 136, 8 and 2 channels, respectively, and kernel size 5 
for all but the first layer, for which the kernel size is 1. Each layer per-
forms a convolution, batch normalization and exponential linear unit 
activation, except the last layer, which performs only a convolution. 
We optimized an ensemble of 5 unconstrained CNNs with 414,666 free 
parameters each using the same loss function, L Y Y( , ˆ), as for the DMN. 
We used the same dataset (that is, hexagonal sequences and augmen-
tations from Sintel) for training and validating the CNN as that used for 
training and validating the DMN, enabled by two custom modules 
mapping from the hexagonal lattice to a Cartesian map and back.

Circular flash stimuli. To evaluate the contrast selectivity of cell 
types in task-optimized models, we simulated responses of each 
DMN to circular flashes. The networks were initialized at an approxi-
mate steady state after 1 s of grey-screen stimulation. Afterwards the 
flashes were presented for 1 s. The flashes with a radius of 6 columns 
were ON (intensity I = 1) or OFF (I = 0) on a grey (I = 0.5) background. 
We integrated the network dynamics with an integration time step of 
5 ms. We recorded the responses of the modelled cells in the central 
columns to compute the FRI.

FRI. To derive the contrast selectivity of a cell type, ti, we computed the 
FRI as

r I r I

r I r I
FRI =

( = 1) − ( = 0)

( = 1) + ( = 0)
t

t
peak

t
peak

t
peak

t
peaki

central central

central central

from the non-negative activity

r I V n I V n I( ) = max [ ] ( ) + |min [ ] ( )|,
n

t
n I

tt
peak

,central central central

from voltage responses V n I[ ] ( )t central
 to circular flash stimuli of intensi-

ties I ∈ {0, 1} lasting for 1 s after 1 s of grey stimulus. We note that our 
index quantifies whether the cell depolarizes to ON- or to OFF-stimuli. 
However, cells such as R1–R8, L1 and L2 can be unrectified (that is, sen-
sitive to both light increments and light decrements), which is not 
captured by our index.

For the P values reported in the results, we carried out a binomial 
test with probability of correct prediction 0.5 (H0) or greater (H1) to 
test whether both the median FRI from the DMN ensemble and the 
task-optimal model can predict the contrast preferences. Additionally, 
we found for each individual cell type across 50 DMNs that predictions 
for 29 out of 31 cell types are significant (P < 0.05, binomial).

Moving-edge stimuli. To predict the motion sensitivity of each cell 
type in task-constrained DMNs, we simulated the response of each 
network, initialized at an approximate steady state after 1 s of grey- 
screen stimulation, to custom generated edges moving to 12 different 
directions, θ ∈ [0°, 30°, 60°, 90°, 120°, 150°, 180°, 210°, 240°, 270°,
300°, 330°]. We integrated the network dynamics with an integration 
time step of 5 ms. ON-edges (I = 1) or OFF-edges (I = 0) moved on a grey 
(I = 0.5) background. Their movement ranged from −13.5° to 13.5° 



Article
visual angle and we moved them at six different speeds, ranging  
from 13.92° s−1 to 145° s−1 ( ° ° ° °S ∈ [13.92 s , 27.84 s , 56.26 s , 75.4 s ,−1 −1 −1 −1

110.2° s , 145.0° s ]−1 −1 ). In Fig. 2d, we report the correlation between 
predicted motion-tuning curves to the single experimentally measured 
tuning curve. We take the maximum correlation across six investi-
gated speeds to make the correlation measure robust to potential 
variations in preferred speeds.

DSI. We computed a DSI73 of a particular type ti as

∑I
r θ iθ

r θ
DSI ( ) =

1
| |

|∑ (I, S, )exp( )|

max|∑ (I, S, )|S

θ Θ

I
θ

t
∈

∈ t
peak

∈
t
peaki

central

central
S S

I

from rectified peak voltages

r θ V n θ(I, S, ) = max [ ](I, S, ),
n

tt
peak +

central central

elicited from moving-edge stimuli. We rectify the voltage to quantify 
the tuning of the effective output of the cell, and to avoid the denom-
inator becoming zero. We parameterized movement angle θ Θ∈ , inten-
sities II ∈ , and speeds S ∈ S of the moving edges. To take the response 
magnitudes into account for comparing the DSI for ON- and for 
OFF-edges, we normalized by the maximum over both intensities in 
the denominator. To take different speeds into account, we averaged 
over S.

Normalization of model neural activity for averaging across models 
in a cluster. Threshold-linear networks have arbitrary units for the 
voltages and currents. Therefore, we normalized the neural activity 
before averaging the neural activity predictions from different models. 
For a single cell or cell type t, we first divided responses (voltages or 
rectified voltages) by the root mean square across the cell’s responses 
to the naturalistic stimuli:

∣∣ ∣∣

R
r n

r n
[ ] =

[ ]
,t

t

SN t

⋅ 1
1 nat.

2

in which ∈t
S Nnat. ,R R  is the cell’s response vector to S sequences from 

the Sintel dataset with N time steps and r n[ ]t  is the cell’s response to 
any stimuli. This normalization makes averages (Fig. 4a,b,d–e and 
Extended Data Figs. 4, 7, 8, and 9a,b) independent to variation in the 
scale of neural activity from model to model. We normalized input 
currents equivalently (Fig. 4b and Extended Data Figs. 4, 7, and 8) by 
the same normalization factor. We exclude solutions for which the 
denominator becomes zero.

Determining whether a cell type with asymmetric inputs counts 
as direction selective. We counted a cell type as direction selective 
if the DSIs from its synthetic measurements were larger than 99% of 
DSIs from non-motion selective cell types (that is, those with sym-
metric filters). We note, however, that estimates of the spatial asym-
metry of connectivity from existing connectome reconstructions can  
be noisy.

For deriving the 99% threshold, we first defined a distribution 
p d( *|t )sym  over the DSI for non-direction-selective cells, from peak 
responses to moving edges of cell types with symmetric inputs, tsym. 
We computed that distribution numerically by sampling

d
r θ iθ

r θ
* =

|∑ (I, S, *)exp |

|∑ (I, S, )|
θ

θ

* t
peak

t
peak

central

central

for 100 independent permutations of the angle θ*. We independently 
computed d * for all stimulus conditions, models and cell types with 

symmetric inputs. From p d( *|t )sym , we derived the threshold 
d = 0.357thresh  as the 99% quantile of the random variable d *, meaning 
that the probability that a realization of d d* > thresh is less than 1% for 
cell types with symmetric inputs. To determine whether an asymmet-
ric cell type counts as direction selective, we tested whether syntheti-
cally measuring direction selectivity larger than dthresh in that cell type 
is binomial with probability 0.1 (H0) or greater (H1). We identified 12 
cell types with asymmetric inputs (T4a, T4b, T4c, T4d, T5a, T5b, T5c, 
T5d, TmY3, TmY4, TmY5a and TmY18) as direction selective (P < 0.05) 
from our models, and 7 cell types with asymmetric inputs to not count 
as direction selective (T2, T2a, T3, Tm3, Tm4, TmY14 and TmY15; see 
Extended Data Fig. 5 as reference for cell types with symmetric and 
asymmetric inputs).

Uniform manifold approximation and projection and clustering. 
We first simulated central column responses to naturalistic scenes 
(24 Hz Sintel video clips from the full augmented dataset) with an  
integration time step of 10 ms. We clustered models in feature space 
of concatenated central column responses and sample dimension. 
Next, we computed a nonlinear dimensionality reduction to two  
dimensions using the UMAP (uniform manifold approximation and 
projection) algorithm, and fitted Gaussian mixtures of 2 to 5 com-
ponents, with the number of components that minimize the Bayes-
ian information criterion, using the Python libraries umap-learn and  
scikit-learn38,74.

Single-ommatidium flashes. To derive spatio-temporal recep-
tive fields of cells, we simulated the response of each network to 
single-ommatidium flashes. Flashes were ON (I = 1) or OFF (I = 0) on a 
grey (I = 0.5) background and presented for [5, 20, 50, 100, 200, 300] ms 
after 2 s of grey-screen stimulation and followed by 5 s of grey-screen 
stimulation.

Spatio-temporal, spatial and temporal receptive fields. We derived 
the spatio-temporal receptive field (STRF) of a cell type ti as the 
baseline-subtracted responses of the central column cell to single- 
ommatidium flashes J u v( , )  at ommatidium locations u v( , ) :

n u v V n J u v V n J u vSTRF [ ]( , ) = [ ]( ( , )) − [ = 0]( ( , )).t t tcentral central central

We derived spatial receptive fields (SRFs) from the responses to 
flashes (20 ms in Fig. 4d) J u v( , )  at the point in time at which the 
response to the central ommatidium impulse is at its extremum:

u v n n u vSRF( , ) = STRF( = argmax |STRF[ ] (0, 0)|, , ) .n

We derive temporal receptive fields (TRFs) from the response to a 
flash J (0, 0)  at the central ommatidium: n nTRF[ ] = STRF[ ] (0, 0) . For 
averaging receptive fields across multiple models, we first normalize 
the voltages as described above.

Maximally excitatory naturalistic and artificial stimuli. First, we 
found the naturalistic maximally excitatory stimulus, X*, by identifying 
the Sintel video clip, X, from the full dataset with geometric augmenta-
tions that elicited the highest possible response in the central column 
cell of a particular cell type in our models.

VX* = argmax (X) .t
X∈Sintel

central

Next, we regularized the naturalistic maximally excitatory stimulus, 
to yield X′, capturing only the stimulus information within the receptive 
field of the cell, with the objective to minimize

∑ ∑L V n V n
C

n c(X′) = (X*)[ ] − (X′)[ ] +
1

X′[ , ] − 0.5 .
n

t t
c

2 2
central central

∥ ∥ ∥ ∥



The first summand preserves the central response to X*, and the 
second regularizes the irrelevant portions of the stimulus outside the 
receptive field to grey (I = 0.5).

In addition, we computed artificial maximally excitatory stimuli75.

Model selection. To describe the most data-consistent motion tuning 
mechanisms predicted by the ensemble at the level of single-cell cur-
rents, for Extended Data Figs. 4, 7 and 8, we automatically selected 
those models from the ensemble with tuning matching to empirical 
data. Specifically, we selected models with correct contrast tuning in 
the respective target cells and their inputs (Fig. 4c and Extended 
Data Fig. 3d), with the DSI larger than the threshold d * derived above, 
and with a correctly predicted preferred direction (45° acceptance 
angle, assuming 225° for TmY3).

Training synthetic connectomes
Training feedforward synthetic ground-truth connectome net-
works. Sparsified feedforward neural networks with six hidden layers 
(linear transformations sandwiched between rectifications) with equal 
number of neurons in each hidden layer functioned as ground-truth 
connectome networks. The main results describe networks with 128 
neurons per hidden layer. We interpret the individual units as neurons 
with voltage

∑ ∑V s V σ c m f V V= + = ( ) + ,i
j

ij i
j

j ij ij j i
rest rest

with presynaptic inputs sij  and resting potentials V i
rest . The 

connectome-constrained synapse strength, wij, is characterized by the 
adjacency matrix cij, the signs σj, and the non-negative weight magni-
tudes mij. c = 1ij  if the connection exists, else c = 0ij . To respect Dale’s 
law, the signs were tied to the presynaptic identity, j.

We identified the parameters σj, mij and V i
rest by task optimization 

on handwritten digit classification (Modified National Institute of 
Standards and Technology (MNIST) database)76. We determined adja-
cency matrices, cij, for a given connectivity percentage using an 
iterative local pruning technique, the lottery ticket hypothesis algo-
rithm77. The algorithm decreases the connectivity percentage of the 
ground-truth connectome networks while maintaining high task  
accuracy.

We optimized the ground-truth connectome networks and all simu-
lated networks described below in PyTorch with stochastic gradient 
descent with adaptive moment estimation (ADAM with AMSGrad), 
learning rate 0.001, batch size 500, and an exponentially decaying 
learning rate decay factor of 0.5 per epoch. To constrain the weight 
magnitudes to stay non-negative, we clamped the values at zero after 
each optimization step (projected gradient descent). The parameters 
after convergence minimize the cross-entropy loss between the pre-
dicted and the ground-truth classes of the handwritten digits. More 
implementation detail is available in Supplementary Note 5.

Simulated networks with known connectivity and unknown 
strength. Simulated networks inherited connectivity, cij, and synapse 
signs, σj, from their respective ground-truth connectome networks. 
In simulated networks, signs and connectivity were held fixed. Weight 
magnitudes, mij, and resting potentials, V i

rest, were initialized random-
ly and task-optimized. Just like ground-truth connectome networks, 
simulated networks were trained on the MNIST handwritten digit clas-
sification task until convergence.

Simulated networks with known connectivity and known strength. 
Alternatively, we imitate measurements of synaptic counts from the 
ground-truth weight magnitudes:

m m ϵ ϵ σ σ= with (1 − , 1 + ),ij ij ij ij U͠

with multiplicative noise to imitate spurious measurements. We used 
σ = 0.5 for the main results. Weight magnitudes were initialized at the 
measurement, mij͠ , and task-optimized on MNIST with the additional 
objective to minimize the squared distance between optimized and 
measured weight magnitudes, mij͠  (L2 constraint, Gaussian weight 
magnitude prior centred around the simulated network’s initialization). 
We weighted the L2 constraint ten times higher than the cross-entropy 
objective to keep weight magnitudes of the simulated networks close 
to the noisy connectome measurements. Resting potentials, V i

rest, were 
again initialized randomly and task-optimized.

Measuring ground-truth-simulated network similarity. Ground- 
truth-simulated network similarity was measured by calculating the 
median Pearson’s correlation of tuning responses (rectified voltages) 
of corresponding neurons in the ground-truth-simulated network 
pair. In each of the 6 hidden layers, N = 100 randomly sampled neurons 
were used for comparison. Response tuning was measured over input 
stimuli from the MNIST test set (N = 10,000 images). Results are medi-
ans over all hidden layers and over 25 ground-truth-simulation network  
pairs.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data, trained models and interactive notebooks are available at https://
www.github.com/TuragaLab/flyvis.

Code availability
Code is available at https://www.github.com/TuragaLab/flyvis.
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Extended Data Fig. 1 | Cell connectivity. The matrix shows how cells of the 64 cell types within the inner 91 columns (of 721) of the recurrent convolutional DMN 
connect (Supplementary Data file 1), either by excitatory connections (red) or inhibitory connections (blue).
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Extended Data Fig. 2 | DMN benchmark of connectomic constraints.  
(a-d) How would incomplete knowledge of connectome affect the  
tuning predictions? We artificially varied DMNs with random parameters, 
connectome-constrained or task-optimized parameters. Five experiments: 
Four ‘Synapse-optimized models’, one ‘Fully optimized’. Details in Methods. 
How would incomplete knowledge of cell types affect the tuning 
predictions? We artificially assumed some cell types to be indistinguishable, 
with shared physiological parameters (resting potentials, time constants,  
and unitary synapse strengths). Two experiments: (1) ‘Full DMN Merge T4, T5’ 
assumes that T4 and T5 subtypes were indistinguishable, reducing the number 
of cell types to 58. (2) ‘Full DMN Merge E/I’ assumes that we had three cell  
types, excitatory (37 cell types), inhibitory (22 cell types) or both (4 cell types),  
based on our knowledge of synapse signs. Tuning predictions are shown in 
comparison to the Full DMN and the DMN with random parameters.  

(a) Task error. (b) Predicted correlations to flash response indices, T4, and T5 
motion-tuning curves (10 best models). (c) Predicted correlations to known 
direction selectivity indices. (d) Distances between known preferred directions 
and predicted preferred directions for T4 and T5 neurons. (e) Better task- 
performing models predict motion-tuning neurons better. We correlate 
predicted tuning metrics from each model to the known tuning properties to 
understand when better performing models give us better tuning predictions. 
(orange) When correlating the direction selectivity index of each model to the 
binary known properties for T4 and T5 and their input cell types, we find that 
this correlation is higher for better performing models (Pearson correlation, 
r = − 0.60, p =2.6 × 10−6, t r=

r

df

1 − 2
, 95% CI = [−1, −0.42], df =48). (magenta) While 

the models predicted the known contrast preferences generally well, the 
correlation of flash response index to the binary known contrast preferences of 
31 cell types did not significantly increase with better performing models.



Extended Data Fig. 3 | DMNs suggest that TmY3 neurons compute motion 
independently of T4 and T5 neurons. (a) We clustered 50 DMNs after 
performing nonlinear dimensionality reduction of their responses to 
naturalistic scenes for each cell type, and aimed to identify whether clusters 
correspond to qualitatively different tuning mechanisms. (b) Dimensionality 
reduction on TmY3 responses to naturalistic stimuli reveals 4 clusters of DMNs 
with average task errors 5.298 (circle), 5.317 (triangle), 5.328 (square) and 5.331 
(star). Across clusters, TmY3 shows different strengths of direction selectivity 
(evaluated with moving edge stimuli). ON-edge direction selectivity is strong  
in the first and the third cluster. (c) Normalized peak responses of TmY3 to 
moving edge stimuli in the DMNs of each cluster. (d) Major cell types and 

synaptic connections in the pathway that projects onto TmY3 (simplified).  
(e) The input elements of TmY3 with the highest amount of synapses are L4, L5, 
Tm2, Tm3, Mi1, Mi9, and Mi4. The asymmetries of their projective fields could 
allow TmY3 to become motion selective. (f) Dependencies between TmY3 
tuning and the contrast preference of its input cells. For clusters in which  
TmY3 is motion selective, cluster 1 (TmY3 tuning to downwards/front-to-back 
motion, circular marker) indicates ON-selectivity for Tm3, Mi1, and Mi4 cells, 
and OFF-selectivity for L4, Tm2, and Mi9 cells, in agreement with known 
selectivities. In contrast, cluster 3 (TmY3 tuning to upwards/back-to-front 
motion, square marker) indicates ON-selectivity for Mi9 in contradiction to  
the known selectivities and hence ruling out the third TmY3 tuning solution.
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Extended Data Fig. 4 | TmY3 motion detection mechanisms hypothesized by the model. (a) Responses to PD and ND ON-edge motion and contributions from 
input elements. (b) PD enhancement and ND suppression in TmY3 in the model.



Extended Data Fig. 5 | Statistics of inhibitory and excitatory synapse 
inputs. (a) Number of input cell types per cell type. (b) Center of mass offsets 
of synaptic input. (c) Average excitatory and (d) inhibitory center of mass offset 

of synaptic inputs against median predicted direction selectivity index for all 
cell types. Datapoints for cell types that were predicted as significantly motion 
selective are labeled.
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Extended Data Fig. 6 | Predicted tuning with respect to task-performance. 
(a) Flash response index computed as the max-abs-scaled peak response to an 
off flash subtracted from the max-abs-scaled peak response to an on flash – 
both of approximately 35° radius and presented for 1 s after 2 s of grey input. 
Values above 0 indicate on-polarity, values below zero indicate off-polarity. 

Known on-polar and off-polar cell types are colored in yellow and magenta.  
(b) Single-cell type direction selectivity of best 20% task-performing models 
versus worst 20% task-performing models of an ensemble of 50 models as a 
result of peak voltage responses in central columns to on-edges and off-edges 
moving towards all possible directions on grey background.



Extended Data Fig. 7 | T4 motion detection mechanisms hypothesized  
by the model. (a) Across all T4 cell types (here T4c, Supplementary Fig. 5 for 
other T4 types), our model predicts that T4 depolarization in response to PD 
ON-motion (black, solid) is driven by excitatory Mi1 current inputs (darkest red, 
solid) from roughly a two-column radius of Mi1 cells. Excitatory inputs from 
neighboring T4 cells of the same type increase the T4 PD-motion response 
(third darkest red, solid). Tm3 and Mi1 cells excite T4 agnostic to PD vs. ND 
motion. For ND-motion, Mi4 cells cancel excitatory currents from Mi1 with 
matching inhibition from the trailing side of the receptive field (darkest blue, 
dashed). The inhibition from Mi4 cells is delayed for PD-motion (darkest blue, 
solid), allowing strong depolarization of T4. CT1 shadows the Mi4 mechanism 
with similar but weaker inhibition from the same location of the receptive field 

(second darkest, blue). Our model suggests mechanisms involving Mi9 cells 
and TmY15 cells: both contribute to T4 motion detection by different inhibitory 
mechanisms for PD-motion with respect to ND-motion. (b) ‘Measured’: 
Predicted T4c responses to bars moving in PD (left column) and in ND (right 
column) at varied speeds (saturated red and blue). ‘Linear sum’: linear sum  
of responses to individually flashed frames that constitute the moving bar 
video (faint red and blue). Faint grey traces in background of first panel show 
individual flash responses before linear summation. Flash duration in each 
location matched to length of stay at the location in the moving bar video. Bars 
were approximately 9° wide and 20.25° high and moved across 45° with respect 
to receptive field in the center. This figure should be compared to Gruntman 
et al.27, Fig. 4f.
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Extended Data Fig. 8 | T5 motion detection mechanisms hypothesized  
by the model. (a) Across all T5 cell types (here T5c, Supplementary Fig. 6 for 
other T5 types), our model predicts that T5 depolarization in response to PD 
OFF-motion (black, solid) is driven by excitatory Tm1 and Tm9 input currents 
(darkest and second darkest red). Tm1 currents come from a centered, 
two-column radius of Tm1 cells. Tm9 inputs come from cells offset by one 
column towards the leading side of the receptive field. We observe delayed 
excitation from Tm9 cells for ND-motion. The PD-motion response is increased 
through excitatory inputs from the neighboring T5 cells of the same type (as for 
T4 cells), not providing excitation for ND-motion. CT1(Lo1) cells cancel excitatory 
currents with strong inhibitory currents from the trailing side of the receptive 

field leading to the weak ND response. For PD-motion, inhibition from CT1(Lo1) 
cells is delayed allowing strong T5 depolarization. (b) ‘Measured’: Predicted 
T5c responses to bars moving in PD (left column) and in ND (right column) at 
varied speeds (saturated red and blue). ‘Linear sum’: linear sum of responses  
to individually flashed frames that constitute the moving bar video (faint red 
and blue). Faint grey traces in background of first panel show individual flash 
responses before linear summation. Flash duration in each location matched to 
length of stay at the location in the moving bar video. Bars were approximately 
9° wide and 20.25° high and moved across 45° with respect to receptive field in 
the center.



Extended Data Fig. 9 | Spatio-temporal receptive fields mapped with ON- 
and OFF-impulses and maximally excitatory stimuli. (a) Spatiotemporal 
receptive fields for motion detector neurons agree with experimental 
measurements (Gruntman et al.27). (b) Spatio-temporal receptive field 
mapping with single ommatidium OFF-impulses. (c) Maximally excitatory 
stimuli and baseline-subtracted responses. Including full-field naturalistic, 

regularized naturalistic, artificial, and moving edge stimuli and responses. 
Moving edge angle and speed maximize the central cell peak response. 
Artificial stimuli are optimized from initial noise to maximize the central cell 
activity using gradient ascent plus full-field regularization towards grey. The 
last row shows the baseline-subtracted central cell responses. Peak central cell 
responses at time point zero.
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