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We can now measure the connectivity of every neuron in a neural circuit'®, but we
cannot measure other biological details, including the dynamical characteristics of
each neuron. The degree to which measurements of connectivity alone caninform the

understanding of neural computation is an open question'®. Here we show that with
experimental measurements of only the connectivity of a biological neural network,
we can predict the neural activity underlying a specified neural computation. We
constructed amodel neural network with the experimentally determined connectivity
for 64 cell types in the motion pathways of the fruit fly optic lobe! but with unknown
parameters for the single-neuron and single-synapse properties. We then optimized
the values of these unknown parameters using techniques from deep learning", to
allow the model network to detect visual motion*2. Our mechanistic model makes
detailed, experimentally testable predictions for each neuron in the connectome.
We found that model predictions agreed with experimental measurements of neural
activity across 26 studies. Our work demonstrates a strategy for generating detailed
hypotheses about the mechanisms of neural circuit function from connectivity
measurements. We show that this strategy is more likely to be successful when
neurons are sparsely connected—a universally observed feature of biological neural
networks across species and brain regions.

Electrical signals propagating through networks of neurons form the
basis of computations such as visual motion detection. The propaga-
tion of neural activity is shaped by both the functional properties of
individual neurons and their synaptic connectivity. Additional fac-
tors'®%, including electrical synapses, neuromodulation and glia, are
known to further influence neural activity on multiple timescales.
Volume electron microscopy can now be used to comprehensively
measure the connectivity of each neuronin a neural circuit, and even
entire nervous systems' °. However, we do not yet have the means to
also comprehensively measure all other biological details, including
the dynamical properties of every neuron and synapse in the same
circuit®. For these reasons, there has been considerable debate about
the utility of connectome measurements for understanding brain func-
tion™. Itis unclear whether it is possible to use only measurements of
connectivity to generate accurate predictions about how the neural
circuit functions, especially in the absence of direct measurements
of neural activity from a living brain. There is considerable evidence
from computer science and neuroscience that there is not necessar-
ily a strong link between the connectivity of a neural network and its
computational function. Universal function approximation theorems
forartificial neural networks®imply that the same computational task
canbe performed by many different networks with very different neural
connectivity. Empirically, there exist many classes of general-purpose

artificial neural network architectures that can be trained to perform
the same computational task™. Such differences in connectivity can
correspond to qualitatively different computational mechanisms®,
Similarly, in neuroscience there have been competing proposals for the
same computation (for instance, the computation of visual motion)*s,
Furthermore, even circuits with the same connectivity can function
differently”. Thus, neither the connectivity of a circuit alone, nor its
computational task alone, can uniquely determine the mechanism of
circuit function®.

Here we show that the connectivity of aneural circuit, together with
knowledge of its computational task, enables accurate predictions of
therole played by individual neuronsin the circuitinthe computational
task. We constructed a differentiable?? model neural network with a
close correspondence to the brain, whose connectivity was given by
connectome measurements and with unknown single-neuron and
single-synapse parameters. We optimized the unknown parameters
of the model using techniques from deep learning™, to enable the
model to accomplish the computational task?. We call such models
connectome-constrained and task-optimized deep mechanistic net-
works (DMNs) (Fig. 1a).

We applied this approach to model the motion pathways in the optic
lobe of the Drosophilavisual system. We constructed a DMN with experi-
mentally measured connectivity’, and unknown parameters for the
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Fig.1|Connectome-constrained and task-optimized models of the fly visual
system. a, DMNs aim to satisfy three constraints: the architectureis based on
connectome measurements (b-e); cellular and synaptic dynamics are given

by simple mechanistic models (f); and free parameters are task-optimized by
training the model to perform optic flow estimation (g). Graphics of fruit fly
and microscope were created with BioRender.com. b, Schematic of optic lobe
of D. melanogaster with several processing stages (neuropils) and cell types,
including photoreceptor (R1-R8), lamina monopolar (L), lamina wide-field
(Lawf), medullaintrinsic (Mi), transmedullary (Tm) and T-shaped (T) neurons
(adapted fromref. 25, Springer Nature). Scale bar, 10 um. ¢, Identified
connectivity between 64 modelled cell types, represented by total number of
synapses fromall neurons of agiven presynaptic cell type to a postsynapticcell
ofagiventype.Amacrine (Am), centrifugal (C2-C3) and complex tangential (CT)
neuronsarealsoincluded. Blue (red) colour indicates putative hyperpolarizing
(depolarizing) inputs; size of squares indicates number of input synapses.

single-neuron dynamics and the strength of a unitary synapse. We
optimized the model parameters onthe computer vision task of detect-
ing motion in dynamic visual stimuli'®, Visual motion computation
in the fly and its mechanistic underpinnings have been extensively
studied®. Thus, we were able to compare the detailed predictions
of our model with experimental measurements of neural activity in
response to visual stimuli, on a neuron-by-neuron basis. We found
that our connectome-constrained and task-optimized DMN accurately
predictsthe separation of the visual systeminto light-increment (ON)
and light-decrement (OFF) channels, as well as the generation of direc-
tionselectivity in the well-known T4 and T5 motion detector neurons®.
We release our model as aresource for the community (https://github.
com/Turagalab/flyvis).

DMN of the fly visual system

The opticlobes of the fruit fly are equivalent to the mammalian retina.
They comprise several layered neuropils whose columnar arrangement

d, Retinotopic hexagonal lattice columnar organization of visual system model.
Eachlatticerepresentsa cell type; each hexagonrepresents anindividual cell.
Positions of photoreceptor ommatidia are aligned with downstream columns.
The model comprises synapses from all neuropils (Supplementary Fig. 1).

e, Example of convolutional filter, representing Mi9 inputs onto T4d cells.
Values represent the average number of synapses projecting from presynaptic
Mi9 cellsin columns with indicated offset onto the postsynaptic dendrite of T4d
cells. f, Single-neuron and synaptic dynamics are given by simple mechanistic
models. Free parameters (magenta) are optimized by training the recurrent
network model to performoptic flow estimation. g, lllustration of DMN
performing optic flow estimation. Each hexagonal lattice shows asnapshot of
simulated voltage levels of all cellsof each typeinresponsetoinputto the
photoreceptors (R1-R8). Edgesillustrate connectivity betweencell types. A
decoderreceives the simulated neural activity of all output neurons to compute
optic flow. Parameters of DMN and decoder are optimized using deep learning.

hasaone-to-one correspondence with the ommatidia, both possessing
aremarkably crystalline organizationin a hexagonallattice. Visual input
fromthe photoreceptorsis received by the laminaand medulla, which
send projections to the lobula and lobula plate” (Fig. 1b). Many com-
ponents of the optic lobe are highly regular, with columnar cell types
appearing once per column, and multicolumnar neurons appearing
withonly small deviations from a well-defined periodicity in columnar
space??, Several studies have reported on the local connectivity in the
optic lobe and its motion pathways' . We assembled these separate
local reconstructionsinto a coherent local connectome spanning the
retina, lamina, medulla, lobulaand lobula plate (Fig. 1c, Supplementary
Note 1, Supplementary Fig.1and Supplementary Data files 1-3).

We approximated the circuitry across the entire visual field as per-
fectly periodic®*, and tiled this local connectivity architectureina
hexagonal lattice across retinotopic space to construct a consensus
connectome for 64 cell types across the central visual field of the right
eye (Fig.1d, Methods, Extended Data Fig. 1, Supplementary Fig. 2 and
Supplementary Datafile 4). By thisassumption of translationinvariance
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dueto periodictiling, the synapse count between each pair of neurons
was the same across all pairs of neurons with the same presynaptic
and postsynaptic cell type and relative location in retinotopic space.
For simplicity, we refer here to this partial connectome of the motion
pathways as the connectome.

We built arecurrent neural network modelling these first stages of
visual processing in the optic lobe based on the connectome for the
right eye. Each neuroninthis DMN correspondstoarealneuroninthe
fly visual system, belonging to anidentified cell type, and is connected
to other neurons only if they are connected by synapsesin the connec-
tome (Fig. 1e). We constructed a model with detailed connectivity, but
simplified models of single neurons and chemical synapses (Fig. 1f).
We used passive leaky linear non-spiking voltage dynamics to model
the time-varying activity of single neurons, as many neurons in the
early visual system are non-spiking. We modelled neurons with asingle
electrical compartment, as this has previously been shown to be agood
approximation given the small size of many neurons in the optic lobe?.
The CT1(complextangential) neuron, whichisamongthelargestinthe
brain, spanning the entire optic lobe, was modelled with one compart-
mentper columninthemedullaandlobula, asitis highly electrotoni-
cally compartmentalized®® (Supplementary Note 2). We modelled the
graded-release chemical synapses between non-spiking neurons with a
threshold-linear function to approximate the nonlinear voltage-gated
release of neurotransmitters. The resulting network model follows
well-known threshold-linear dynamics and is piece-wise differentiable.
Such dynamics are typically used to approximate the firing rates of a
network of spiking neurons with the nonlinearity arising from spike
generation, whereas in our network, the nonlinearity represents the
voltage-gated neurotransmitter release. We used the cell-type struc-
ture of the connectome toreduce the number of free parametersin the
model (Fig. 1f). We assumed that neurons of the same cell type shared
the same neuron time constant and resting membrane potential. We
modelled synaptic weights as proportional to the discrete number of
synapses asreported in the connectome between aconnected neuron
pair®, withascale factor representing the strength of aunitary synapse.
The unitary synapse scale factor and the sign of each synapse was the
same for all pairs of neurons with the same pre- and postsynaptic cell
type.Inotherwords, aconnection of five synapses from an Mil (medulla
intrinsic) neuron to a T4 (T-shaped) neuron is assumed to be exactly
half as strong as ten synapses between another pair of neurons of the
same presynaptic and postsynaptic cell types, but could be stronger or
weaker than five synapses between neurons of a different cell-type pair,
forinstance, from a Tm3 (transmedullar) neuron to a T4 neuron. The
sign of each cell-type connection was determined by neurotransmitter
and receptor expression profiling®® (Methods and Supplementary Data
file 2).Intotal, the connectome-constrained model comprises 45,669
neurons and 1,513,231 connections, across 64 cell types arranged in
a hexagonal lattice consisting of 721 columns, modelling the central
visual field of the roughly 700-900 ommatidia typically foundin the
fruit fly retina®. Connectome constraints, and our assumption of spa-
tial homogeneity (that is, the hexagonally convolutional structure of
the network), resultinamarked reduction to just 734 free parameters
for this large network model. The only free parameters in our model
arethe single-neuron time constants and resting membrane potentials
(two parameters per cell type), and the unitary synapse strengths (one
parameter per type-to-type connection). Inthe absence of connectome
measurements, we would have needed to estimate well in excess of
amillion parameters corresponding to the weights of all possible
connections (Methods).

We used task optimization? to further constrain the parameters of
the model (that is, by training the model to perform a computational
task that is thought to approximate the computations carried out by
the circuit). We therefore implemented our recurrent DMN using the
PyTorchlibrary* (Methods) and used automatic differentiation to opti-
mize the model using gradient-based deep learning training methods™.
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As the computational task constraining the input-output function
of the circuit, we chose the computation of visual motion from natu-
ralistic stimuli'2. Motion computation in the fly visual system and its
mechanistic underpinnings have been extensively studied®. This com-
putation requires the neural circuit to compare visual stimuli across
space and time, and thereby critically relies on temporal integration
of visual information by the dynamics of the network. We reasoned
that training our model to perform the computer vision task of optic
flow computation™ could help usidentify circuit elementsinvolvedin
motion computation. As our model contains many of the circuit ele-
ments that have been experimentally characterized and implicated in
the computation of visual motion, we could then validate our model
predictions.

To decode optic flow from the DMN, we used adecoding network to
map the representation of motion used in the fly nervous systemto the
representation of optic flow specified by the computer vision task. This
two-layer convolutional decoding network is given only the instanta-
neous neural activity of the medulla and downstream areas as input.
Importantly, the decoding network cannot by itself detect motion,
which requires the comparison of current and past visual stimuli, but
must instead rely on the temporal dynamics of the DMN to compute
motion-selective visual features. The resulting combination of our
recurrent connectome-constrained DMN model and the feedforward
decoding network was then trained end-to-end: we rendered video
sequences from the Sintel database™ as direct input to the photore-
ceptors of the connectome-constrained model, and used gradient
descent (backpropagation through time") to minimize the task error
in predicting optic flow (Fig. 1g and Methods).

DMN ensemble predicts known activity

We used only connectome and task constraints to construct our DMN,
without any measurements of neural activity. We can therefore vali-
date the model by comparing predictions of neural activity for each
of the 64 identified cell types to experimental measurements. As it is
possible that these constraints might not uniquely constrain model
parameters®, we generated an ensemble of 50 models, all constrained
with the same connectome, and optimized to perform the same task.
Each modelin the ensemble corresponds to alocal optimum of task
performance. As the models achieved similar (but not identical) task
performance, the ensemble reflects the diversity of possible models
consistent with these constraints. The ensemble of models found a
variety of parameter configurations (Supplementary Fig. 3), and exhib-
ited superior task performance toboth the decoder network alone and
models with random parameter configurations (Extended Data Fig. 2a).
Wefocused onthe ten models that achieved the best task performance
(Fig. 2a). We simulated neural responses to multiple experimentally
characterized visual stimuli, and comprehensively compared model
responses for each cell type to experimentally reported responses
from26 previously reported studies (Supplementary Note 3 and Sup-
plementary Datafiles 5and 6).

First, neural responsesin the fly visual system are known to segregate
into ON- and OFF-channels® defined by whether a neuron depolar-
izes more strongly to an increase or decrease in stimulus intensity,
respectively, a hallmark of visual computation across species®***, We
probed the contrast preference of each cell type using flash stimuli*®
and found that the ensemble predicts the segregation into ON- and
OFF-pathways with high accuracy: the median flash response index
(FRI) across the ensemble predicts the correct ON- and OFF-preferred
contrast selectivity for all 32 cell types for which contrast selectivity
hasbeen experimentally established (terminals of CT1in the medulla
and lobula are listed as CT1(M10) and CT1(Lo1)). This is also the case
for the model with the best task performance (task-optimal model),
which correctly predicts the preferred contrast of 30 of 32 cells (Fig. 2b).
Furthermore, the ensemble provides predictions for the remaining



Connectome

constraints Task

training

50 trained
models

o 10

[0}

o

o

g ]_L.J_,_,

Initialization
tf, of biophysical
parameters

Number of
o

Simple

Quantify
stimuli

statistics

il

Responses

525 550 575
Task error
b
10 ® Best task-performing model
T == Median
0 .
Ty Friracti
£ 9 JHazarrerg =i
'S
OFF I Ll .
i -0.5
1.0 OFF-flash
. r T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
YOI 2 BB BEYERLYESSCRES I er AP 8828882 8D D
SRR REEEEEE<OSSIEEZIIZ F EEEEEEEEEEXTEXZEEEE
= 85 FFFFFFFFEFREREEEEE
5 FTCFFFFF
(4
Known ON-motion ® Best task-performing model
selective = Median
7]
2 .
0 et et e e - e e o l;l-l- ——b -Lxﬁ‘ PSS 35 - ‘.- &
0---T.._Y-—-.-.,_.._!YY!-—,-,'Y -‘!T,vY-—v‘.Y-..Yvr?-Tv-?T'Y..Y-—Y‘Y..,YT—,
2 057
Known OFF-motion
OFF-edge selective
1.0~
r T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
R e eE R0 8883200 C 28883 E YIRS YNSRI orrEr 588820888 gezese
SE=2FFFFE QE""""D-D-l-I-EE“ ==5s555s58§ F EEEEEEEEEEXZEXZXZ>2>22>
< = a3 FFFFFFFFERFREREEEEE
C P FFFFFF
O (6]
d o
+ -
c 05 + -f-
2
§ " X | ¥ +4Y
: é
© -05
FRI @ T4 motion-tuning curves @ T5 motion-tuning curves
-1.0 T T T T T T 1
Full DMN Random DMN

Cell-type connectivity
Neuron parameters (z;, V;es‘)
Single-neuron connectivity
Unitary synapse strengths (‘Zm,)
Synapse counts (N, .,
Synapse signs (o, )
734 free parameters

Cell-type connectivity
Neuron parameters
Single-neuron connectivity
Unitary synapse strengths
Synapse counts
synapse signs
734

Cell-type connectivity
Neuron parameters
Single-neuron connectivity
Unitary synapse strengths
Synapse counts
Synapse signs
2,485

Type of constraint: Task-optimized Connectome-constrained Random

Fig.2|Ensembles of DMNs predict tuning properties. a, We task-optimized
50 connectome-constrained DMNs, yielding different solutions for the
biophysical parameters (magenta), and compared the tuning properties of
their cell types to experimental measurements. Inset: distribution of task
errors. Blue: ten best models; also showninb-d.b, ON-and OFF-contrast
selectivity indices (FRI) for each cell type from ten models with best task
performance (tenworst modelsin Extended DataFig. 6). Yellow: cell types
knownto be ON-selective. Violet: known OFF-selective types. Black: selectivity
notyetestablished experimentally. Bold: inputs to optic flow decoder.

33 celltypes, and consistency across the ensemble provides ameasure
of confidence in the predictions (Fig. 2b).

Second, a major result in fly visual neuroscience has been the
identification of the T4 (ON) and T5 (OFF) neurons as the first
direction-selective neurons with four subtypes (T4a, T4b, T4c and
T4d, and T5a, T5b, T5c and T5d), each responding to motion in the
four cardinal directions®. We characterized the motion selectivity of
all 64 cell types by their responses to ON- and OFF-edges movingin 12
different directions. We found that the ensemble of models correctly
predictsthat T4 neurons are ON-motion selective, and T5 neurons are
OFF-motion selective (Fig. 2c). The ensemble also correctly predicts
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Synapse counts
Synapse signs
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DMNs with different connectome constraints
Cell-type connectivity
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¢, Direction selectivity index (DSI) from neural responses to moving edges;
same tenmodels as above.d, Correlations between measurements and
predictions of neural activity from seven types of DMN with different
connectome and parameter constraints: FRI (pink); motion-tuning curves for
T4 (red) and T5 (turquoise); dashes indicate median correlation across models.
Thefirst DMNtype on theleft corresponds to the main DMNs analysedinb,c
and all subsequent figures; the remaining six DMNsincorporate fewer
constraints. Ten best task-performing models fromeach DMN type.

the lack of motion tuning in the input neurons to T4 and T5 motion
detector neurons (Mil, Tm3, Mi4, Mi9, Tm1, Tm2, Tm4, Tm9 and CT1;
Methods and Supplementary Data file 7).

Our models also suggest the possibility that the transmedullary
celltypes, TmY3, TmY4, TmY5a, TmY13 and TmY18, might be tuned to
ON-motion. Of these cell types, TmY3 neurons do not receive inputs
from other known motion-selective neurons suggesting the possi-
bility that these neurons constitute a parallel motion computation
pathway from T4 and T5 neurons (Extended Data Figs. 3 and 4 and
Supplementary Note 4). We questioned whether our model predicted
motion selectivity for all cell types with asymmetric, multicolumnar
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inputs, asthisisanecessary connectivity motif for directionselectivity.
On the basis of their local spatial connectivity profiles, we estimated
that19 celltypesreceive asymmetric, multicolumnar inputs (Methods
and Extended Data Fig. 5b), but found that only 12 are predicted to be
motion selective by the ensemble (Methods). Spatial offset of excita-
tory and/or inhibitory inputs did not correlate strongly with direction
selectivity (Extended DataFig. 5¢,d). This suggests that our model inte-
grates connectivity across the entire network with the task constraint
to determine which neurons are most likely to be motion selective,
rather than simply focusing on local connectivity.

Connectome and task are both necessary

We investigated the importance of connectome constraints and task
optimizationto enableaccurate predictions of neural activity. We found
that both task optimization and detailed connectome constraints at
the single-neuronresolution were critical to the prediction of the pre-
ferred contrast of the 32 characterized cell types, and the preferred
direction of motion for the T4 and T5 subtypes (Fig. 2d and Extended
DataFig.2).

We conducted ‘ablation’ studies comparing the DMN ensemble stud-
iedinthis paper (full DMN) with arange of models with other modelling
assumptions. First we verified the importance of task optimization by
constructing an ensemble (random DMN) with random single-cell and
synapse parameters, and full connectome constraints. Thisensemble
yielded accurate predictions of preferred contrast, but poor predic-
tions of direction selectivity and preferred direction.

We thenstudied which aspects of the connectome must be measured
accuratelytoleadtoaccurate predictions. We found that task-optimized
models with access to only cell-type connectivity predicted neural
activity poorly. We then considered several scenarios adding more
connectome measurements beyond cell-type connectivity. We con-
sidered several scenarios: access to synapse signs and single-neuron
connectivity but notstrength, requiring task optimization of synapse
counts; access to signs, but requiring optimization of single-neuron
connectivity and synapse counts; full connectome measurements but
optimization of synapse signs; access to connectivity but optimization
of bothsynapse counts and signs. Across these modelling assumptions,
we found that accurate predictions of contrast preference (FRI) were
possible as long as measurements of the connection-signs were avail-
able, and that accurate predictions of the direction selectivity—but
not preferred direction—could be achieved with measurements of
cell connectivity, without the need for synapse count measurements
(Extended Data Fig. 2¢). This demonstrates the importance of both
detailed connectome measurements and task optimization to achieve
accurate predictions of neural activity.

Across the ensemble constrained by all connectome measurements
and task training, we found that models that exhibited lower task
error (Methods) also had more realistic tuning: models with higher
task performance predict the direction selectivity index of T4 and
T5 cells and their inputs better (r=0.60, P=2.6 x 107%; Extended Data
Figs. 2e and 6b). This suggests the possibility of using task error to
rank models in terms of their likelihood to accurately predict neural
activity.

Our model relies on an accurate classification of neurons into cell
typestoshare single-neuron and synapse parameters across all neurons
of the same cell type. We investigated the degree to which we could
coarse-grain the cell-type categorization, leading to fewer cell types and
fewer parameters (Extended Data Fig. 2a-d). We found that grouping
the four T4 subtypes into a single T4 cell type, and grouping the four
T5 subtypes into a single T5 cell type, had no negative impact on the
quality of ensemble predictions. However, grouping all 37 excitatory
celltypesintoasingle E-type, 22 inhibitory cell typesintoasingleI-type,
and 4 mixed cell typesinto asingle mixed type, led to poor performance
on par with the random DMN.
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Predictions cluster across DMN ensemble

We sought to determine how similar or dissimilar the predictions of
different modelsin anensemble with the same connectome constraints
and task optimization are. To address this for each cell type, we simu-
lated neural activity in response to naturalistic video sequences from
the Sintel dataset. We then used uniform manifold approximation
and projection®® to perform nonlinear dimensionality reduction on
high-dimensional activity vectors of a representative neuron of each
cell type across the model ensemble, and clustered the models in the
resulting two-dimensional projections (Fig. 3aand Methods). For many
celltypes, we found that models predict strongly clustered neural
responses (Supplementary Data file 7). For T4c neurons, for exam-
ple, we found three clusters corresponding to qualitatively distinct
responses of this cell type for naturalistic inputs: two clusters con-
tain models with direction-selective T4c cells (Fig. 3a,b) with up- and
down-selective cardinal tuning, respectively, whereas neurons in the
third cluster are not direction-tuned. The direction-selective cluster
with the (correct) upward preference has the lowest average task error
(circular marker, average task error 5.297), followed by the cluster with
the opposite preference (triangular marker, average task error 5.316).
The non-selective cluster has the worst performance (square marker,
average task error 5.357), suggesting that models with accurate tuning
correlate with lower task error (see also Extended Data Fig. 2e).

We sought to determine what differences in circuit mechanisms
underlie the different predictions for direction selectivity in the three
clusters (Fig. 3¢c). Our results showed that direction selectivity inthe two
tuned clustersis associated with opposite preferred contrast tuning of
Mi4 and Mi9 neurons, which provide direct flanking inhibitory input
to T4 neurons (Fig. 3d). Models with the correct direction selectivity
for T4 neuronsalso predict the correct contrast selectivity for Mi4 and
M9 neurons, and vice versa (Fig. 3e).

Thus, the ensemble canbe used to provide hypotheses about differ-
ent circuit mechanisms that might underlie the response properties of
individual cells. Furthermore, it shows that experimentally measuring
the tuning of one neuron automatically translates to constraints on
otherneuronsinthe circuit. Here, filtering models in the ensemble with
the experimentally measured direction selectivity for the T4c neurons
(by only selecting models from the correct cluster) is sufficient to cor-
rectly constrain the tuning of both Mi4 and Mi9 neurons.

Predicted mechanism of T4 and T5 tuning

Our DMN modelling approach enables a large number of model-based
analyses, which canilluminate the mechanistic basis of computationin
acircuitand suggest new visual stimulifor experimental characteriza-
tion. Weillustrate these analyses using averages from the model cluster
with the best task performance (task-optimal cluster), focusing on
the well-studied T4 and T5 neurons (Fig. 4). See Supplementary Data
file 7 for acomprehensive set of analyses for all cell types and mod-
els. In the task-optimal cluster, the four subtypes of the T4 neurons
respond strongly to bright (ON) edges, and the four subtypes of the T5
neurons to dark (OFF) edges, movinginthe four cardinal directions, in
agreementwith experimental findings”>"**° (Fig. 4a). We probed the
mechanism of direction selectivity in T4 and T5 neurons (Fig. 4b and
Extended Data Figs. 7 and 8). Examining the input currents to asingle
T4 neuron (Extended DataFig. 7a), we found that fast excitatory input
and offset delayed inhibitory input currents enable T4 in the model
to detect motion, in agreement with experimental findings?. The dif-
ferential response of T4 neurons to motionin the preferred versus null
directionis primarily produced by the differential timing of inhibition
from Mi4. Additionally, excitatory T4-to-T4 currents between neurons
with the same preferred direction lead to an increased response to
coherent motion across the visual field. Although research into T4
motion selectivity has largely focused ontherole of feedforward inputs,
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qualitatively different tuning mechanisms. a, Responses of T4 c cells exhibit
three clusters, twowith ON-motion directionselectivity (circularand triangular
marker) and one (square marker) without. b, T4c tuningin the three clusters.
Circular marker: upwards tuning (cluster with lowest average task error 5.297;
black: known tuning of T4c). Triangular marker: downwards (5.316 error).
Square marker: no motion tuning (5.357 error). ¢, Schematic of corresponding
ON-motion detection pathway. d, Connectivity of major input elements to T4c.

our modelling predicts animportant role for the lateral connectivity
between T4 neurons. The mechanisms in our model for T5 motion
computationaresimilar (Extended Data Fig. 8a), with differential timing
of inhibition from CT1, as well as excitation from Tm9, contributing to
motion-selective responses.

Torelate the mechanism of direction selectivity to the well-studied
mechanisms of preferred direction enhancement and null direc-
tion suppression, we compared the responses of T4 and T5 neurons
to moving bars and static bars as in ref. 27. Consistent with voltage
measurements®°, voltage response predictions by our model show
null direction suppression but no preferred direction enhancement
(Extended Data Figs. 7b and 8b).

We computed and compared the spatial and temporal receptive
fields of the major columnar input neuronsto T4 and T5 neurons. These
input neurons have been the focus of multiple experimental studies
of the motion detection pathways®®*** (Fig. 4d). In agreement with
experimental findings?®*, the prediction of the DMNs is that Tm3 and
Tm4 have broad spatial receptive fields (two-column radius, 11.6°),
whereas Mil, Mi4, Mi9, Tm1, Tm2, Tm9 and CT1 compartments inboth
medullaandlobulahave narrow spatial receptive fields (single-column
radius, 5.8°).

We characterized the temporal response properties of cells in the
motion pathways, including the lamina monopolar cells (L1-L5) and
directinputstothe T4 and T5 neurons. We simulated neural responses
to single-ommatidium flashes of varying contrast and duration and
compared them to empirically characterized temporal responses
(Fig.4e). Themodel accurately predicts the preferred contrast of each
celltype® (thatis, whether they depolarize more strongly to ON or OFF
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within each cluster reveal dependencies between T4 tuning and that of Mi4 and
Mi9 cellsin the ensemble: switching Mi4 (known ON-contrast selective) and
Mi9 (known OFF-contrast selective) contrast preferences results in directionally
opposite motion-tuning solutionsin T4. DMNsiin first cluster (T4cin DMN
upwards tuned, circle) exhibit ON-selectivity for Mil, Tm3, Mi4 and CT1(M10),
and OFF-selectivity for Mi9. For ON-motion stimuli, in these DMNs T4c receives
central depolarizinginput from Miland Tm3 and dorsal hyperpolarizinginput
from Mi4 and CT1(M10).

single-ommatidium flashes; 5 ms to 300 ms duration; Methods). These
cells either depolarize (which we call ON-selective) or hyperpolarize
(whichwe call OFF-selective) inresponse to light-increment flashes. The
temporal response properties are correctly predicted for all except the
Tm4 cellinthis model: for major T4 inputs, Mil, Tm3 and Mi4 respond
with transient depolarization to ON-flashes. By contrast, CT1(M10)
responds withalonger sustained depolarization. Mi9 hyperpolarizes.
For major T5 inputs, Tm1, Tm2, Tm9 and CT1(Lol) respond with tran-
sient hyperpolarization. Tm4 is incorrectly predicted to depolarize.
For lamina cell types, the DMNs predict biphasic hyperpolarization
inL1and L2 and monophasic hyperpolarization in L3 and L4, as well
as depolarizationinL5.

For motion-selective neurons suchas T4 and T5, the spatio-temporal
receptive fields are not separable in space and time. We character-
ized the full spatio-temporal receptive field for T4c and T5c neu-
rons (Fig. 4f) using single-ommatidium ON- and OFF-flashes (20 ms;
Methods). ON-flashes on the leading side of the receptive field of the
ON-contrast, upwards-direction-selective T4c cell lead to fast depo-
larization, whereas ON-flashes on the trailing side lead to delayed
hyperpolarization, again matching experimental findings®. As T5c
is OFF-selective, its OFF-impulse responses are inverted, resembling
the T4c spatio-temporal receptive field (Extended Data Fig. 9a). This
reflects that T5c implements a similar motion-tuning mechanism
to OFF-edges as T4c to ON-edges, in agreement with experimental
findings*.

Finally, we show that the model can be used to design optimized
stimuli. We used the task-optimal model to screen for video sequences
from the Sintel dataset that elicited the largest responses in the
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Fig.4|Task-optimal DMNslargely recapitulate known mechanisms of
motion computation. a, Responses tomoving edges for T4 and T5 subtypes
from task-optimal model clusters, and comparison with experimental
measurements®* (null-contrasts in Supplementary Fig. 4). a.u., arbitrary
units. b, Voltage of T4c neuron (top) and contributions from major input cells
(bottom) during movement of an ON-edge across the visual field in preferred
(solid) and null (dashed) direction. ¢, Major cell types and connectivity in the
ON-motion (T4) and OFF-motion (T5) detection pathways (simplified). d, Spatial

motion-selective neurons (Fig. 4f, Methods and Supplementary Data
file 7 forall cell types). One might expect that pure ON- or OFF-stimuli
would elicit the largest responsesin T4 and TS5, respectively. However,
we found both ON-and OFF-elements in optimized stimuli, suggesting
aninterplay between ON-and OFF-pathways. The stimulus that elicited
the strongest response in the T4c cell was a central OFF-disc followed
by an ON-edge moving upwards, matching the preferred direction of
the cell. Similarly, for the T5c cell, the stimulus that elicits the strongest
responseis acentral ON-disc followed by an OFF-edge moving upwards
inthe preferred direction of the cell (Extended Data Fig. 9c for corre-
sponding full-field naturalistic stimuli, numerically optimized stimuli
and preferred moving-edge stimuli). Taken together, these findings
show that the model predicts alarge number of tuning properties for
the T4 and T5 cells and their inputs.

Sparsity leads to accurate predictions

Here we consider when connectome-constrained and task-optimized
DMN models mightaccurately predict neuralresponsesatsingle-neuron
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receptive fields of major motion detector input neurons revealed by
single-ommatidium flashes and comparison with experimental
measurements?®*, e, Single-ommatidium flash responses agree with
experimental measurements***, with the exception of Tm4 (red cross).

f, Stimulus sequence predicted to elicit the strongest responsesin T4cand T5¢
cells. A central OFF-disc followed by an ON-edge moving upwards elicits the
strongestresponseinaT4c cell (ON-disc followed by OFF-edge for T5c).

resolution. Sparse connectivity is a hallmark of biological neural cir-
cuits. We questioned whether sparse connectivity enables DMNs to
make accurate predictions of neural activity. For sparsely connected
circuits—assuming the connectome isknown—there are fewer synapse
parameters left to estimate using task optimization. We reasoned that
such networks might support fewer possible mechanisms by which to
performagiventask, and so that a task-optimized DMN modelis more
likely to find the true mechanismand accurately predict single-neuron
activity.

We tested this hypothesis in a simulation (Fig. 5), by constructing
feedforward artificial neural networks solving the classic MNIST (Mod-
ified National Institute of Standards and Technology) handwritten
digit classification task. These networks had varying degrees of sparse
connectivity, and random assignment of neurons as excitatory and
inhibitory respecting Dale’s law (25 ground-truth networks for each
sparsity level, Methods). We then simulated the process of making
connectome measurements from these ground-truth networks, and
building connectome-constrained task-optimized DMN simulations
of each ground-truth network (Fig. 5a).
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Fig.5|Connectome measurements constrainneural networksin

circuits with sparse connectivity. a, We constructed synthetic ‘ground-
truth connectome’ networks withvarying degrees of sparse connectivity for
classifying handwritten digits. For each ground-truth connectome network,
we simulated connectome measurements and constructed aconnectome-
constrained and task-optimized the unknown parameters (magenta) in the
‘simulated network’ (Methods). We measured the correlation of the neural
response vector, across all stimuli, between aground-truth (dark green) and a

As the degree to which connection strength can be inferred from
noisy connectome measurements is still unknown, we simulated two
settings. In the first, we assumed that connectome measurements
reveal connectivity but not connection strength. In this setting, DMNs
were task-optimized to infer both the resting membrane potential of
each neuron, and the connection strength of each connected pair of
neurons. Inthe second, we assumed that the measurements additionally
reveal anoisy estimate of strength, which was used as a soft constraint
during task optimization.

Consistent with our hypothesis, our results showed that sparsity
in the connectome greatly improves the accuracy of neural activity
predictions with measurements of connectivity alone (Fig. 5b and
Supplementary Fig. 8; median Pearson correlations of 0.85 for 10%
connectivity versus 0.38 for 80% connectivity, 100 randomly selected
neurons from 25 randomly generated ground-truth networks). How-
ever, with the additional availability of connection strength estimates,
we find that DMN simulations accurately predict neural activity even
inthe absence of sparse connectivity (median Pearson correlation of
>0.9 across all connectivities).

Ourmodel of the fly visual system lies in anintermediate regime with
regards to our knowledge of connection strength. We assumed that
connectome measurements provided relative connection strength
butnotabsolute connection strength, as we assumed that the unitary
synaptic strength was unknown but the same for connections of the
same cell-type pair. Thus, we attribute the success of our visual system
model at predicting neural activity to both the sparse structure of con-
nectivity in this circuit and also the estimates of connection strength
from the synapse count.

Discussion

We constructed a neural network with connectivity measured at the
microscopicscale. We also required that, at the macroscopicscale, the
collective neural activity dynamics across the entire network resultinan
ethologically relevant computation. This combination of microscopic
and macroscopic constraints enabled us to constrain a large-scale
computational model spanning many tens of cell types and tens of
thousands of neurons. We showed that such large-scale mechanis-
tic models could accurately make detailed predictions of the neural
responses of individual neurons to dynamic visual stimuli, revealing
the mechanisms by which computations are performed. Knowledge

T
10 20 50 80
Connectivity percentage

simulated (light green) network. b, Median neural response correlation
coefficients from100 randomly sampled neuron pairs fromeach layer and
across 25 network pairs. Two conditions were considered in which connectome
measurementsrevealed either only binary connectivity (blue) or also connection
strength (orange). The fly visual system model presented here probably falls
intheregionbetween the two curves, as measured synapse counts inform
relative connection strengths between pairs of neurons for the same pair of cell
types, but notabsolute connection strength.

ofthe connectome played a critical rolein this success, in part by lead-
ing to a massive reduction in the number of free model parameters.

We have taken a reductionist modelling approach, simplifying the
modelling of individual neurons and synapses, to focus on the role
played by the connectivity of a neural network. We found that for the
motion pathways of the fruit fly visual system, this model correctly
predicts many aspects of visual selectivity. We considered only the role
ofthis circuitin detecting motion, whichis but one of many computa-
tions performed by the visual system?*. Our reductionist model cannot,
for example, account for the role played in this circuit by electrical
synapses*®, nonlinear chemical synapses* and neuromodulation*s.
However, richer models of neurons, synapses, plasticity and extrasyn-
aptic modulation, along with abroader range of ethologically relevant
tasks, can enable accurate modelling of these and other effects in the
fly visual system and beyond.

Task-optimized artificial neural network models, for instance of
mammalian visual pathways??, have previously demonstrated only
a coarse correspondence of the population neural activity between
modellayers and brainregions. By contrast, every neuron and synapse
inour connectome-constrained model***has a direct correspondence
to neurons and synapses in the brain. This correspondence enables
highly detailed experimentally testable predictions at the single-neuron
resolution. Thus, our study more directly links artificial neural network
models to the biological neural network.

Our modelling approach provides a discovery tool, aimed at using
connectome measurements to generate detailed, experimentally test-
able hypotheses for the computational role of individual neurons.
Measurements of neural activity are necessarily sparse and involve
difficult trade-offs. Activity can be measured in limited contexts,
and either for alimited number of neurons or for alarger number of
neurons with poorer temporal resolution. Connectome-constrained
DMN models generate meaningful predictions even in the complete
absence of neural activity measurements, but can be further con-
strained by sparse measurements of neural activity as we showed
(Fig. 3), or indeed directly fitted to measured neural activity™ and
behaviour*.

Whole-brain connectome projects have just been completed for
the larval and adult fruit fly”®*>*¢, including two new connectomes of
the entire fruit fly optic lobe®®, and whole-mouse-brain connectome
projects are now being discussed”. Large-scale whole-nervous-system
models**®will be of criticalimportance for integrating connectomic,
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transcriptomic, neural activity and animal behaviour measurements
acrosslaboratories, scales and the nervous system®. Furthermore, with
the recent development of detailed biomechanical body models for
the fruit fly***°, we can now contemplate constructing whole-animal
models spanning brain and body.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-024-07939-3.

1. Rivera-Alba, M. et al. Wiring economy and volume exclusion determine neuronal
placement in the Drosophila brain. Curr. Biol. 21, 2000-2005 (2011).

2. Takemura, S. et al. Synaptic circuits and their variations within different columns in the
visual system of Drosophila. Proc. Natl Acad. Sci. USA 112, 13711-13716 (2015).

3. Takemura, S. et al. The comprehensive connectome of a neural substrate for ‘ON" motion
detection in Drosophila. eLife 6, €24394 (2017).

4.  Shinomiya, K. et al. Comparisons between the ON- and OFF-edge motion pathways in the
Drosophila brain. eLife 8, e40025 (2019).

5. Shinomiya, K., Nern, A., Meinertzhagen, I. A., Plaza, S. M. & Reiser, M. B. Neuronal
circuits integrating visual motion information in Drosophila melanogaster. Curr. Biol. 32,
3529-3544 (2022).

6. Matsliah, A. et al. Neuronal “parts list” and wiring diagram for a visual system. Preprint at
bioRxiv https://doi.org/10.1101/2023.10.12.562119 (2023).

7.  Dorkenwald, S. et al. Neuronal wiring diagram of an adult brain. Preprint at bioRxiv https://
doi.org/10.1101/2023.06.27.546656 (2023).

8.  Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing quantifies
circuit stereotypy in Drosophila. Preprint at bioRxiv https://doi.org/10.1101/2023.06.27.
546055 (2023).

9. Nern, A. et al. Connectome-driven neural inventory of a complete visual system. Preprint
at bioRxiv https://doi.org/10.1101/2024.04.16.589741 (2024).

10. Bargmann, C. . & Marder, E. From the connectome to brain function. Nat. Methods 10,
483-490 (2013).

1. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

12.  Butler, D.J., Wulff, J., Stanley, G.B. & Black, M.J. A naturalistic open source movie for
optical flow evaluation. In Computer Vision - ECCV 2012. ECCV 2012. Lecture Notes in
Computer Science Vol. 7577 (eds Fitzgibbon, A. et al.) 611-625 (Springer, 2012); https://
doi.org/10.1007/978-3-642-33783-3_44.

13.  Scheffer, L. K. & Meinertzhagen, I. A. A connectome is not enough-what is still needed to
understand the brain of Drosophila? J. Exp. Biol. 224, jeb242740 (2021).

14. Jabr, F. The connectome debate: Is mapping the mind of a worm worth it? SciAm https://
www.scientificamerican.com/article/c-elegans-connectome/ (2 October 2012).

15.  Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are universal
approximators. Neural Netw. 2, 359-366 (1989).

16. Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C. & Dosovitskiy, A. Do vision transformers
see like convolutional neural networks? Adv. Neural Inf. Process. Syst. 34, 12116-12128
(2021).

17.  Reichardt, W. in Sensory Communication (ed. Rosenblith, W. A.) Ch. 17 (MIT Press, 1961).

18. Barlow, H. B. & Levick, W. R. The mechanism of directionally selective units in rabbit’s
retina. J. Physiol. 178, 477-504 (1965).

19.  Marder, E. Neuromodulation of neuronal circuits: back to the future. Neuron 76, 1-11
(2012).

20. Biswas, T. & Fitzgerald, J. E. Geometric framework to predict structure from function in
neural networks. Phys. Rev. Res. 4, 023255 (2022).

21.  Paszke, A. et al. PyTorch: an imperative style, high-performance deep learning library.

In Proc. 33rd International Conference on Neural Information Processing Systems (eds
Wallach, H. et al.) 8026-8037 (Curran Associates, 2019).

22. Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural responses
in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619-8624 (2014).

23. Borst, A., Haag, J. & Mauss, A. S. How fly neurons compute the direction of visual motion.
J. Comp. Physiol. A 206, 109-124 (2020).

24. Currier, T. A., Pang, M. M. & Clandinin, T. R. Visual processing in the fly, from photoreceptors
to behavior. Genetics 224, iyad064 (2023).

25. Fischbach, K. F. & Dittrich, A. P. M. The optic lobe of Drosophila melanogaster. 1. A Golgi
analysis of wild-type structure. Cell Tissue Res. 258, 441-475 (1989).

26. Nern, A., Pfeiffer, B. D. & Rubin, G. M. Optimized tools for multicolor stochastic labeling
reveal diverse stereotyped cell arrangements in the fly visual system. Proc. Natl. Acad.
Sci. USA 112, E2967-E2976 (2015).

27.  Gruntman, E., Romani, S. & Reiser, M. B. Simple integration of fast excitation and offset,
delayed inhibition computes directional selectivity in Drosophila. Nat. Neurosci. 21,
250-257 (2018).

28. Meier, M. & Borst, A. Extreme compartmentalization in a Drosophila amacrine cell. Curr.
Biol. 29, 1545-1550 (2019).

29. Liu, T. X., Davoudian, P. A., Lizbinski, K. M. & Jeanne, J. M. Connectomic features underlying
diverse synaptic connection strengths and subcellular computation. Curr. Biol. 32,
559-569 (2022).

1140 | Nature | Vol 634 | 31October 2024

30. Davis, F. P. et al. A genetic, genomic, and computational resource for exploring neural
circuit function. eLife 9, e50901(2020).

31.  Gotz, K. G. Optomotorische Untersuchung des visuellen systems einiger Augenmutanten
der Fruchtfliege Drosophila. Kybernetik 2, 77-92 (1964).

32. Marder, E. & Taylor, A. L. Multiple models to capture the variability in biological neurons
and networks. Nat. Neurosci. 14,133-138 (2011).

33. Joesch, M., Schnell, B., Raghu, S. V., Reiff, D. F. & Borst, A. ON and OFF pathways in
Drosophila motion vision. Nature 468, 300-304 (2010).

34. Borst, A. & Helmstaedter, M. Common circuit design in fly and mammalian motion vision.
Nat. Neurosci. 18, 1067-1076 (2015).

35. Gjorgjieva, J., Sompolinsky, H. & Meister, M. Benefits of pathway splitting in sensory
coding. J. Neurosci. 34, 12127-12144 (2014).

36. Strother, J. A., Nern, A. & Reiser, M. B. Direct observation of ON and OFF pathways in the
Drosophila visual system. Curr. Biol. 24, 976-983 (2014).

37. Maisak, M. S. et al. A directional tuning map of Drosophila elementary motion detectors.
Nature 500, 212-216 (2013).

38. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat.
Biotechnol. 37, 38-44 (2019).

39. Fisher, Y. E., Silies, M. & Clandinin, T. R. Orientation selectivity sharpens motion detection
in Drosophila. Neuron 88, 390-402 (2015).

40. Gruntman, E., Romani, S. & Reiser, M. B. The computation of directional selectivity in the
Drosophila OFF motion pathway. eLife 8, 50706 (2019).

41.  Behnia, R., Clark, D. A., Carter, A. G., Clandinin, T. R. & Desplan, C. Processing properties
of ON and OFF pathways for Drosophila motion detection. Nature 512, 427-430 (2014).

42. Yang, H. H. et al. Subcellular imaging of voltage and calcium signals reveals neural
processing in vivo. Cell 166, 245-257 (2016).

43. Arenz, A., Drews, M. S., Richter, F. G., Ammer, G. & Borst, A. The temporal tuning of the
Drosophila motion detectors is determined by the dynamics of their input elements. Curr.
Biol. 27, 929-944 (2017).

44. Strother, J. A. et al. The emergence of directional selectivity in the visual motion pathway
of Drosophila. Neuron 94, 168-182 (2017).

45. Ramos-Traslosheros, G. & Silies, M. The physiological basis for contrast opponency in
motion computation in Drosophila. Nat. Commun. 12, 4987 (2021).

46. Ammer, G., Leonhardt, A., Bahl, A., Dickson, B. J. & Borst, A. Functional specialization of
neural input elements to the Drosophila ON motion detector. Curr. Biol. 25, 2247-2253
(2015).

47.  Groschner, L. N., Malis, J. G., Zuidinga, B. & Borst, A. A biophysical account of multiplication
by a single neuron. Nature 603, 119-123 (2022).

48. Strother, J. A. et al. Behavioral state modulates the ON visual motion pathway of Drosophila.
Proc. Natl Acad. Sci. USA 115, E102-E111 (2018).

49. Tschopp, F. D., Reiser, M. B. & Turaga, S. C. A connectome based hexagonal lattice
convolutional network model of the Drosophila visual system. Preprint at https://arxiv.org/
abs/1806.04793 (2018).

50. Mano, O., Creamer, M. S., Badwan, B. A. & Clark, D. A. Predicting individual neuron
responses with anatomically constrained task optimization. Curr. Biol. 31, 4062-4075
(2021).

51.  Mi, L. etal. Connectome-constrained latent variable model of whole-brain neural activity.
In Proc. International Conference on Learning Representations https://openreview.net/
forum?id=CJzi3dRUE- (2022).

52. Shiu, P.K. et al. A leaky integrate-and-fire computational model based on the connectome
of the entire adult Drosophila brain reveals insights into sensorimotor processing. Preprint
at bioRxiv https://doi.org/10.1101/2023.05.02.539144 (2023).

53. Beiran, M. & Litwin-Kumar, A. Prediction of neural activity in connectome-constrained
recurrent networks. Preprint at bioRxiv https://doi.org/10.1101/2024.02.22.581667 (2024).

54. Cowley, B. R. et al. Mapping model units to visual neurons reveals population code for
social behaviour. Nature 629, 1100-1108 (2024).

55. Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila
melanogaster. Cell 174, 730-743 (2018).

56. Winding, M. et al. The connectome of an insect brain. Science 379, eadd9330 (2023).

57. Abbott, L. F. et al. The mind of a mouse. Cell 182, 1372-1376 (2020).

58. Warrington, A., Spencer, A. & Wood, F. The virtual patch clamp: imputing C. elegans
membrane potentials from calcium imaging. Preprint at https://arxiv.org/abs/1907.11075
(2019).

59. Vaxenburg, R. et al. Whole-body simulation of realistic fruit fly locomotion with deep
reinforcement learning. Preprint at bioRxiv https://doi.org/10.1101/2024.03.11.584515
(2024).

60. Lobato-Rios, V. et al. NeuroMechFly, a neuromechanical model of adult Drosophila
melanogaster. Nat. Methods 19, 620-627 (2022).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

By 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024


https://doi.org/10.1038/s41586-024-07939-3
https://doi.org/10.1101/2023.10.12.562119
https://doi.org/10.1101/2023.06.27.546656
https://doi.org/10.1101/2023.06.27.546656
https://doi.org/10.1101/2023.06.27.546055
https://doi.org/10.1101/2023.06.27.546055
https://doi.org/10.1101/2024.04.16.589741
https://doi.org/10.1007/978-3-642-33783-3_44
https://doi.org/10.1007/978-3-642-33783-3_44
https://www.scientificamerican.com/article/c-elegans-connectome/
https://www.scientificamerican.com/article/c-elegans-connectome/
https://arxiv.org/abs/1806.04793
https://arxiv.org/abs/1806.04793
https://openreview.net/forum?id=CJzi3dRlJE-
https://openreview.net/forum?id=CJzi3dRlJE-
https://doi.org/10.1101/2023.05.02.539144
https://doi.org/10.1101/2024.02.22.581667
https://arxiv.org/abs/1907.11075
https://doi.org/10.1101/2024.03.11.584515
http://creativecommons.org/licenses/by/4.0/

Methods

Construction of spatially invariant connectome from local
reconstructions

We built a computational model of the fly visual system that is con-
sistent with available connectome data'>, has biophysically plausi-
ble neural dynamics, and can be computationally trained to solve an
ethologically relevant behavioural task, namely the estimation of optic
flow. To achieve this, we developed algorithms to blend annotations
from two separate datasets by transforming, sanitizing, combining
and pruning the raw datasets into a coherent connectome spanning all
neuropils of the opticlobe (Supplementary Note1and Supplementary
Data files1-3).

The original data stem from focused ion beam scanning electron
microscopy datasets from the FIyEM project at Janelia Research
Campus. The FIB-25 dataset volume comprises seven medulla col-
umns and the FIB-19 dataset volume comprises the entire optic lobe
and, in particular, detailed connectivity information for inputs to
both the T4 and T5 pathways”>*. The data available to us consisted
of 1,801 neurons, 702 neurons from FIB-25 and 1,099 neurons from
FIB-19. For about 830 neurons, the visual column was known from
hand annotation. These served as reference positions. Of the 830
reference positions, 722 belong to neuron types selected for simula-
tion. None of the T5 cells, whose directional selectivity we aimed to
elucidate, was annotated. We therefore built an automated, proba-
bilistic expectation maximization algorithm that takes synaptic con-
nection statistics, projected synapse centre-of-mass clusters and
existing column annotations into account. We verified the quality of
our reconstruction as described in Supplementary Note 1. Only the
neurons consistently annotated withboth 100% and 90% of reference
positions used were counted to estimate the number of synapses
between cell types and columns, to prune neuron offsets with low
confidences.

Synaptic signs for most cell types were predicted on the basis
of known expression of neurotransmitter markers (primarily the
cell-type-specific transcriptomics data fromref. 30). For a minority
of celltypesincludedinthe model, no experimental data on transmit-
ter phenotypes were available. For these neurons, we used guesses of
plausible transmitter phenotypes. To derive predicted synaptic signs
from transmitter phenotypes, we assigned the output of histaminergic,
GABAergic and glutamatergic neurons as hyperpolarizing and the out-
put of cholinergic neurons as depolarizing. In a few cases, we further
modified these predictions on the basis of distinct known patterns
of neurotransmitter receptor expression (see ref. 30 for details). For
example, output from R8 photoreceptor neurons, predicted to release
both acetylcholine and histamine, was treated as hyperpolarizing or
depolarizing, respectively, depending on whether a target cell typeis
known to express the histamine receptor gene ort (which encodes a
histamine-gated chloride channel).

Representing the model as a hexagonal convolutional neural
network

Our end-to-end differentiable® DMN model of the fly visual system
can be interpreted as a continuous-time neural ordinary differential
equation® with a deep convolutional recurrent neural network®
architecture that is trained to perform a computer vision task using
backpropagation through time®*“°, Our goal was to optimize a simu-
lation of the fly visual system to perform a complex visual informa-
tion processing task using optimization methods from deep learning.
One hallmark of visual systems that has been widely exploited in such
tasks is their convolutional nature®®* (that is, the fact that the same
computations are applied to each pixel of the visual input). To model
the hexagonal arrangement of photoreceptors in the fly retina, we
developed a hexagonal convolutional neural network (CNN) in the
widely used deep learning framework PyTorch? (ignoring neuronal

superposition’), which we used for simulation and optimization of
the model. We model columnar cell types, including retinal cells, lamina
monopolarand wide-field cells, medullaintrinsic cells, transmedullary
cellsand T-shaped cells, as well as amacrine cells. The model comprises
synapses fromall neuropils and downstream-and upstream-projecting
connections from the retina, lamina and medulla.

Neuronal dynamics

In detail, we simulated point neurons with voltages V; of a postsynap-
tic neuron i, belonging to cell type ¢; using threshold-linear dynam-
ics, mathematically equivalent to commonly used formulations of
firing-rate models”

=Vt ) s Vitee: W
J

Neurons of the same cell type share time constants, 7,, and resting
potentials, V.. Dynamic visual stimuli were delivered as external input
currentse; tothe photoreceptor (R1-R8), for all other cell types, e;= 0.
Inour model, instantaneous graded synaptic release from presynaptic
neuronj to postsynaptic neuronis described by

sy=wyf(V)) = atftjotitl-NtitjAuAvf vy, (2)

comprising the anatomical filters in terms of the synapse count from
electron microscopy reconstruction, N, 4,4, at the offset location
Au=u;-u;and Av=y;-v;inthe hexagonal lattice between two types
of cells, t; andt and furthercharacterlzed byasign, O €11+ 15, and
anon- negatlve scaling factor, a .

The synapse model entails a trainable non- negative scaling factor
per filter that is initialized as

__0o.01
ol <Nti,tj>Au,Au'

with the denominator describing the average synapse count of the
filter. Synapse counts, Nt pus from the connectome, and signs, Oy,
fromthe neurotransmitter and receptor profiling, were kept fixed. The
scaling factor was clamped during training to remain non-negative.

Moreover, atinitialization, the resting potentials were sampled from
aGaussian distribution

t
V;?S ~ N(ﬂvresty Gﬁres()

with mean p1, e = 0.5 (a.u.) and variance 02,.= 0.05 (a.u.). The time
constants were initialized at 7, = 50 ms. The 50 task-optimized DMNs
were initialized with the same parameter values. During training, in
Euler integration of the dynamics, we clamped the time constants as
7,=max (7, 4t), so that they remain above the integration time step At
atall times.

In total, the model comprises 45,669 neurons and 1,513,231 syn-
apses, across two-dimensional (2D) hexagonal arrays 31 columns
across. The number of free parameters is independent of the number
of columns: 65 resting potentials, 65 membrane time constants, 604
scaling factors; and connectome-determined parameters: 604 signs
and 2,355 synapse counts. Thus, the number of free parametersin the
visual system model is 734.

In the absence of connectome measurements, the number of
parameters to be estimated is much larger. With 7= 65 cell types
(counting CT1 twice for the compartments in the medulla and
lobula) and C =721 cells per type for simplicity, the number of cells
inour model would be TC=46,865. Assuming arecurrent neural net-
work with completely unconstrained connectivity and simple dynam-
icsgV=—V;+ X wy (V) + V™', we would have to find (TC)* + 2(TC) =
2,196, 421, 955 free parameters. Assuming a convolutional recurrent
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neural network with shared filters between cells of the same post-
synaptic type, shared time constants and shared resting potentials,
the amount of parameters reduces markedly to T2C+2T=3, 046, 355.
Further assuming the same convolutional recurrent neural network
but additionally that convolutional filters are constrained to F=5
visual columns (that is, the number of presynapticinput columnsin
the hexagonal lattice is P=3F (F+1) +1), the amount of parameters
reduces to T2P+ 2T =384, 605. Assuming as in our connectome that
only Q = 604 connections between cell types exist, this reduces the
number of parameters further to QP+ 27 =55, 185. Instead of para-
metrizing eachindividual synapse strength, we assume that synapse
strengthis proportional to synapse count fromthe connectome times
a scalar for each filter, reducing the number of parameters to
Q +2T=734 while providing enough capacity for the DMNs to yield
realistic tuning to solve the task.

Convolutions using scatter and gather operations. For training the
network, we compiled the convolutional architecture specified by the
connectome and the sign constraints to a graph representation con-
taining: a collection of parameter buffers shared across neurons and/
or connections; acollection of corresponding index buffers indicating
where the parametersrelevant to agiven neuron or connection canbe
foundinthe parameter buffers; and alist of pairs (presynaptic neuron
index, postsynaptic neuronindex) denoting connectivity. This allowed
us to efficiently simulate the network dynamics through Euler integra-
tion using a small number of element-wise, scatter and gather opera-
tions at each time step. We found that thisis more efficient than using a
single convolution operation or performing a separate convolution for
eachcelltype aseach cell type hasits own receptive field—some much
larger than others—and the number of cells per type is relatively small.

Optic flow task
Model training. An optic flow field for a video sequence consists of a
2D vector field for each frame. The 2D vector at each pixel represents
the magnitude and direction of the apparent local movement of the
brightness patterninanimage.

We frame the training objective as aregression task

Y[n] = Decoder (DMN(X[O], ..., X[nl)),

with Y being the optic flow prediction, and X being the visual stimulus
sequence fromtheSintel dataset, both sampled to aregular hexagonal
lattice of 721 columns. With the objective to minimize the square error
loss between predicted optic flow and target optic flow fields, we jointly
optimized the parameters of both the decoder and the visual system
network model described above.

In detail, for training the network, we added randomly augmented,
greyscaled video sequences from the Sintel dataset sampled to areg-
ular hexagonal lattice of 721 columns to the voltage of the 8 photore-
ceptor cell types (Fig. 1f and equation (1)). We denote a sample from a
minibatch of video sequences as X € RV, with Nbeing the number of
time steps, and Cbeing the number of photoreceptor columns. The
dynamicrange of theinputliesbetween O and 1. Input sequences dur-
ing training entailed 19 consecutive frames drawn randomly from the
dataset and resampled to match the integration rate. At the original
frame rate of 24 Hz, this corresponds to a simulation of 792 ms. We did
not find that an integration time step smaller than 20 ms (that is, a
frame rate of 50 Hz after resampling) yielded qualitatively superior
task performance or more realistic tuning predictions. We interpolated
thetarget opticflowintimeto 50 Hztemporalresolution. Toincrease
the amount of training data for better generalization, we augmented
inputand target sequences as described further below. At the start of
eachepoch, we computed aninitial state of the network’s voltages after
500 ms of grey stimulus presentation to initialize the network at a
steady state for each minibatch during that epoch. The network

integration for a given input X results in simulated sequences of volt-
agesV € RV 7¢ with T.being the total number of cells. The subset of
voltages, V,,, € RV?-, of the D cell typesin the black rectangleinFig. 1g
was passed to a decoding network. For decoding, the voltage was rec-
tified to avoid the network finding biologically implausible solutions
by encodingin negative dynamicranges. Furthermore, it was mapped
to Cartesian coordinates to apply PyTorch’s standard spatial convolu-
tion layers for decoding and on each time step independently. In the
decoding network, one layerimplementing spatial convolution, batch
normalization, softplus activation and dropout, followed by one layer
of spatial convolution, transforms the D feature mapsinto the 2D rep-
resentation of the estimated optic flow, Y € RV-%€,

Using stochastic gradient descent with adaptive moment estimation
(8,=0.9, B,=0.999, learning rate decreased from 5x 10~ to 5x107¢in
tenstepsover iterations, batch size of four) and the automatic gradient
calculation of the fully differentiable pipeline, we optimized the bio-
physical parameters through backpropagation through time such that
they minimize the L2-norm between the predicted optic flow, ¥, and
the ground-truth optic flow, Y:

LY, Y)=|Y-Y].

We additionally optimized the shared resting potentials for 150,000
iterations, using stochastic gradient descent without momentum, with
respect to a regularization function of the time-averaged responses
to naturalistic stimuli of the central column cell of each cell type, ¢ nrarr
to encourage configurations of resting potentials that lead to non-zero
and non-explodingactivity in allneuronsin the network. We weighted
these termsindependently with y =1, encouraging activity greater than
a,and 6 = 0.01, encouraging activity less than a. We chose 1, = 0.1and
a=S5inarbitrary units. With Bbeing the batch size and Tbeing the num-
ber of all cell types, the regularizer is

- 1

) V(V—a)z, ifV:*Z Vi cenra[n]sa
R(V)=ﬁz z N n bt central

b teentral S(V—a)z, ifV>a.

Weregularly checkpointed the error measure L(Y, Y) averaged across
a held-out validation set of Sintel video clips. Models generalized on
optic flow computation after about 250,000 iterations, yielding func-
tional candidates for our fruit fly visual system models that we analysed
with respect to their tuning properties.

Task-optimization dataset. We optimized the network on 23 sequences
from the publicly available computer-animated film Sintel'>. The
sequences have 20-50 frames, at aframe rate of 24 frames per second
and apixel resolution of1,024 x 436. The dataset provides optical flow
in pixel space for each frame after the first of each sequence. As the
integration time steps we use are faster than the actual sampling rate
ofthe sequences, we resample input frames accordingly over time and
interpolate the optic flow.

Fly-eye rendering. We first transformed the RGB pixel values of the
visual stimulus to normalized greyscale between 0 and 1. We translated
Cartesian frames into receptor activations by placing simulated pho-
toreceptors in a 2D hexagonal array in pixel space, 31 columns across
resultingin 721 columnsin total, spaced 13 pixels apart. The transduced
luminance at each photoreceptor is the greyscale mean value in the
13 x 13-pixel region surrounding it.

Augmentation. We used: random flips of input and target across one
of the three principal axes of the hexagonal lattice; random rotation
of input and target around its six-fold rotation axis; adding element-
wise Gaussian noise with mean zero and variance g,=0.08 to the
input X (then clamped at 0); random adjustments of contrasts,



logc ~ MO, 62=0.04) and brightness, b ~ A(0, 67 = 0.01), of theinput
with X’ =c(X-0.5) +0.5+ch.

In addition, we ‘strided’ the fly-eye rendering across the rectangu-
lar raw frames in width, subsampling multiple scenes from each. We
ensured that such subsamples from the same scene were not distributed
across training and validation sets. Input sequences in chunks of 19 con-
secutive frames were drawn randomly in time from the full sequences.

Black-box decoding network. The decoding network is feedforward,
convolutionaland has no temporal structure. Aspects of the architec-
ture are explained in the section entitled Model training. The spatial
convolutions have afilter size of 5 x 5. The first layer transforms the
D =34 feature maps to an eight-channel intermediate representa-
tion, whichis further translated by an additional convolutional layer
to a three-channel intermediate representation of optic flow. The
third channel is used as shared normalization of each coordinate of
the remaining 2D flow prediction. The decoder uses PyTorch-native
implementations for 2D convolutions, batch normalization, softplus
activation and dropout. We initialized its filter weights homogene-
ouslyat0.001.

Model characterization

Task error. To rank models on the basis of their task performance, we
computed the standard optic flow metric of average end-to-end point
error (EPE)”?, which calculates the average over all time steps and pixels
(thatis, here columns) of the error

EPE(Y,Y) = NLC Y Y | lnl =3, [n])? + (3, [n] -3, [n])?

between predicted optic flow and ground-truth optic flow and averaged
across the held-out validation set of Sintel sequences.

Importance of task optimization and connectome constraints.
We generated DMNs with different constraints to assess their relative
importance for predicting tuning properties. First, we studied the
importance of task optimization of DMN parameters. We cre-
ated 50 DMNs with random Gaussian-distributed parameters, and
task-optimized only their decoding network, to obtainbaseline values
for both the task error and the accuracy of predicting tuning curves
without task optimization of the DMN.

In the full DMN, we constrained single synapses by connectome
cell-type connectivity, cell connectivity, synapse counts and synapse
signs (equation (2)) and task-optimized the non-negative type-to-type
unitary synapse scaling factor a. Next, we trained five additional
task-optimized DMNs with different connectome constraints (Fig.2d
and Extended Data Fig. 2a-d).

Inthese five additional types of DMN, we additionally task-optimized
thetermsinbold, rather than using connectome measurements, related
to synaptic currents from a presynaptic cell j to a postsynaptic
cell i: known single-cell connectivity, unknown synapse count:
W= 0 My ¢ ay a0 - N whichm, t,4u,40 1S NON-NEGALIVE; known cell-
type connectlwty, unknown smgle cell connectivity and synapse
COUNLS: W ;= 0p, My, ¢, -3<4u,40,4u+dv<3 (thatis, for all connected cell
types, a connectlon welght was learned for all cells up to a distance of
three columns in hexagonal coordinates, with known signs); known
single-cell connectivity and synapse counts, but unknown synapse
signs:w; ;=@ ;0. Ny, ;, au,40 (thatis, connection weights were fixed by
measurements, butsngns optimized); known ssingle-cell connectivity,
but unknown synapse signs and synapse counts: w. =W, ¢, au, a0 (that
is, all non-zero connection weights were optlmlzed lncludmg their
signs); or known cell-type connectivity, unknown single-cell connectiv-
ity, synapse counts and synapse signs: w; ;= Wy, ; _3<u,av,au+av<3 (that
is, for all connected cell types, a connectlon welghtand signwaslearned
forall cells up to distance of three columns). We trained 50 models per

DMN type. The task-optimized parametersineach case are highlighted
using bold symbols We randomly initialized the models with
m ., W, ~MO, - ,inwhich n;, is the number of cell connections

andmls non- negatlve andat € {-1, 1} with equal probability.

Unconstrained CNN. We trained unconstrained, fully convolutional
neural networks onthe same dataset and task to provide an estimate of
alower bound for thetask error of the DMN. Optic flow was predicted
by the CNN from two consecutive frames

Y[nl=CNN(X[n],X [n-1]).

with the original frame rate of the Sintel film. We chose 5 layers for the
CNNwith32,92,136, 8 and 2 channels, respectively, and kernel size 5
for all but the first layer, for which the kernel size is 1. Each layer per-
formsa convolution, batch normalization and exponential linear unit
activation, except the last layer, which performs only a convolution.
We optimized an ensemble of 5 unconstrained CNNs with 414,666 free
parameters each using the same loss function, L(Y, ¥), as for the DMN.
We used the same dataset (that is, hexagonal sequences and augmen-
tations from Sintel) for training and validating the CNN as that used for
training and validating the DMN, enabled by two custom modules
mapping from the hexagonal lattice to a Cartesian map and back.

Circular flash stimuli. To evaluate the contrast selectivity of cell
types in task-optimized models, we simulated responses of each
DMN to circular flashes. The networks were initialized at an approxi-
mate steady state after 1s of grey-screen stimulation. Afterwards the
flashes were presented for 1s. The flashes with a radius of 6 columns
were ON (intensity /=1) or OFF (/= 0) onagrey (/= 0.5) background.
Weintegrated the network dynamics with anintegration time step of
5 ms. We recorded the responses of the modelled cells in the central
columns to compute the FRI.

FRI. Toderive the contrast selectivity of a cell type, ¢;, we computed the
FRIas

peak ( _1) rpeak (I 0)

Ceentral Ceentral

i peak (I 1) +r.peak (I 0)

Ceentral Ceentral

=

from the non-negative activity

rPeak () = maxl/t

Ceentral

L+ Ingi,th [n1(D1,

central
from voltage responses Vooalll (1) tocircular flash stimuli of intensi-
ties /€ {0, 1} lasting for 1s after 1s of grey stimulus. We note that our
index quantifies whether the cell depolarizes to ON- or to OFF-stimuli.
However, cellssuchas R1-R8,L1and L2 canbe unrectified (that s, sen-
sitive to both light increments and light decrements), which is not
captured by our index.

For the Pvalues reported in the results, we carried out a binomial
test with probability of correct prediction 0.5 (HO) or greater (H1) to
test whether both the median FRI from the DMN ensemble and the
task-optimal model can predict the contrast preferences. Additionally,
we found for eachindividual cell type across 50 DMNs that predictions
for 29 out of 31 cell types are significant (P < 0.05, binomial).

Moving-edge stimuli. To predict the motion sensitivity of each cell
type in task-constrained DMNs, we simulated the response of each
network, initialized at an approximate steady state after 1s of grey-
screen stimulation, to custom generated edges moving to 12 different
directions, 8<[0°,30°, 60°,90°,120°,150°,180°, 210°, 240°,270°,
300°,330°]. Weintegrated the network dynamics with anintegration
time step of 5 ms. ON-edges (/=1) or OFF-edges (/= 0) moved onagrey
(I=0.5) background. Their movement ranged from —13.5° to 13.5°
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visual angle and we moved them at six different speeds, ranging
from13.92°st0145°s (S € [13.92° 5%, 27.84° 57, 56.26° 57}, 75.4° s},
110.2°s7%,145.0°s™]). In Fig. 2d, we report the correlation between
predicted motion-tuning curves to the single experimentally measured
tuning curve. We take the maximum correlation across six investi-
gated speeds to make the correlation measure robust to potential
variations in preferred speeds.

DSI. We computed a DSI” of a particular type ¢; as

[Soco P (1,8, 6)exp(iB)|

ccntral

maxlzgr peak (1 § @)

ccn(rnl

DSI; (I) = @
Ses

fromrectified peak voltages

e (1,5, 0) = maxl/+

central

_[n(,5,0),

elicited from moving-edge stimuli. We rectify the voltage to quantify
the tuning of the effective output of the cell, and to avoid the denom-
inator becoming zero. We parameterized movementangle 6 € 0, inten-
sities/ € I, and speeds S € Softhe moving edges. To take the response
magnitudes into account for comparing the DSI for ON- and for
OFF-edges, we normalized by the maximum over both intensities in
the denominator. To take different speeds into account, we averaged
oversS.

Normalization of model neural activity for averaging across models
in a cluster. Threshold-linear networks have arbitrary units for the
voltages and currents. Therefore, we normalized the neural activity
before averaging the neural activity predictions from different models.
For a single cell or cell type t, we first divided responses (voltages or
rectified voltages) by the root mean square across the cell'sresponses
to the naturalistic stimuli:

]l

r‘t‘.”Nl[n] H—Rnat

’

inwhich R € R>" is the cell’'s response vector to S sequences from
the Sintel dataset with N time steps and r,[n] is the cell’s response to
any stimuli. This normalization makes averages (Fig. 4a,b,d-e and
Extended Data Figs. 4, 7, 8, and 9a,b) independent to variation in the
scale of neural activity from model to model. We normalized input
currents equivalently (Fig. 4b and Extended Data Figs. 4, 7, and 8) by
the same normalization factor. We exclude solutions for which the
denominator becomes zero.

Determining whether a cell type with asymmetric inputs counts
as direction selective. We counted a cell type as direction selective
if the DSIs from its synthetic measurements were larger than 99% of
DSIs from non-motion selective cell types (that is, those with sym-
metric filters). We note, however, that estimates of the spatial asym-
metry of connectivity from existing connectome reconstructions can
be noisy.

For deriving the 99% threshold, we first defined a distribution
p(d*ltsym) over the DSI for non-direction-selective cells, from peak
responses to moving edges of cell types with symmetric inputs, .
We computed that distribution numerically by sampling

ge |2g- P (1,S, 6")expif)|
[SorP< (1,8, 6)|

Ceentral

for100 independent permutations of the angle 8*. We independently
computed d* for all stimulus conditions, models and cell types with

symmetric inputs. From p(d* |tsym) we derived the threshold
dpresn = 0.357 as the 99% quantile of the random variable d*, meaning
that the probability that a realization of d* > d .. is less than 1% for
cell types with symmetric inputs. To determine whether an asymmet-
ric cell type counts as direction selective, we tested whether syntheti-
cally measuring direction selectivity larger than d,.., in that cell type
is binomial with probability 0.1 (HO) or greater (H1). We identified 12
cell types with asymmetric inputs (T4a, T4b, T4c, T4d, T5a, T5b, T5c,
T5d, TmY3, TmY4, TmY5aand TmY18) as direction selective (P < 0.05)
fromour models, and 7 cell types with asymmetric inputs to not count
as direction selective (T2, T2a, T3, Tm3, Tm4, TmY14 and TmY15; see
Extended Data Fig. 5 as reference for cell types with symmetric and
asymmetric inputs).

Uniform manifold approximation and projection and clustering.
We first simulated central column responses to naturalistic scenes
(24 Hz Sintel video clips from the full augmented dataset) with an
integration time step of 10 ms. We clustered models in feature space
of concatenated central column responses and sample dimension.
Next, we computed a nonlinear dimensionality reduction to two
dimensions using the UMAP (uniform manifold approximation and
projection) algorithm, and fitted Gaussian mixtures of 2to 5 com-
ponents, with the number of components that minimize the Bayes-
ian information criterion, using the Python libraries umap-learn and
scikit-learn®®”,

Single-ommatidium flashes. To derive spatio-temporal recep-
tive fields of cells, we simulated the response of each network to
single-ommatidium flashes. Flashes were ON (/=1) or OFF (/=0) ona
grey (/= 0.5) background and presented for [5, 20, 50,100,200,300] ms
after 2 s of grey-screen stimulation and followed by 5 s of grey-screen
stimulation.

Spatio-temporal, spatial and temporal receptive fields. We derived
the spatio-temporal receptive field (STRF) of a cell type ¢ as the
baseline-subtracted responses of the central column cell to single-
ommatidium flashes J (u, v) at ommatidium locations (u, v):

[n1(J(u, v)) -V, [n=0]1(J(u,v)).

Ecentral

STRE, _ In)(u,0) =V,

central

We derived spatial receptive fields (SRFs) from the responses to
flashes (20 ms in Fig. 4d) J (u,v) at the point in time at which the
response to the central ommatidium impulse is at its extremum:

SRF (u,v) =STRF (n=argmax [STRF[n](0,0)|,u,v).

We derive temporal receptive fields (TRFs) from the response to a
flash / (0, 0) at the central ommatidium: TRF[n] =STRF[n] (0, 0).For
averaging receptive fields across multiple models, we first normalize
the voltages as described above.

Maximally excitatory naturalistic and artificial stimuli. First, we
found the naturalistic maximally excitatory stimulus, X* by identifying
the Sintelvideo clip, X, from the full dataset with geometric augmenta-
tions that elicited the highest possible response in the central column
cell of aparticular cell type in our models.

X*=argmaxV, (X).
XeSintel

central

Next, weregularized the naturalistic maximally excitatory stimulus,
toyield X', capturing only the stimulus information withinthe receptive
field of the cell, with the objective to minimize

(X?)[n]-V,

central Ecentral

L) =3 1% XA + & 3 IXTn,c1- 0517



The first summand preserves the central response to X*, and the
second regularizes theirrelevant portions of the stimulus outside the
receptive field to grey (/=0.5).

Inaddition, we computed artificial maximally excitatory stimuli”.

Model selection. To describe the most data-consistent motion tuning
mechanisms predicted by the ensemble at the level of single-cell cur-
rents, for Extended Data Figs. 4, 7 and 8, we automatically selected
those models from the ensemble with tuning matching to empirical
data. Specifically, we selected models with correct contrast tuningin
the respective target cells and their inputs (Fig. 4c and Extended
DataFig.3d), with the DSl larger than the threshold d* derived above,
and with a correctly predicted preferred direction (45° acceptance
angle, assuming 225° for TmY3).

Training synthetic connectomes

Training feedforward synthetic ground-truth connectome net-
works. Sparsified feedforward neural networks with six hidden layers
(linear transformations sandwiched between rectifications) with equal
number of neurons in each hidden layer functioned as ground-truth
connectome networks. The main results describe networks with 128
neurons per hidden layer. We interpret the individual units as neurons
with voltage

Vi=) s+ Viet=Y ocmyf(V) + Vi,
J J

with presynaptic inputs s; and resting potentials V{*'. The
connectome-constrained synapse strength, wy, is characterized by the
adjacency matrix ¢, the signs o, and the non-negative weight magni-
tudes my. c;=1if the connection exists, else ¢;= 0. To respect Dale’s
law, the signs were tied to the presynaptic identity, /.

We identified the parameters g, m; and V{** by task optimization
on handwritten digit classification (Modified National Institute of
Standards and Technology (MNIST) database)”. We determined adja-
cency matrices, ¢, for a given connectivity percentage using an
iterative local pruning technique, the lottery ticket hypothesis algo-
rithm””. The algorithm decreases the connectivity percentage of the
ground-truth connectome networks while maintaining high task
accuracy.

We optimized the ground-truth connectome networks and all simu-
lated networks described below in PyTorch with stochastic gradient
descent with adaptive moment estimation (ADAM with AMSGrad),
learning rate 0.001, batch size 500, and an exponentially decaying
learning rate decay factor of 0.5 per epoch. To constrain the weight
magnitudes to stay non-negative, we clamped the values at zero after
each optimization step (projected gradient descent). The parameters
after convergence minimize the cross-entropy loss between the pre-
dicted and the ground-truth classes of the handwritten digits. More
implementation detail is available in Supplementary Note 5.

Simulated networks with known connectivity and unknown
strength. Simulated networks inherited connectivity, ¢;, and synapse
signs, g;, from their respective ground-truth connectome networks.
Insimulated networks, signs and connectivity were held fixed. Weight
magnitudes, my, and resting potentials, Ve, wereinitialized random-
ly and task-optimized. Just like ground-truth connectome networks,
simulated networks were trained on the MNIST handwritten digit clas-

sification task until convergence.

Simulated networks with known connectivity and known strength.
Alternatively, we imitate measurements of synaptic counts from the
ground-truth weight magnitudes:

my; = mye; with €;~ U(1-0,1+0),

with multiplicative noise to imitate spurious measurements. We used
o=0.5for the main results. Weight magnitudes were initialized at the

measurement, /17, and task-optimized on MNIST with the additional

objective to minimize the squared distance between optimized and
measured weight magnitudes, /m; (L2 constraint, Gaussian weight
magnitude prior centred around the simulated network’s initialization).
We weighted the L2 constraint ten times higher than the cross-entropy
objective to keep weight magnitudes of the simulated networks close
to the noisy connectome measurements. Resting potentials, V', were
againinitialized randomly and task-optimized.

Measuring ground-truth-simulated network similarity. Ground-
truth-simulated network similarity was measured by calculating the
median Pearson’s correlation of tuning responses (rectified voltages)
of corresponding neurons in the ground-truth-simulated network
pair.Ineach of the 6 hidden layers, N =100 randomly sampled neurons
were used for comparison. Response tuning was measured over input
stimulifrom the MNIST test set (N =10,000 images). Results are medi-
ansover allhidden layers and over 25 ground-truth-simulation network
pairs.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Data, trained models and interactive notebooks are available at https://
www.github.com/TuragaLab/flyvis.

Code availability
Codeis available at https://www.github.com/TuragaLab/flyvis.
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(a-d) How would incomplete knowledge of connectome affect the

tuning predictions? We artificially varied DMNs with random parameters,
connectome-constrained or task-optimized parameters. Five experiments:
Four ‘Synapse-optimized models’, one ‘Fully optimized’. Details in Methods.
How would incomplete knowledge of cell types affect the tuning
predictions? We artificially assumed some cell types to be indistinguishable,
with shared physiological parameters (resting potentials, time constants,

and unitary synapse strengths). Two experiments: (1) ‘Full DMN Merge T4, TS’
assumes that T4 and T5subtypes were indistinguishable, reducing the number
of celltypesto 58.(2) ‘Full DMN Merge E/I’ assumes that we had three cell
types, excitatory (37 celltypes), inhibitory (22 cell types) or both (4 cell types),
based onour knowledge of synapse signs. Tuning predictions are shownin
comparisonto the Full DMN and the DMN with random parameters.

(a) Task error. (b) Predicted correlations to flashresponse indices, T4,and T5
motion-tuning curves (10 best models). (c) Predicted correlations to known
directionselectivity indices. (d) Distances between known preferred directions
and predicted preferred directions for T4 and T5 neurons. (e) Better task-
performing models predict motion-tuning neurons better. We correlate
predicted tuning metrics from each model to the known tuning properties to
understand when better performing models give us better tuning predictions.
(orange) When correlating the direction selectivity index of each model to the
binary known properties for T4 and T5 and their input cell types, we find that
this correlationis higher for better performing models (Pearson correlation,
r=-0.60,p=2.6x10",¢=r |4 95%Cl=[-1,-0.42], df=48). (magenta) While
the models predicted the known contrast preferences generally well, the
correlation of flash response index to the binary known contrast preferences of
31celltypesdid notsignificantly increase with better performing models.
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Extended DataFig.3 | DMNssuggest that TmY3 neurons compute motion
independently of T4 and T5 neurons. (a) We clustered 50 DMNs after
performing nonlinear dimensionality reduction of their responses to
naturalistic scenes for each celltype, and aimed to identify whether clusters
correspond to qualitatively different tuning mechanisms. (b) Dimensionality
reductionon TmY3 responses to naturalistic stimuli reveals 4 clusters of DMNs
with averagetaskerrors 5.298 (circle), 5.317 (triangle), 5.328 (square) and 5.331
(star). Across clusters, TmY3 shows different strengths of direction selectivity
(evaluated with moving edge stimuli). ON-edge direction selectivity is strong
inthefirstand the third cluster. (c) Normalized peak responses of TmY3 to
moving edge stimuliin the DMNs of each cluster. (d) Major cell types and

known OFF-selective

synaptic connections in the pathway that projects onto TmY3 (simplified).

(e) Theinputelements of TmY3 with the highestamount of synapses are L4, L5,
Tm2, Tm3, Mil, Mi9, and Mi4. The asymmetries of their projective fields could
allow TmY3 tobecome motionselective. (f) Dependencies between TmY3
tuning and the contrast preference of its input cells. For clustersinwhich
TmY3is motionselective, cluster 1(TmY3 tuning to downwards/front-to-back
motion, circular marker) indicates ON-selectivity for Tm3, Mil, and Mi4 cells,
and OFF-selectivity for L4, Tm2,and Mi9 cells, inagreement with known
selectivities. In contrast, cluster 3 (TmY3 tuning to upwards/back-to-front
motion, square marker) indicates ON-selectivity for Mi9 in contradiction to
theknown selectivities and hence ruling out the third TmY3 tuning solution.
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Extended DataFig. 6 | Predicted tuning with respect to task-performance.
(a) Flash response index computed as the max-abs-scaled peak response to an
offflash subtracted from the max-abs-scaled peak response toanon flash -
both of approximately 35° radius and presented for1s after 2 sof grey input.
Values above O indicate on-polarity, values below zero indicate off-polarity.

Known on-polarand off-polar celltypes are colored in yellow and magenta.
(b) Single-celltypedirectionselectivity of best 20% task-performing models
versus worst 20% task-performing models of an ensemble of 50 modelsasa
result of peak voltage responsesin central columns to on-edges and off-edges
moving towards all possible directions on grey background.
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Extended DataFig.7| T4 motion detection mechanisms hypothesized

by themodel. (a) Across all T4 cell types (here T4c, Supplementary Fig. 5 for
other T4 types), our model predicts that T4 depolarizationinresponse to PD
ON-motion (black, solid) is driven by excitatory Mil current inputs (darkest red,
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dashed). Theinhibition from Mi4 cells is delayed for PD-motion (darkest blue,
solid), allowing strong depolarization of T4. CT1shadows the Mi4 mechanism
with similar but weaker inhibition from the same location of the receptive field

(second darkest, blue). Our model suggests mechanismsinvolving Mi9 cells
and TmY15 cells: both contribute to T4 motion detection by differentinhibitory
mechanisms for PD-motion with respect to ND-motion. (b) ‘Measured”:
Predicted T4cresponses to bars moving in PD (left column) and in ND (right
column) at varied speeds (saturated red and blue). ‘Linear sum’: linear sum

of responses toindividually flashed frames that constitute the moving bar
video (faintred and blue). Faint grey traces inbackground of first panel show
individual flashresponses before linear summation. Flash durationineach
location matched to length of stay at the location in the moving bar video. Bars
were approximately 9°wide and 20.25° high and moved across 45° with respect
toreceptive fieldin the center. This figure should be compared to Gruntman
etal.”, Fig. 4f.
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Extended DataFig. 8| T5 motion detection mechanisms hypothesized

by themodel. (a) Across all T5cell types (here T5c, Supplementary Fig. 6 for
other T5types), our model predicts that TS depolarizationinresponse to PD
OFF-motion (black, solid) isdriven by excitatory Tmland Tm9 input currents
(darkestand second darkest red). Tm1 currents come froma centered,
two-column radius of Tm1 cells. Tm9 inputs come from cells offset by one
column towards the leading side of the receptive field. We observe delayed
excitation from Tm9 cells for ND-motion. The PD-motion responseisincreased
through excitatory inputs from the neighboring T5 cells of the same type (as for
T4 cells), not providing excitation for ND-motion. CT1(Lol) cells cancel excitatory
currentswith stronginhibitory currents from the trailing side of the receptive

field leading to the weak ND response. For PD-motion, inhibition from CT1(Lo1)
cellsis delayed allowing strong T5 depolarization. (b) ‘Measured’: Predicted
T5cresponsestobars moving in PD (left column) and in ND (right column) at
varied speeds (saturated red and blue). ‘Linear sum’: linear sum of responses
toindividually flashed frames that constitute the moving bar video (faint red
andblue). Faint grey traces in background of first panel show individual flash
responses before linear summation. Flash durationin each location matched to
length of stay at the location in the moving bar video. Bars were approximately
9°wide and 20.25° high and moved across 45° with respect to receptive field in
the center.
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