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Odour plumes in the wild are spatially complex and rapidly fluctuating structures
carried by turbulent airflows' . To successfully navigate plumes in search of food and
mates, insects must extract and integrate multiple features of the odour signal,
including odour identity?®, intensity® and timing® 2. Effective navigation requires
balancing these multiple streams of olfactory information and integrating them with
other sensory inputs, including mechanosensory and visual cues®?", Studies dating
backa century have indicated that, of these many sensory inputs, the wind provides
the main directional cue in turbulent plumes, leading to the longstanding model of
insect odour navigation as odour-elicited upwind motion®$ 215 Here we show that
Drosophila melanogaster shape their navigational decisions using an additional
directional cue—the direction of motion of odours—which they detect using temporal
correlationsin the odour signal between their two antennae. Using a high-resolution
virtual-reality paradigm to deliver spatiotemporally complex fictive odours to freely
walking flies, we demonstrate that such odour-direction sensing involves algorithms

analogous to those in visual-direction sensing'®. Combining simulations, theory and
experiments, we show that odour motion contains valuable directional information
thatis absent from the airflow alone, and that both Drosophila and virtual agents are
aided by thatinformation in navigating naturalistic plumes. The generality of our
findings suggests that odour-direction sensing may exist throughout the animal
kingdom and could improve olfactory robot navigation in uncertain environments.

Like many animals, insects sense odours using two spatially separated
sensors—their antennae. This pair of sensors can detect local concen-
tration differences, which encode odour concentration gradients and
enable flies to navigate simple plumes such as steady ribbons, where
gradients are resolvable and informative*®, However, the relevance of
bilateral sensing for natural plume navigationis less clear as, in turbu-
lent flows, odour gradients fluctuate rapidly and do not reliably point
towards the source®.

Here we propose a distinct role for bilateral sensing: inferring the
direction of motion of odour signals. To understand the ‘motion’ of
an odour signal, picture smoke emanating from a chimney onawindy
day. The dispersing smoke plume quickly breaks into disconnected
filaments and, although these filaments move in seemingly random
directions, their direction of motion at someinstantis obvious by eye.
We can think of the motion of odours (which are invisible) as analogous
tothe motion of these smoke filaments. Importantly, owing to the dis-
persive effects of turbulence and molecular diffusion, the direction of
the filaments can differ from the wind®, thereby providing a directional
cue thatis distinct from the local airflow.

To investigate whether flies sense and respond to odour motion,
we first reanalysed a dataset of walking Drosophila navigating a

complex, visualizable odour plume of which the odour statistics
resemble those in turbulent flows' (Fig. 1a). In this plume, gradients
can be randomly oriented relative to the source, and often differ
substantially fromthe direction of odour motion (Fig. 1a (green and
magentavectors)). As the odour is visible, we can quantify the odour
signal encountered during navigation, as well as infer the projections
across the antennae of the odour gradient and of the odour velocity
(whichencodes the direction of odour motion) (Fig.1b and Extended
DataFig.1), while simultaneously measuring fly behaviour (Fig. 1b).
Odour velocity was estimated by cross-correlating the odour con-
centration in the left and right antenna regions across subsequent
frames (Methods), similar to methods that compute velocity using
tracer particles in fluids.

Insects turn upwind when encountering odour signals®*°*, which
we verified for flies oriented slightly away from the upwind direction
(Fig. 1c (blue and red curves)). For flies already oriented upwind,
there was no turning bias relative to the intensity or gradient of the
odour (Fig.1c,d). Notably, their turn bias did correlate significantly
with odour velocity (Fig. 1e), suggesting that flies respond to the
direction of odour motionin the absence of directional information
from the wind.
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Fig.1|Drosophilaturning behaviours are correlated with the direction of
odourmotioninaspatiotemporally complex odour plume. a, Snapshot of
walking flies navigating a spatiotemporally complex odour plume generated
by stochastically perturbing an odour ribbon inlaminar flow with lateral
airjets, as described previously'’. Odour gradients (magenta arrows) and odour
velocity (green arrows) donot necessarily alignand can pointinrandom
directions relative to the odour source. The blue oval shows the virtual fly
antennaregion used to estimate signal quantities during navigation. Scale bar,
20 mm. b, Example timetraces of fly behaviours (orange) and signal-derived
quantities (blue) for the track shownin a. Odour velocity was computed by
cross-correlating the signal in the virtual antenna over successive frames and
determining the spatial shift with maximal correlation. Odour gradient was
computed as theslope of the odour concentration along the major axis of the
virtual antenna. AU, arbitrary units. c, Fly angular velocity as afunction of
odour concentration, for flies oriented in a40° upwind sector (black), orina
40°sector centred 40° clockwise (red) or counterclockwise (blue) from the
upwind direction. Positive valuesindicate a counterclockwise turn. Dataare
mean = s.e.m. Correlations are significant for flies in the off-axis sectors.
Slope=0.037 £ 0.005, n =174 tracks; and slope =-0.039 + 0.003, n =312 tracks
for clockwise and counterclockwise sectors, respectively. P<1x 107 for both
sectors, butnot those oriented directly upwind (slope =0.005+ 0.003,
P=0.09,n=285tracks).NS, notsignificant.d,e, Flyangular velocity versus
odour gradient (d) and odour velocity (e) for flies oriented ina40°sector
upwind. Angular velocityis uncorrelated with odour gradient (mean
slope=-0.005+0.003,P=0.072,n=284 tracks) butsignificantly correlated
with odour velocity (meanslope =0.040 +0.003,P<1x107%, n=282tracks)
acrossthevirtual antenna. For c-e, statistical analysis was performed using
two-tailed t-tests.

Odour motion sensing without wind

Because odours are transported by the airflow, odour motionand wind
motion areinherently connected. To break this connection, we turned
to optogenetic stimulation of olfactory receptor neurons (ORNs) using
the channelrhodopsin Chrimson®*?, We generated spatially complex,
dynamic fictive odour stimuli using a DMD projector to display light
patterns?onto blind, freely walking flies in the 27 x 17 cm*arena used
in Fig. 1 (Fig. 2a). This set-up enabled optogenetic stimulation with
sufficient spatial (<300 pm) and temporal (<6 ms) precision to hit fly
antennae independently. We verified using electrophysiology and
behavioural controls that optogenetic stimulation of Orco-expressing
ORNsacts as an attractive fictive odour? (Methods and Extended Data
Figs.2a-c), and that flies walking either on the bottom glass or upside
down on the top glass responded similarly to the signal (Extended
Data Fig. 2d). Using this set-up, we first presented a simple stimulus
consisting of travelling fictive odour barsin the absence of wind. Flies
oriented perpendicular to the bar motionreceive differential stimula-
tionacross their antennae when the edges of each bar pass across them.
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Fig.2|Turning responses are consistent with direction sensing, but not
gradientsensing. a, Schematic of the optogenetic fly walking assay. Flies
expressing Chrimsonin ORNs received optical stimulation fromavideo
projector mounted above thearena. IR, infrared. b, Fictive odour bars moving
at15mms™are presentedin5sblocks, interleaved witha 5 s blank period.

Scale bar, 5 mm. ¢, Component of fly walking velocity along the +x direction
during the stimulus (shaded grey) and blank periods, for bars movingin the +x
(blue; n=178tracks) or -x (orange, n=192tracks) direction. Dataare mean + s.e.m.
Only flies facingin the 90° sector perpendicular to bar motion at odour onset
(t=0)areincluded.d, Thedistribution of fly orientations during stimulus (top)
and blank (bottom) periods; colours are the sameasin c. Orientations are
symmetrized over the x axis. e, Direction sensing can be differentiated from
gradient sensing by measuring turning responses versus fly orientation at both
edges of wide, moving fictive odour bars: the ON edge (when the fictive odour
first passesonto the fly) and the OFF edge (whenitleaves the fly).f, Fly turning
bias versus orientation for ON (green) and OFF (purple) edges moving at
10-15mms. Darker curves indicate flies that were fed all-trans retinal (ATR);
lighter curvesindicate flies that were not fed ATR. Turning bias is quantified as
the sign of orientation change after edge onset, where (+1) -1is (counter)
clockwise. Each point covers +45°; thus, distinct points contain overlapping
data.Dataaremean ts.e.m. Turning bias for ATR-fed flies, when oriented
perpendicular to the bar motion (6= 0), are significantly different from zero for
both ON and OFF edges (P<1x 10 ¢forboth edges, x*test; n=1,673 and
n=1,509 ONand OFF edge encounters, respectively). Turning biases are not
statistically distinct from zero for non-ATR fed flies (P=0.09 and P=0.77,
x’test;andn=1,397 and n=1,484 ON and OFF edge encounters, respectively).

Iffliesresponded selectively to the direction of fictive odour motion, we
would expect opposing behaviours for bars travelling rightward versus
leftward. We therefore presented 5-mm-wide bars travelling 15 mms™
either left or right, in 5-s-long blocks followed by a 5-s-long block of no
stimulus (Fig. 2b). Indeed, right-moving bars elicited anet displacement
of fly position to the left, and vice versa (Fig. 2c). Furthermore, flies
oriented against the direction of motion during the 5 s stimulus block,
but exhibited no asymmetry during the 5 s blank (Fig. 2d). Notably,
bothofthese behaviours were absentin Orco>Chrimson flies with one
antenna ablated (Extended Data Fig. 3a,b), but were preserved when
Chrimsonwas expressed only in ORNs expressing the receptor Or42b
(Extended DataFig.3c,d), whichis known to drive olfactory attraction
to vinegar®and represents a small fraction of all ORNs. These experi-
ments suggested that the olfactory responses of the flies were direction
selective, and that direction selectivity is enabled by bilateral sensing
from the two antennae. The key indicator of direction selectivity was
counterturning against bar motion—areasonable response for locating
an odour source emitting propagating odour signals.

Direction sensing at ON and OFF edges

As insects and vertebrates both detect spatial gradients of odour
concentration and use them to navigate'®**, we wondered whether
gradient sensing could explain the directional biases that we observed.
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Werepeated the experiments described above with wider (30-45 mm)
bars, which enabled us to quantify responses to each edge individu-
ally—the ON edge, when the fictive odour first passes over the fly, and
the OFF edge, when fictive odour leaves the fly (Fig. 2e). Responses to
these stimuli would clearly distinguish direction selectivity from gradi-
ent sensing, as gradient sensing would result in opposing behaviours
atthe ON and OFF edges, whereas direction-sensing responses would
be the same (Fig. 2e). We calculated fly turning bias, defined as the
sign of the cumulative change in orientation between150 and 300 ms
after the edge hit, as a function of the fly’s orientation relative to the
moving edge. For both ON and OFF edges moving at 10-15 mms,
these plots had strong positive peaks for flies oriented parallel to the
edge (that is, when the two antennae were stimulated differentially),
indicating that the flies are responding to the odour motion, not the
spatial gradient (Fig. 2f). Meanwhile, the responses were flat for con-
trol flies (Fig. 2f and Extended Data Fig. 3e). Repeating this for various
bar speeds, we found strong directional selectivity for bars moving
at10 and 15 mm ™, whereas, for higher speeds (20-30 mm ™), the
ON response was significant but reduced and the OFF response was
abolished (Extended DataFig. 3e). At slower speeds1-5 mm s, the ON
response was still present, but the OFF response was now slightly nega-
tive, although not statistically significant (Extended Data Fig. 3e). We
attributed this to gradient sensing in the slow edges, which are nearly
static odour environments: odour directionand gradients are parallel
for ON edges but antiparallel for OFF edges (Fig.2e), so the behavioural
responses to motion and gradients compound for the former but cancel
forthelatter. Finally, similar directional turning responses for both ON
and OFF edges were present in Or42b>Chrimson flies (Extended Data
Fig.3f), indicating directional selectivity at the level of the single ORN
type. These observations were robust to changes in the behavioural
integration window (Extended Data Fig. 3g), consistent with previously
reported reaction times for ON responses®>.

Odour motion sensing sums with wind sensing

Insects bias their heading upwind in the presence of attractive
odours® 31255 byt the role of odour motion in this upwind response
isunknown. Our patterned optogenetic set-up enabled us to investigate
this by independently controlling the wind and odour motion, which
is otherwise prohibitive in natural environments. Inour earlier experi-
ments, we quantified turning bias in response to odour motion, but
without wind (Fig. 2). Inthe presence of both wind and odour motion,
wereasoned that fly responses would reflect some sort of summation
of the responses to theisolated stimuli. We therefore presented fictive
odoursinthe presence of wind, but without any motion of the odour.
Toremove odour motion, we flowed laminar wind and flashed the entire
arenawithlightfor2.5s, followed by 2.5 s of no stimulus (Fig. 3a). This
stimulates both antennae simultaneously, removing bilateral infor-
mation—an artificial stimulus that is difficult to deliver with natural
odours. In this situation, flies bias their heading upwind (against the
wind) at the onset of the flash (Fig. 3b), reminiscent of their tendency
to turn ‘against’ the odour motion in the absence of wind (Fig. 2f and
reproducedinFig.3c). The similarity of turning responses towind and
odour motion separately is illustrated by fitting the turning bias versus
orientation plots to asinusoid (Fig.3b,c (dashed lines)).Inboth cases,
the plots are well fit by Acosf, where A,y = —0.40 and A 4., = —0.30.
These simple functional forms encouraged us to consider a simple
hypothesis for how flies respond tofictive odour edges moving atagiven
angle relative to the wind. We hypothesized that the response to the
combined signalisasum of the bar motionand odour motion responses.
This hypothesis predicts that, when the odour motion direction and
wind direction are aligned, the peak response should increase in mag-
nitude and remain centred at 0° and 180° (Fig. 3d (first row)). If odour
and wind motion oppose each other, these peaks should nearly cancel
(Fig.3d (middle row)). Finally, in the interesting case of wind and odour
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Fig.3|Turning responses to odour and wind direction are summed.

a, Flashing the whole arena stimulates both antennae simultaneously, removing
any directional odour cues. Laminar wind was introduced at 150 mms™.

b, Turning bias versus fly orientation, defined asin Fig. 2, for fictive bilateral
odour flashesinthe presence of wind (top; n=1,240 odour hits). Dataare
mean +s.e.m. Grey shaded boxed regions show the values for which the fly
turns counter to the wind direction; allmeasured values liein thisrange. The
dottedlineisfitto-0.4cosé. ¢, Turning bias versus fly orientation for moving
fictive odour barswithout wind, at the ON edge (same data as the darker green
curveinFig. 2f, but without symmetrizing orientations). Grey shades indicate
values for which flies turn counter to the bar direction. The dashed lineis fit to
-0.3cos6.d, The expected turning bias versus orientation (dashed curve) for
bars moving parallel (top row), antiparallel (middle row) or perpendicular
(bottomrow) to the wind, assuming that turning bias is the sum of the fitted
cosines fromb (black curve) and c (grey curve). In the middle and bottom row,
thegrey curve hasaphase shift depending onthe bar directionrelative to the
wind. e, The solid curves show the mean of measured data. Bars move at
15mms™. The dashed curves show the expected responses fromd. The shaded
regionsshowthes.e.m.n=1,361,n=1,679 and n= 696 ON edge hits for bars
parallel, antiparallel and perpendicular to the wind, respectively. The additive
modelisalso consistent with faster bar speeds, which have reduced responses
(Extended DataFigs. 4e,f).

velocity perpendicular to each other, the peaks should shift leftwards
to-~145°and ~-325° (Fig. 3d (bottom row)). To test these predictions, we
presented fictive odour bars either parallel, antiparallel or perpendicu-
lar to 150 mm s laminar wind. When the wind and odour were aligned,
the turning bias at ON edges was nearly perfectly fit by the additive pre-
diction (Fig.3e). The antiparallel motion of bars and odours was also fit
well—extremaremained at 0°and 180°, although the cancellation over-
shot slightly. Notably, the response to perpendicularly oriented wind
and odour reproduced the shift of the response curve peak from ~180°
t0145°,and nearly reproduced the shift of the minimum from ~-360° to
~325°. These results suggest that odour-direction-selective responses
integrate with directional information from the wind in alargely, but
notentirely, additive manner. Moreover, universally observed upwind
turning responses are more complex than naive mechanosensory reac-
tions triggered by the presence of odour—they canbe enhanced and even
cancelled by directionalinformation fromthe odour itself. Interestingly,
responses to OFF edges inthe presence of laminar wind were very weak,
suggesting that there are other nonlinear interactions between the loss
of odour and wind (Extended Data Fig. 4).

Odour motion sensing is correlation based

We next tested the extent to which our observations were consist-
ent with elementary motion-detection algorithms. We began by
analysing our data for moving bars in the absence of wind (Fig. 2).
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Curves differedsignificantly for =0 (P<1x107°, x* test).

Odour motion creates adifferenceinlatency ATbetween the stimula-
tion of the two spatially separated antennae, the sign and magnitude
of which determines the output of direction-selective models such as
the classical Hassenstein-Reichardt correlator (HRC)™. In our assay,
AT can be inferred from the velocity of the bars relative to the flies
using simple geometric considerations (Methods and Extended Data
Fig. 5a). This enables us to express turning bias as a function of AT,
thereby directly testing the predictions of an HRC model. In a simple
rightward-selective HRC with two antennal inputs (Fig. 4a), a signal
from the left antenna is multiplied with the delayed signal from the right
antenna, where the delay isimplemented as an exponential filter e .
Subtracting this product from amirror-symmetric computation gives
the detector output r(¢). We modelled the turning bias as the time inte-
gral of r(¢), for which the HRC predicts a turning bias proportional to
1-e™7" for rightward-moving edges. Thus, plotting the turning bias
against ATwould enable us to extract thefilter time constant rfor this
model, revealing the timescale of olfactory motion detection. Pooling
the data from both ON and OFF edges at 10-15 mm s in the absence
of wind (Fig. 2f), we found that the prediction was fit well, with filter
timescalesin the range =25+ 12 ms (Fig. 4b). Although this estimate
is approximate and limited by the temporal and spatial resolution of

the projector, itis notable that the timescale is comparable to those of
visual motion detection in Drosophila®® and humans?.

Elementary motion detection algorithms respond fundamentally
to correlations in the signal over space and time. To better compare
behaviour to the predictions of the HRC, we moved beyond ON and OFF
odour edges and turned to correlated noise stimuli, which have been
used to characterize direction-selective computations in fly vision?.
A snapshot of a correlated noise stimulus is a pattern of 1-pixel-wide
bars, each of whichiseither light or dark (Fig. 4c). The pattern updates
intimein such a way that it contains well-defined positive or negative
correlations between adjacent pixels. Intuitively, a positive correlation
inthe +x direction means that a light bar at a given x is likely—but not
guaranteed—to be proceeded in the subsequent frame by a light bar
1pixeltoitsright; visually, this would appear tobe arightward-moving
pattern. To enhance the strength of the odour motion behaviour, we
simultaneously flowed laminar wind as in the experiments in Fig. 3.
Thus, there were four types of correlated noise stimuli, correspond-
ing to the possible combinations of correlation displacement (with
or against the wind) and parity (negative or positive) (Fig.4d), each of
whichisuniquely defined by its correlation function C(Ax,At) (Extended
DataFig. 5b).

Inthis experiment, turning responses to positively correlated noise
stimuli mimicked those to moving bars: upwind turning was suppressed
when the correlation displacement opposed the wind direction (Fig. 4e
(top)). Importantly, spatial gradients in these stimuli quickly average to
zero, soonly acomputation sensitive to spatiotemporal correlations,
and not gradients, could account for behavioural suppression when
the correlation displacement and wind were misaligned. Repeating for
negative correlations, we found that upwind turning was suppressed
whenthe correlationand wind were aligned (Fig. 4e (bottom)). Notably,
this response is also consistent with a correlation-based algorithm,
which predicts areversal in the perceived direction of motion when
the correlation changes sign?. In fact, this ‘reverse phi’ phenomenonis
acommon visualillusion—a feature of correlation-based algorithms—
that has been observed and investigated across several species??3,
including humans®'. Subtracting the with-wind and against-wind
responses for each polarity indicated clearly that the reverse-phi pre-
diction was satisfied (Fig. 4f).

We corroborated our results using gliders, another class of correlated
stimuli***, Visually, aglider is arandom pattern of light and dark bars
moving in one direction (Extended Data Fig. 5¢). In contrast to cor-
related noise, the bars are correlated not only with a neighbouring
bar in the subsequent frame, but also with more distant bars at later
times. However, unlike the weaker magnitude correlations for corre-
lated noise, the correlationsin glider stimuli are perfect (Methods and
Extended DataFig. 5d), so we expected similar trends as before, but with
larger effect sizes. For positively correlated gliders, we found similar
trends as with correlated noise, but much larger separations between
the with-wind and against-wind responses (Extended Data Fig. 5e). We
were also able to examine a range of correlation times by adjusting
the frame update times. For update times in the range of 17 to 30 ms,
we found direction-selective responses, whereas, for shorter update
times (11 ms), direction selectivity disappeared (Extended Data Fig. 5f).
Interestingly, the maximum separation of with-wind and against-wind
responses was with a frame update of 17-22 ms, consistent with the
estimate of the HRC filter time constant using moving bars (Fig. 4b).

For flies to sense these correlations in our assay, their antennae
must be optogenetically stimulated by distinct pixels. We satisfied
this requirement by mounting the projector such that the x-pixel width
(~290 pum) approximated the D. melanogaster antennal separation
(Extended Data Fig. 5g). We predicted that effects would also reduce
for barswider than the antennal separation, as antennae were less likely
tobestimulated independently. Indeed, when we repeated the experi-
ments with the bar width doubled, we found no significant differences
betweenwith-wind and against-wind responses (Extended Data Fig. 5h).
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Fig.5| The temporal precision of ORNresponsesis sufficient toencode
odour directionality. a, Spike rasters for ab3A ORNs responding to 50 ms
puffsof ethyl acetate. Odours were presented 20 times each (rows) to different
ORNs (colours) at 3 sintervals. The top trace shows odour concentration
measured by PID. The histogram shows distribution of timing of first spike
after odour presentation. Scale bar, 50 ms. b, HRC schematic (left). To calculate
HRCresponsesto moving odour signals, ORN spike trains from a (taken from
different ORNsinasingle antenna) were designated as left or right antennal
ORNs by adding appropriate delays. Right, HRC responses over time for
various AT.c, Thesameasb, for the same pair of ORNs, over 10 different odour
presentationsand |AT|=15ms.d, Time-averaged HRC response versus AT.
Theblackline shows the mean over all pairings of left and right ORNs. The light
curvesshowtenrepresentative pairings. Odour directionis deemed tobe

Together, these data suggest that Drosophila odour-direction sensing
involves a correlation-sensitive algorithm.

ORN timing enables motion sensing

Our results so far have supported a correlation-sensitive model of direc-
tionsensing, tuned tointerantennal odour latencies as short as -15 ms
(Extended DataFig. 5f). This raises the question of how temporal preci-
sioninthe olfactory periphery enables the detection of suchlatencies.
To address this, we turned to electrophysiological measurements of
odour-elicited ORN responses, using these to predict HRC model out-
puts for naturalistic stimuli. We recorded responses of 14 ab3A ORNs
from one antennain 2 flies to 20 short (50 ms) puffs of ethyl acetate
(Fig.5a). Across all 280 presentations, we found ajitter of 5.1 msinthe
timing of the first odour-elicited spike, significantly smaller thanin pre-
vious studies®, but not insignificant compared with the 15 ms timescale
of odour motion detection. To quantify howacorrelator could extract
directional information fromnoisy ORN responses, we chose at random
a pair of spike trains measured in two different ORNSs, shifted them
intime by ~A7/2 and AT/2, respectively, and we then passed this pair
through the two arms of the HRC model (Fig. 5b). This procedure mim-
icshow ORNsineach antennawould respond to arightward-travelling
odour filament, thatis, the right ORN would receive the same signal as
theleft ORN, but AT later. Odour speed and direction are set by scaling
or flipping the sign of AT, respectively. We found that for |AT| above
around 10 ms, HRC output was positive for rightward-moving signals
(AT >0) and negative for leftward-moving signals (AT < O; Fig. 5b),
indicating directional selectivity. Moreover, HRC responses were very
similar across odour presentation trials (Fig. 5c), meaning that odour
direction could be extracted reliably without averaging over multiple
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resolvableifthemeanisoutsidels.d.of zero. Ass.d. rather thans.e.m.isused,
this correspondstoresolving odour direction with one odour presentation.
e, Thesameasind, but nowincluding circuit transformations and noise.
f,Representative ORN rasters to a few whiffs of a naturalistic odour signal (the
fulltraceisshowning).Scale bar,100 ms.g, The odour signal (top) and the
calculated mean HRC response (HRC) (bottom) for odour latencies of
AT=+15msforanaturalisticodour signal. Atotal of 4 left and 4 right ORN spike
trains were generated from 8 single antennarecordings as describedinb, and
the mean was taken over the 16 left-right pairs. The coloured dots show
individual whiffs, defined by times at which the firing rate exceeded 30 Hz.

h, Thesign ofthe HRC response, averaged over 16 ORN pairs, for all whiffsin g.
Dataare mean +s.e.m.over all16 ORN pairs.

encounters. Finally, extending thisto all19,600 possible pairings of 140
left and 140 right ORNs, we found that the simple HRC model could
reliably resolve odour direction over a broad range of interantennal
latencies 11 < |AT] <153 ms (Fig. 5d), corresponding to odour speeds as
high as 25 mm s™. Together, this indicated that, at least at the level of
single, noisy ORN pairs, sufficientinformation was present to encode
odour direction. Moreover, the HRC timescale of 7= 15ms does not set
a hard lower bound on the resolvable latency AT. This is because the
filtersinthe HRC model smear the signalsin time, so that HRC outputs
arenon-zero over arange of AT, not justwhen AT =7. Thus, the HRC is
strongly direction selective even at latencies far fromt.

Next, to see how some known downstream transformations might
affect direction sensitivity, we added two processing steps upstream
ofthe HRC computation: bilateral mixing of ORN signals with a 60/40
ratio"” and a 30 ms low-pass filter representing projection neuron
responses>*. We also jittered each ORN spike up to 30 ms (ref. **) to
represent variability across the ORN population. The aggregate effect of
these three transformations was to shift the resolvable response range
to 21 <|AT| <171 ms (Fig. 5e)—a notably small reduction in sensitivity.
In fact, we show mathematically that temporal filtering should not
degrade the resolution to a level naively suggested by the filtering
timescales. Forexample, an HRC receivinginputs that have been filtered
over T, = 100 ms can still respond direction selectively to latencies
much lower than 7y, (Methods and Extended Data Fig. 6). Intuitively,
while the projection neuron filter smears the twoinputs, itactsoneach
inputequally, thereby retaining the relative signal delay between them.

We nextrepeated the same calculations using the responses of ab2A
ORNSs to anaturalistic odour stimulus from our previous study®, which
is composed of brief bursts of odour, or whiffs, interspersed with
periods of clean air (Fig. 5f). In this signal, the whiff concentrations
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Fig.6|Odour-direction sensing enhances naturalistic plume navigation.
a, Snapshotof the simulation of aplume from Fig.1. The grey arrows show the
wind direction attheinstant of the snapshot. Scale bar,20 mm.b, Odour
(colours) and wind (grey) velocity vectors at the instant of the snapshot, at
boxedlocationsina (left). Middle and right, the distributions of the odour and
wind velocity vectors over the whole simulation. ¢, The mean odour velocity
field (top). Bottom, the meanwind field for detectable odour concentrations.
Scalebars, 20 mm. d, Illustration of fictive odour plume in which2-mm-wide
bars move outwards or inwards from the arena centreline at 15 mm s™. Laminar
wind flows at150 mm s™. e, Measured fly tracks for flies beginningin the
downwind 50 mmend of the arena, for outward (left) orinward (right) bars.
Theblacktracks represent flies that reached a 50 mmbox around the fictive plume
source. f,Fliesin the outward bar plume were more likely toreach the source (left):
56% (28 out of 50 tracks) versus 28% (12 out of 43 tracks) (P=1.13 x 107, one-tailed

and durations spanned an order of magnitude, typical of odour sta-
tistics in turbulent flows>. We estimated the HRC response to left- and
right-travelling odours as described above by pairing different recorded
ab2A ORNs and shifting them appropriately (Fig. 5g). Averaging over
all left and right pairs, we found that odour direction for latencies
|AT] =+15 ms was resolvable in more than 90% of the individual whiff
encounters (Fig. 5h). Together, these findings reveal that the temporal
precision of ORN responses, together with putative circuit transforma-
tions in the Drosophila olfactory periphery, can robustly encode the
direction of natural odour signals.

Finally, we note that, despite the robustness of the directionally selec-
tive odour computations shown above, our estimates here remain a
worst-case scenario. We have simulated HRC responses using indi-
vidual ORNs on each antenna, but Drosophila antenna contain popu-
lations of ORNSs of each type, which are pooled in projection neuron
responses. This convergence increases detection accuracy by averaging
over noise***%, and a similar denoising upstream of direction sensing
computations should enhance the robustness beyond what we have
demonstrated here.

Odour motion sensing in natural plumes

Inprinciple, animals could use measurements of odour motion to help
them navigate complex plumes, provided this information comple-
ments other directional cues such as gradients or wind. To quantify
the distribution of odour signal directions in a naturalistic plume,

- the vector sum -50 50 -50 50
f “Nodour ggg’lmv ?12?1 y(x>200) y(x<100)
<‘7wmd|odour> “Vsum hits are frequent

t-test). Middle and right, the distributions of flies’ lateral (y) position, inthe
downwind (left) or upwind (right) end of the arena, respectively. g, Projected
complex plume, played either normally orinreverse. h,iFly tracks (h) and
quantification (i) asineand fbut for the complex plumeing. Fliesin normal
playback were more likely to reach the source: 32% (22 out of 69 tracks) versus
14% (13 out of 91 tracks) (P=6.39 x 1073, one-tailed t-test). j, Simulated agent
modelbased on Drosophila odour navigation'®. DS—agentsincrease the
upwind bias of stochastic left/right turns with odour hit frequency (top; green).
DS+agents turnagainst the vector sum of the wind and odour directions as the
hitfrequency increases (bottom; purple). k, Tracks of DS+ (left) and DS- (right)
agents navigating the complex plumeing.l, Thesame asfand i, but with DS+
and DS-agents. DS+agents were more likely toreach the source (34% versus
25%ofn=500tracks, P=9.98 x10~5; one-tailed t-test).

we ran numerical simulations of an environment replicating the plume
from Fig.1. These simulations provide not only amore finely resolved
concentrationfield, butalso the airflow velocity field (Fig. 6a), whichis
experimentally inaccessible. We first compared, for afew fixed points
in the plume, the odour velocity v,4,,, and the airflow v,,;,q at a single
time. Both v,,,,, and v,;, had x-components comparable to the mean
flow speed 150 mm s, However, V,4,,, also had large crosswind com-
ponents v, 4, pointing outwards from the plume centreline that were
noticeably absent from v, (Fig. 6b (left)). Averaging over all detect-
able odour filaments in the 120 s simulation revealed a similar trend:
away from the plume centreline, the distribution of v, Spanned a
tight angular range, pointing consistently outwards in the crosswind
direction (Fig. 6b (middle column)). Meanwhile, v,,;,q was distributed
largely downwind, with much smaller outward angles (Fig. 6b; right
column). To visualize the flow of odour motion, we calculated the time
average of (vq,,) at alllocations in the plume. We compared this to the
time average of the wind vector conditional on the presence of odour,
{(Vyindiodour)- We used the latter rather than the unconditional wind veloc-
ity (v,nq) because, for anideal point source of odour within homoge-
neous turbulence, the latter does not encode the lateral location of
the source. Throughout the plume, (v,4,,) flowed strongly outwards
from the plume centre, whereas (Vying0d0ury Was directed essentially
downwind (Fig. 6¢).

This analysis suggests that, in naturalistic plumes emanating froma
pointsource, the direction of odour motionisastrongindicator of the
direction towards the centreline of the plume. This directional cue is
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notreflected in the local wind, nor in the local gradients, although we
did find that odour gradients have a similar crosswind structure closer
to the source, where the plume is less intermittent (Extended Data
Fig.7a). Of course, to be useful for navigation, odour motion must be
resolvable onrealistic timescales. By calculating the running average
ofthe odour direction at a fixed location, we found that in most of the
plume extent, only several hundred milliseconds were necessary to
resolve the lateral components (Extended Data Fig. 7b,c). As odour
burstsoccurred ataround1-5 Hzin this particular plume'®, anavigator
could estimate the direction of odour motion orthogonal to the mean
flow after only a few odour hits.

To investigate how Drosophila use odour motion during naviga-
tion, we designed a fictive odour plume of which the boundaries
were subtended by acone—asif emanating from asource—and within
which thin bars moved laterally outward from or inward towards the
centreline, while laminar wind flowed along the cone axis (Fig. 6d).
The bars moved at 15 mm s and were spaced by 5,10 or 15 mm (data
arepooled), giving fictive odour hits with short durations and frequen-
ciesofaround1-3 Hz, similar to the complex plume considered above
(Fig. 1a). We reasoned that inward-moving bars, which are reversed
from their natural flow, would degrade the ability of the fly to move
towards the plume axis, and therefore to localize the odour source,
thatis, the tip of the cone. We found that, for both bar directions, flies
stayed within the conical fictive odour region, but were significantly
more likely to reach the upwind source region when the bars moved
outwards (56% versus 28% for outward versus inward bars, respectively;
P<0.01,one-tailed t-test) (Fig. 6e,f). Moreover, performance gains were
attributed toincreased lateral navigation towards the plume centreline
(Fig. 6f and Extended Data Fig. 8a), as predicted. Notably, the fictive
odour signalsin these two paradigms at each location do not differ by
frequency, duration or spatial gradients—differencesin performance
(Fig. 6f) can be explained by odour-direction sensing alone.

Next, we tried the more realistic case of projecting a video of a
recorded complex smoke plume, playing the video not only normally,
butalsoreversedintime (Fig. 6g). Asin the previous conical bar stimu-
lus, reverse playback reverses odour motion without perturbing the
steady-state distribution of spatial gradients or the frequency or dura-
tion of odour hits measured at each point. Notably, the likelihood to
reach the odour source significantly degraded when the plume was
playedinreverse (32% versus 14%; P < 0.01, one-tailed ¢-test) (Fig. 6h),
again driven by enhanced navigation towards the plume axis (Fig. 6i
and Extended Data Fig. 8b). Together, these results indicate that the
odour motion provides adirectional cue complementary to odour gra-
dientsand wind motion, and strongly enhances navigation in complex
odour plumes, even when other aspects of the odour signal remain
unchanged.

Finally, with an eye towards practical applications, we used in silico
experiments to investigate the value of odour motion sensing for
olfactoryrobots. Virtual navigators were modelled as described in our
previous study': low-curvature walking bouts were interrupted with
stochastic left/right turns at a fixed Poisson rate, and turns were more
likely to be directed upwind as the frequency of odour hits increased
(Fig. 6j). These virtual agents are not direction-sensing (DS- agents);
meanwhile, direction sensing (DS+) agents obeyed the same strat-
egy, but with turns biased against the vector sum of the odour motion
direction and the wind direction (Fig. 6j). We simulated both DS+ and
DS-agents in the imaged complex plume (Fig. 6g), finding that DS+
agents were better localized within the plume extent than DS—agents
(Fig. 6k) and significantly more likely to find the odour source (n =500
agents; 34% versus 25%, P<1x 107, one-tailed t-test) (Fig. 61). As above,
performance was aided by increased drift towards the plume centreline
(Fig. 6l). These results were not aby-product of the model’s behavioural
repertoire—we found similar performance gains for direction-sensing
virtual robots navigating agrid withamuch simpler strategy (Extended
DataFig. 9). Together, these in silico experiments show that odour
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motion sensing can enhance the robustness of complex plume navi-
gation in both simplistic and bioinspired navigational algorithms.
Thesimplicity of the direction-sensing mechanism, together withcom-
putational methods to detect fast odour transients using metal oxide
sensors*?%, suggests that odour motion detection could be incorpo-
rated into olfactory robotsinavariety of existing schemes**° (see the
Methods and Extended DataFig.10 for adiscussion of the relationship
between odour motiondetection, the distance between the two sensors
and the statistics of the turbulent air flow).

Discussion

Olfactory navigation relies onintegrating various sensory signals that
contain information about the odour source. Which features exist,
and how muchinformationthey carry, canvary considerably between
plumesstructures**, Gradient sensing can provide reliable directional
information when navigating laboratory-controlled plumes, such as
static ribbons'™, or very close to the source of natural plumes before
odour patches have dispersed (Extended DataFig. 7). However, further
away from the source, turbulent air motion stretches and fragments
odour patches as they are carried downstream, producing odour sig-
nals that are patchy and intermittent', and that span many spatial
scales—the inertial convective range—from macroscopic eddies to
molecular diffusion*. In these regions, concentration gradients tend
toorientrandomly, and therefore have limited value. Evenin turbulent
boundary layers, where concentrations are more regular?, gradients
could aid navigation, but would require amplifying the gradient to an
extreme degree not consistent with data®.

By contrast, our research suggests an entirely new role for bilateral
sensing: measuring the direction of odour motion by comparing
concentrations in both space and time. This information stream is
especially relevant within the inertial convective range of turbulent
plumes. Parallel to the plume axis, odour motion is redundant with
the average wind direction. But perpendicular to the plume axis,
odour packets spread through random continuous motions, with
an effective diffusivity much larger than molecular diffusion’®. What
resultsisastrong flux of odour packets outward from the plume cen-
treline, providing a directional cue orthogonal and, therefore, com-
plementary to the mean wind. We corroborated this with a theoretical
analysis of a simple turbulent plume model (Methods), finding that
the outward flow of odour motion that we observed in simulations
(Fig. 6¢) exists in turbulent plumes more generally (Extended Data
Fig.10a,b). Moreover, these lateral odour velocity components can
bedetected by computing temporal correlations between two nearby
points (Extended Data Fig. 10c). Thus, odour motion sensing is not
justrelevant to walking fruit flies—this directional cue could in prin-
ciple enhance natural plume navigation across the animal kingdom,
acrossdistinct olfactory anatomies and indistinct locomotive regimes
(Supplementary Text).

Our set-up enables us to test the predictions of the HRC model using
artificial correlation-type stimuliwhichwould be prohibitive to produce
with natural odours. In particular, we generated areverse-phiillusory
percept for negative correlations, a signature of correlation-based
algorithms observed in visual motion detection in flies**?® and other
species’®?*, including humans®. Although the HRC model replicates
several features of odour-direction sensing, itis anincomplete descrip-
tion of the odour motion sensing algorithm, neglecting asymmetries
between ON/OFF responses and higher-order correlations in odour
scenes (Supplementary Discussion).

Wheredirection selectivity occursinthe olfactory circuitis unknown.
Most ORNSs project to both antennal lobes, butipsilateral and contralat-
eral signals differ in magnitude and timing", which could be amplified
further downstream to enact bilateral computations. One potential
region of interest is the third-order olfactory centre, the lateral horn,
which mediates innate odour responses and projects bilaterally?*,



The lack of smooth concentration fields in naturalistic plumes has
inspired a number of navigation studies focusing on how animals use
the temporalfeatures of the odour signal, such as the frequency or dura-
tion of encounters with odourized air packets. This reliance on timing
isenabled by the substantial degree of temporal precision in olfactory
circuits®*¢3°, Here we show that odour timing can be combined with
bilateral sensing to measure odour motion, adirectional cue that is dis-
tinct from the only other reliable directional cue in turbulent plumes—
the wind. Our findings reveal a valuable role for bilateral sensingin the
complex, dynamic odour environments that animals navigate in the wild.

Online content

Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-022-05423-4.

1. Murlis, J., Willis, M. A. & Cardé, R. T. Spatial and temporal structures of pheromone
plumes in fields and forests. Physiol. Entomol. 25, 211-222 (2000).

2. Riffell, J. A., Abrell, L. & Hildebrand, J. G. Physical processes and real-time chemical
measurement of the insect olfactory environment. J. Chem. Ecol. 34, 837-853 (2008).

3. Celani, A., Villermaux, E. & Vergassola, M. Odor landscapes in turbulent environments.
Phys. Rev. X 4, 041015 (2014).

4.  Connor, E. G., McHugh, M. K. & Crimaldi, J. P. Quantification of airborne odor plumes
using planar laser-induced fluorescence. Exp. Fluids 59, 137 (2018).

5. Jung, S.H., Hueston, C. & Bhandawat, V. Odor-identity dependent motor programs
underlie behavioral responses to odors. eLife 4, €11092 (2015).

6. Alvarez-Salvado, E. et al. Elementary sensory-motor transformations underlying olfactory
navigation in walking fruit-flies. eLife 7, €37815 (2018).

7. Kanzaki, R., Sugi, N. & Shibuya, T. Self-generated zigzag turning of Bombyx mori males
during pheromone-mediated upwind walking. Zool. Sci. 9, 515-527 (1992).

8.  Mafra-Neto, A. & Cardé, R. T. Fine-scale structure of pheromone plumes modulates
upwind orientation of flying moths. Nature 369, 142-144 (1994).

9. van Breugel, F. & Dickinson, M. H. Plume-tracking behavior of flying Drosophila emerges
from a set of distinct sensory-motor reflexes. Curr. Biol. 24, 274-286 (2014).

10. Demir, M., Kadakia, N., Anderson, H. D., Clark, D. A. & Emonet, T. Walking Drosophila
navigate complex plumes using stochastic decisions biased by the timing of odor
encounters. eLife 9, €57524 (2020).

1. Vickers, N. J. & Baker, T. C. Reiterative responses to single strands of odor promote
sustained upwind flight and odor source location by moths. Proc. Natl Acad. Sci. USA 91,
5756-5760 (1994).

12.  Budick, S. A. & Dickinson, M. H. Free-flight responses of Drosophila melanogaster to
attractive odors. J. Exp. Biol. 209, 3001-3017 (20086).

13.  Suver, M. P. et al. Encoding of wind direction by central neurons in Drosophila. Neuron
102, 828-842 (2019).

14. Flugge, C. Geruchliche raumorientierung von Drosophila melanogaster. J. Comp. Physiol.
A 20, 463-500 (1934).

15.  Kennedy, J. S. & Marsh, D. Pheromone-regulated anemotaxis in flying moths. Science 184,
999-1001 (1974).

16. Hassenstein, B. & Reichardt, W. Z. Systemtheoretische analyse der zeit-, reihenfolgen-und
vorzeichenauswertung bei der bewegungsperzeption des riisselkafers chlorophanus.

Z. Naturforsch. 11, 513-524 (1956).

17.  Gaudry, Q., Hong, E. J., Kain, J., de Bivort, B. L. & Wilson, R. I. Asymmetric neurotransmitter
release enables rapid odour lateralization in Drosophila. Nature 493, 424-428 (2013).

18. Duistermars, B. J., Chow, D. M. & Frye, M. A. Flies require bilateral sensory input to track
odor gradients in flight. Curr. Biol. 19, 1301-1307 (2009).

19. Taylor, G. I. Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196-212
(1922).

20. Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat.
Methods 11, 338-346 (2014).

21.  Bell, J. S. & Wilson, R. I. Behavior reveals selective summation and max pooling among
olfactory processing channels. Neuron 91, 425-438 (2016).

22. DeAngelis, B. D., Zavatone-Veth, J. A., Gonzalez-Suarez, A. D. & Clark, D. A. Spatiotemporally
precise optogenetic activation of sensory neurons in freely walking Drosophila. eLife 9,
54183 (2020).

23. Semmelhack, J. L. & Wang, J. W. Select Drosophila glomeruli mediate innate olfactory
attraction and aversion. Nature 459, 218-223 (2009).

24. Wu, Y., Chen, K., Ye, Y., Zhang, T. & Zhou, W. Humans navigate with stereo olfaction. Proc.
Natl Acad. Sci. USA 117,16065-16071 (2020).

25. Bhandawat, V., Maimon, G., Dickinson, M. H. & Wilson, R. |. Olfactory modulation of flight
in Drosophila is sensitive, selective and rapid. J. Exp. Biol. 213, 3625-3635 (2010).

26. Salazar-Gatzimas, E. et al. Direct measurement of correlation responses in Drosophila
elementary motion detectors reveals fast timescale tuning. Neuron 92, 227-239 (2016).

27. Bours, R. J., Kroes, M. C. & Lankheet, M. J. Sensitivity for reverse-phi motion. Vision Res.
49,1-9 (2009).

28. Tuthill, J. C., Chiappe, M. E. & Reiser, M. B. Neural correlates of illusory motion perception
in Drosophila. Proc. Natl Acad. Sci. USA 108, 9685-9690 (2011).

29. Orger, M. B., Smear, M. C., Anstis, S. M. & Baier, H. Perception of Fourier and non-Fourier
motion by larval zebrafish. Nat. Neurosci. 3, 1128-1133 (2000).

30. Livingstone, M. S., Pack, C. C. & Born, R. T. Two-dimensional substructure of MT receptive
fields. Neuron 30, 781-793 (2001).

31.  Anstis, S. M. & Rogers, B. J. Illusory reversal of visual depth and movement during
changes of contrast. Vision Res. 15, 957-961 (1975).

32. Hu, Q. &Victor, J. D. A set of high-order spatiotemporal stimuli that elicit motion and
reverse-phi percepts. J. Vis. 10, 9 (2010).

33. Clark, D. A. et al. Flies and humans share a motion estimation strategy that exploits
natural scene statistics. Nat. Neurosci. 17, 296-303 (2014).

34. Jeanne, J. M. & Wilson, R. I. Convergence, divergence, and reconvergence in a
feedforward network improves neural speed and accuracy. Neuron 88, 1014-1026 (2015).

35. Gorur-Shandilya, S., Demir, M., Long, J., Clark, D. A. & Emonet, T. Olfactory receptor
neurons use gain control and complementary kinetics to encode intermittent odorant
stimuli. eLife 6, €27670 (2017).

36. Bhandawat, V., Olsen, S.R., Gouwens, N. W., Schlief, M. L. & Wilson, R. |. Sensory
processing in the Drosophila antennal lobe increases reliability and separability of
ensemble odor representations. Nat. Neurosci. 10, 1474-1482 (2007).

37.  Drix, D. & Schmuker, M. Resolving fast gas transients with metal oxide sensors. ACS
Sensors 6, 688-692 (2021).

38. Martinez, D., Burgues, J. & Marco, S. Fast Measurements with MOX Sensors: a least-
squares approach to blind deconvolution. Sensors 19, 4029 (2019).

39. Kowadlo, G. & Russell, R. A. Robot odor localization: a taxonomy and survey. Int. J. Robot.
Res. 27, 869-894 (2008).

40. Burgues, J., Hernandez, V., Lilienthal, A. J. & Marco, S. Smelling nano aerial vehicle for gas
source localization and mapping. Sensors 19, 478 (2019).

41. Boie, S. D. et al. Information-theoretic analysis of realistic odor plumes: What cues are
useful for determining location? PLoS Comput. Biol. 14, 1006275 (2018).

42. Jayaram, V., Kadakia, N. & Emonet, T. Sensing complementary temporal features of odor
signals enhances navigation of diverse turbulent plumes. eLife 11, €72415 (2022).

43. Reddy, G., Murthy, V. N. & Vergassola, M. Olfactory sensing and navigation in turbulent
environments. Annu. Rev. Conden. Matter Phys. 13, 191-213 (2022).

44. Sreenivasan, K. R. Turbulent mixing: a perspective. Proc. Natl Acad. Sci. USA 116,
18175-18183 (2019).

45. Jefferis, G. S. et al. Comprehensive maps of Drosophila higher olfactory centers: spatially
segregated fruit and pheromone representation. Cell 128, 1187-1203 (2007).

46. Ackels, T. et al. Fast odour dynamics are encoded in the olfactory system and guide
behaviour. Nature 593, 558-563 (2021).

47.  Martelli, C., Carlson, J. R. & Emonet, T. Intensity invariant dynamics and odor-specific
latencies in olfactory receptor neuron response. J. Neurosci. 33, 6285-6297 (2013).

48. Shusterman, R., Smear, M. C., Koulakov, A. A. & Rinberg, D. Precise olfactory responses
tile the sniff cycle. Nat. Neurosci. 14, 1039-1044 (2011).

49. Park, I. J. et al. Neurally encoding time for olfactory navigation. PLoS Comput. Biol. 12,
1004682 (2016).

50. Nagel, K. I., Hong, E. J. & Wilson, R. I. Synaptic and circuit mechanisms promoting
broadband transmission of olfactory stimulus dynamics. Nat. Neurosci. 18, 56-65 (2015).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this
article under a publishing agreement with the author(s) or other rightsholder(s); author self-
archiving of the accepted manuscript version of this article is solely governed by the terms of

such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 2022

Nature | Vol 611 | 24 November 2022 | 761


https://doi.org/10.1038/s41586-022-05423-4

Article

Methods

Fly strains and handling

Flies were reared at 25 °C and 50% humidity under a12 h-12 h light-
dark cycleinplastic vials containing 10 mlstandard glucose-cornmeal
medium (thatis, 81.8% water, 0.6% agar, 5.3% cornmeal, 3.8% yeast, 7.6%
glucose, 0.5% propionic acid, 0.1% methylparaben and 0.3% ethanol;
medium was supplied by Archon Scientific). All flies used in behavioural
experiments were female. Between 10 and 30 females were collected
for starvation and placed in empty vials containing water-soaked cot-
ton plugs at thebottom and top. All flies were 3-10 days old and 3 days
starved when the experiments were performed. Flies in optogenetic
experiments were fed 1 mM all trans-Retinal (ATR) (MilliporeSigma,
previously Sigma-Aldrich) dissolved inwater. ATR was fed to flies 1day
before recording, and all of the flies were housed in the dark from the
time of ATR feeding until the time of the recording.

All of the flies used throughout the study included a GMR-hid
transgene, which causes photoreceptors to die, making these flies
blind. Optogenetic activation was achieved by expressing Chrimson
(20X-UAS-CsChrimson) in Orco-expressing ORNs (Orco-GAL4) in almost
all of the experiments®. The one exception was the single-Or experi-
ments (Extended Data Fig. 3¢,d), in which Chrimson was expressed
only in neurons expressing the olfactory receptor Or42b.

The genotypes used were as follows: (1) w;gmr-hid;+ (gift from M.
Murthy); (2) w;+;,20XUAS-Chrimson (Bloomington, 55136); (3) w;+;
Orco-Gal4 (gift from ). Carlson); (4) w;+;0r42b-Gal4 (gift from ). Carl-
son); (5) w;gmr-hid/+;20XUAS-Chrimson/Orco-Gal4 (Figs. 2-6, con-
structed from1,2and3); (6) w,gmr-hid/+;20XUAS-Chrimson/Or42b-Gal4
(Extended DataFig. 3c,d; constructed from1,2 and 4).

Behavioural assay and optogenetic stimulation

The fly walking arenais identical to the one used ina previous study™.
All of the experiments were performed in a behavioural room held at
21-23 °C and 50% humidity. The walking arena is 270 x 170 x 10 mm
(Fig. 2a) and consists of top and bottom glass surfaces and acrylic
sidewalls. The upwind end is an array of plastic coffee straws, which
laminarize the airflow (when wind is turned on); the downwindendis a
plastic mesh. For experiments with wind, dry air was passed through the
straws at a flow rate giving alaminar flow at 150 mm s™ withinthe arena.
The only exception was the forward and reverse playback complex
virtual plumes (Fig. 6g), for which the laminar flow speed was reduced
to 100 mm s™ to match the flow speed used to generate the recorded
smoke plume (see the ‘Recorded smoke plume’ section below). Flies
wereintroduced by aspirating through a hole near the downwind plastic
mesh. Flies were illuminated using 850 nm infrared LED strips (Wave-
form Lighting) placed parallel to the acrylic sidewalls.

Experiments wererecorded at 60 HzwithaFLIR Grasshopper USB 3.0
camerawithaninfrared-passfilter. Optogenetic stimuliwere delivered
using a LightCrafter 4500 digital light projector (Texas Instruments)
mounted 310 mm above the arena, illuminating an area larger thanin
the original method?. Only the red LED (central wavelength 627 nm)
was used throughout this study. We used the native resolution of the
projector (912 x 1,140 pixels), which illuminated the entire walking
arenawith pixels of size 292 pum (along the wind axis) x 146 um (perpen-
dicular to the wind axis). The majority of our experiments used a 60 Hz
stimulus update rate; the exceptions were the faster 20-30 mm s™
bar stimuli (Extended Data Figs. 3e and 4e,f), the glider experiments
(Extended Data Figs. 5e,f) and the complex virtual plume playback
(Fig. 6g), for which we used a 180 Hz update of projected images.
The average intensity of the red light within the walking arena was
4.25 uW mm™., Although all data presented in this Article used blind
flies, initial exploratory experiments used flies that were not blind. To
remove visual effects from the stimulating red light, we shone green
light using an LED (Luxeon Rebel LED 530 nm) throughout the arena
toflood the visual response. Although this was not necessary for blind

flies, weretained the green light throughout the experiments presented
here to compare to past data.

The projector and camera have distinct coordinate axes—cameraand
projector pixels are different sizes and their native coordinate systems
arenotthesame handedness. Toinfer the virtual encountered stimuli
for navigating flies, one must transform between a 2D camera coordi-
nate X.,, and a 2D stimulus coordinate x;,,. We assume that the two are
related by acombination of linear transformations and translations:

X cam=AXgiim + B.

To estimate the matrix A and vector B, 3 mm diameter dots were
projected at random locations X, in the arena while recording with
the camera; camera coordinates X, were determined in the imaged
frame using the SimpleBlobDetector functionin OpenCV. The six ele-
ments of A and Bwere then determined by minimizing the least squares
difference:

C= Z (xl;:am_Axistim_ B)Z
i

We verified manually that this procedure generated accurate trans-
formations. We generated all stimuli using custom-written scripts in
Python (v.3.7.4), and delivered these stimuli to the projector using the
Python package PyschoPy (v.2020.2.4.post1).

Recorded smoke plume

The complex odour plume presented virtually with light (Fig. 6g) was
derived from an imaged smoke plume in the same arena. The smoke
plume was obtained using an identical protocol as in our previous
work, but with slightly modified airflow conditions. There, the laminar
flow speed was 150 mm s™, whereas here it was reduced to 100 mms™.
Thespeed of the two lateral perturbing upwind airjets was also reduced
from ~1,500 mm s~ to ~1,000 mm s’. The airjets were stochastically
switched at a Poisson rate of 10 s as in the original study. To convert
the smoke plume to the virtual optogenetic plume, the images in the
video were scaled with an affine transformation and presented with
8-bitresolution.

Electrophysiology

Single sensillumrecordings from Drosophila antennae were performed
as described previously**%2, The recording electrode was inserted
into a sensillum on the antenna of an immobilized fly and a reference
electrode was placed inthe eye. Electrical signals were amplified using
an Ext-O2F extracellular amplifier (NPl electronic instruments). The
ab2sensillumwasidentified by (1) its size and location on the antenna
and (2) test pulses of ethyl 3-hyrdoxybutyrate, to which the Bneuronis
very sensitive. Spikes from the A and B neurons in this sensillum were
identified and sorted as described previously®, using a spike-sorting
software package written in MATLAB (MathWorks) (https://github.
com/emonetlab/spikesort). For responsesto real odour stimuli (Fig. 5),
odourswere delivered asin our previous work®*3, Inbrief, an odourized
streamwas fed into amain airstream and delivered through a glass tube
positioned within 10 mm of the fly antenna, while mass flow controllers
(Aalborginstruments and Controls, and Alicat Scientific) were used to
regulate airflows.

Experimental protocol

Experiments were carried out between 09:00 and 12:00. This cor-
responds to between 0 and 3 h after lights on in our incubators, in
whichlights were on from 09:00 to 21:00. Between 10 and 30 flies were
aspirated into the arena and allowed to acclimatize for 2 min before
the experiments began. Before all of the experiments, optogenetic
activation was verified by presenting static fictive odour ribbons (as
in Extended Data Fig. 2c) with laminar wind for 120 s, and ensuring


https://github.com/emonetlab/spikesort
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that the flies followed the ribbons upwind as a positive control.
Inour assay, flies could walk on the top glass surface or bottom glass
surface, and as the spacing between the surfaces was appreciable
(1cm), flies could flip to the top surface during a trial without climb-
ing the sidewalls. In our videos, we could not reliably distinguish
which surface the fly walked on, so we pooled flies for all analyses
throughout. We verified that optogenetic activation of ORNs for flies
on either surface was similar, by manually annotating 300 tracks
of flies navigating fictive odour ribbons, and demonstrating that
bothsimilarly followed fictive odour ribbons upwind (Extended Data
Fig.2d). Unless otherwise noted, each experiment ran for 60-120s,
with 60 sin between the experiments.

No statistical tests were used to determine sample size. More than
50 flieswere used for each experimental condition. As flies were reared
invials containing10-15individuals, this gave 5-10 vials per experimen-
tal condition, sufficient to mitigate outlier effects from any single vial.
All of the experiments were replicated more than three times on the
same flies, and the same conditions were replicated at least ten times
with different flies over several days. Investigators were not blinded
to fly genotype. Throughout, experiments were interleaved such that
the directions of the moving stimuli were randomized. No more than
30 videos were recorded on a single set of flies.

Quantification of fly behaviour and encountered fictive odour
stimulus

Extraction of fly position, speed and orientation from videos. All
scriptswere writtenin Python (v.3.7.4). Fly centroids were determined
using SimpleBlobDetector in OpenCV, assuming a minimum area of
5 mm?Z Given the centroids, fly identities were determined using custom
tracking scripts. Inbrief, centroidsin subsequent frames were matched
tothenearest centroid, andif the centroids could not be matched, they
were marked as disappeared. Flies marked as disappeared for more
than 30 frames (0.5 s) were then deregistered. Subsequent detected
centroids were then marked as new fly tracks. Fly orientations 6 were
determined by first using the canny function in the Python module
scikit-image to determine the points defining the fly edges around
the centroid, then fitting these to an ellipse using custom-written
Python scripts. Fly orientations are defined on the interval [0, 360°],
but ellipse-fitting does not distinguish head (0°) from rear (180°).
We properly resolved this using the fly velocity (below).

The above data defines the fly positions (x,y) and orientations 6.
To remove measurement noise, we filtered each of these quantities
with aSavitsky-Golay filter using afourth-order polynomial and win-
dow size of 21 points (to avoid branch cuts in 8, it was first converted
to an un-modded quantity). Velocities x and y and angular velocity 8
were defined by taking the analytical derivative of the fitted Savitsty-
Golay polynomials for x, y, and 6. To resolve the two-fold symmetry
in the fitted ellipses, and therefore distinguish the fly head from the
rear, we used the fly velocity. For fly speeds greater thana given speed
threshold, we matched the orientation to the fly velocity vector as
flies predominantly walked forwards. For other times, we matched
the fly heading at the beginning and end of bouts when the fly speed
was below the speed threshold. The result was an estimate that may
still have errors, which occur as unnatural jumps in orientation.
We repeated this process for various speed thresholds from 1 to
4mms™, and chose the orientation trace with the least number of
jumps. We verified manually with several tracks that this procedure
was highly reliable.

We noticed that, during the experiments, particularly those with long
fictive odour encounters suchasthe wide barsin Figs.2and 3, there was
aslow, gradual bias towards one side of the arena (along the shorter axis
ofthearena). This occurred only for flies with optogenetic constructs
that were fed ATR, and we reasoned that it might be due to ashadowing
effect of the projector light from the fly body onto the antenna, or from
oneantennaontothe other, asthe projector lensis nearer to the bottom

of its projected image. This shadowing effect appears to create afictive
odour gradient across the arena. To account for this bias, we repeated
all of the experiments that had an asymmetry in the perpendicular
direction, such asbars perpendicular to the wind (Fig. 3d (third row)),
inboth directions. We then averaged the turning biases from these two
directions, after flipping the orientations appropriately. This would
retain the effects due to direction sensing but remove the bias, under
the assumption that this bias was an additive effect.

Estimation of encountered fictive odour stimulus in antennae. Given
these smoothed and corrected x, y, @ measurements, we then estimated
the encountered fictive odour signal in the antennaregion by defining
avirtualantennaatalocation1.5 mmfromits centroid along the ellipse
major axis toward the fly head. To generate stable estimates—that is, not
relying onasingle pixel value—we use the stimulus value averaged over
abox of 0.25 mm?around thislocation. Stimulus values in the antennal
region are not measured by imaging, as the images are infrared-pass
filtered. Rather, they are obtained from knowledge of the stimulus pat-
tern and the stimulus-to-camera coordinate transformation defined
above. In PsychoPy, stimulus values are defined as 8-bitintegers, from
010255, butin practice we deliver stimuli only as maximum intensity
(255) or 0. Accordingly, we treat the signal in the virtual antenna as
binary, equal to 1 when the average stimulus value in the 0.25 mm?
regionisabove 200, and O otherwise.

Quantification of behaviour for moving bar stimuli. For all wide bar
stimuli, only flies walking between 2 and 20 mm s™ at the time of the
edge hit wereincluded. For fast-moving bars (Fig. 2b-d and Extended
DataFig.3), only tracks lasting longer than 10 s and of which the mean
speed was between 3and 10 mm s were included. For the bar stimuli
in Figs. 2 and 3, we identified ON and OFF edge hits as the times that
the antennal signal switched fromOtolor1to O, respectively, where
this binarization was calculated as described above. To calculate
turning biases, we followed previous work'® and considered saccadic
turning events, identified as points at which the absolute value of the
angular velocity exceeded 100° s, and ignored small jitters. Turn
biasesatagiventimet;(for example, at an ON or OFF edge hit (Figs. 2
and 3)) were defined as the sign of the change in fly orientation from
t;+150 msto¢;+ 300 ms, provided that the absolute value of angular
velocity in that window exceeded 100° s at some point in that window.
We used this 150 ms latency after ¢; to account for uncertainties in ¢
due to uncertainties in the exact position of the antenna, which we
estimated as being upper bounded by 2 mm. For all plots, to remove
tracks in which flies may have been turning before the hit, we ignored
points for which the absolute angular velocity exceeded 100° s™ be-
tween 300 msand 150 ms before the hit. The dependence of the results
onthis windowis shownin Extended Data Fig. 3g; although the effects
arelargestinthisregime, they are not strongly sensitive to the choice
of window following ¢,.

Quantification of behaviour for correlated noise and glider stimuli.
Turn biases for correlated noise and glider stimuli (Fig. 4) were calcu-
lated similarly to those for moving bars. Correlated noise and glider
stimuli (Fig. 4) were presented in blocks of 4 s of stimulus interleaved
with 4 s of no stimulus; thus, the stimulus turned on at times 0, 8,16 s
and so on. For correlated noise stimuli, we considered orientation
changes from¢;to ¢;+ 300 ms, where t; was time of the stimulus initia-
tion (thatis, 0's, 8 s,16 s and so on); the 150 ms latency used for bar
stimuli was not needed in this case as the signal was independent of
fly behaviour, so the hit time was known to the precision of the inverse
framerate (6 ms). For glider stimuli, we considered orientation changes
from¢;+200 msto¢;+ 500 msstimulias thisgave the largest response.
Wealso only included flies with speeds <12 mm s for glider responses,
aslong-range correlations caninterfere with theintended correlation
ifthe fly walking speed is near the glider speed.
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Plume simulations
Direct numerical simulations were generated using the CFX hydrody-
namic simulation software package of Ansys 2019 (Ansys). Parameters
were chosen to emulate the flow and intermittent odour structure
of the plume analysed in Fig. 1 (ref. ). The mean flow speed was
150 mm s, with an air viscosity of 1.5 x 10° m?s™.. An odourant with
molecular diffusivity D, = 7.3 x 10° m* s was injected mid-stream (ver-
tically and horizontally). The odourant was modelled as a conservative,
neutrally buoyant tracer. The dimensions of the computational model
domain were 30 x 18 x 1 cm, approximately matching those of the
walking arena'®. The computational air inlet boundary was modelled
asauniformvelocity condition, representing anidealized collimated
flow. The outlet boundary condition was modelled as azero-pressure
gradient opening allowing for bidirectional flow across the boundary.
Walls were modelled using hydraulically smooth, no-slip boundary
conditions. Toreproduce the stochastic airjets creating the complex
flow and plume, alternating jet pulses of air were applied from two
orificeson opposite sides of the flume. The time series of pulses were
identical to the experiments’. The model domain was broken up into
4.7 x10°tetrahedral elements where velocity and concentration were
computed, with the largest element’slength at 5 mmwith aninflation
layer along the domain boundaries and a refined mesh around the
inlet orifices.

The flow was simulated at a2.5 mstime step using a k — eeddy viscos-
ity model®*, which solves the Reynold-averaged Navier Stokes equa-
tions, where the momentum equation is defined as:

Py, o __op, o (oy 9y
o ax, PUU = "oy x| Per| ax, o

and the continuity equation as:

Bp+i

o "oy, (pU) =0,
where pis the fluid density, p is pressure and y is the effective fluid
viscosity. The turbulent eddy viscosity is treated analogously to vis-
cosity in laminar flow such that u. = p + p where u, is the turbulent
viscosity and u the fluid viscosity. The k — e model assumes that the local
turbulent viscosity is related to the local turbulent kinetic energy (k)
and the eddy dissipation rate (¢) as follows:
PE:
H “P?-

The advection-diffusion equation for conservative tracers was used
to model the transport of the odorant:

0,C,+u-VC=(D,+€)V3C,,

where C, is the tracer concentration, u is the velocity field, D,, is the
molecular diffusivity and eis the local eddy diffusivity solved from the
turbulence model. For all further analysis, we used the concentration
and velocity in a plane 1 mm above the bottom of the domain, in the
approximate z-plane of the fly antennae.

Mathematical modelling and data analysis

Inter-antennal latency of edge hit AT. The inter-antennal latency
AT as afunction of fly walking speed |v;,| and bar speed |vy,| can be
calculated with basic geometric considerations. Here we assume that
the fly speed along the bar direction is sufficiently slow such that the
bar passes over the fly. Consider a coordinate system in the frame of
the moving bar, where the bar direction is +y (that is, the bar’s edge is
inx). The fly velocity in this frame is

V, = [—|vﬂy|sin¢, vﬂy‘cosdi - ‘vbar 1,

where ¢ is the angle of rotation from vy,, to vy, in the experimenter
frame. Theinter-antennal latency AT'is then the projection of the anten-
nal spacing L along v,,, divided by the projection of v, along v,,,. The
formerisLsing and the latter is the y-component of v,; the sign of Lsing
is treated as meaningful, so that a positive/negative value means the
left/right antenna s hit first. Thus:

L sing

AT=—77F7—"7"—",

‘Vbar| - |Vﬂy‘COS¢
where the sign is given by the numerator since the denominator is
always positive for bars passing over the fly.

This expression ignores the fly’s angular velocity while walking.
Assuming that the fly is walking forward while also turning at arate w,
then the total accumulation of orientation over the AT intervaliswAT,
which for typical values of the maximum rotation rate during normal
turns (w = 300° s™") and typical inter-antennal latencies without turning
AT =15ms) is ~5°. This would be if the fly were turning at a maximum
angular velocity. More typically, rotationrates are approximately 20°s™
(ref.’®), giving an accumulated angle during of less than 1°. If we incor-
porate this error asan uncertainty on ¢, 6¢, then AT acquires an error of

L cosg ‘Vﬂy‘LSinij

‘vbar| - |vﬂy‘cos¢ (‘vbar| - |vﬂy‘cos<p)2

SAT=56¢

With the values assumed throughout, |§AT] <1 ms, so w is safely
ignored to the resolution of our experiments.

HRC output versus AT for travelling edges. Our prediction for the
turning bias as a function of the latency AT at which an edge of odour
hits the right antenna after hitting the left, is based on the output r(¢)
of amirror-symmetrized HRC'. To calculate r(t), we model the correla-
tor architecture as depicted in Fig. 4a. Specifically, the time-varying
signalsfromthe 2 sensors ares, (t) and sy(¢). Inone arm ofthe computa-
tion, s (¢) islinearly filtered with an exponential %e *, whilesy(f) is trans-
mitted unchanged; these are then multiplied. For atravelling ON edge
moving lefttoright, we have s, (t) = H(t) and sg(t) = H(¢ = AT), where H(-)
isthe Heaviside function. Then, the product of the filtered values is:

18 v
sLR(t)=H(t—AT);~|"me CH () de!
t 4
Sir(0) =H(t—AT)%IO e T de

sia(6) = H(t- AT)(I— e’%)

Theother armis similar, except that sy(¢) is filtered and s, (¢) is trans-
mitted unchanged. Then the product of the filtered inputs is:

10 v ,
SRL=H(t);J‘_Ne “H (¢ - AT)de

t-AT

=H(-AT)(1-e 7).

The correlator output is therefore:

F(0) =51 (0) = S (O) =H (e~ AT) [e'“? ’ —e'f/’].



Assuming that flies sense odour motion using this computation, the
output of the correlator, r(t), must be converted to a behaviour; here,
we model this behaviour as the turning bias being proportional to

[rode

T, T. -AT
Turning bias “J‘—r r(t)dt:IAT (e_% - e"/r)dt

AT

Turning bias «I_m r(t)de= (1 -eT j

This second expressionis valid provided that behavioural timescales
T_and T,, over whichthe correlator responseisintegrated to produce
the turning response, are large compared toboth7and AT. Long after
theedgehit, ¢ > T_, thesignalsareboth s, = sz =1, givingan HRC output
of 0, as expected for the anti-symmetric architecture.

To estimate the filtering constant 7, we minimize:

2
CA1)= [Turning bias(AT) - A(l - e’¥ﬂ

overA,7.Theturningbiasis plotted inincrements of AT=4 ms, where
thevalueatagiven ATincludes values from 4 ms. Neighbouring points
therefore contain overlapping data; this has the effect of smoothing,
but not biasing, the turning bias versus AT curve.

Responses to rightward-moving OFF edges are analogous. The signal
switchesfrom1to O atthe OFF edge (setittot=0),sothesignalonthe
left sensoris s, (t) =1 - H(t) and for the right sensoris sy =1- H(t — AT).
Then, one arm of the HRC is:

100 _ev
sLR(t)=(1—H(t—AT));~[me T (1-H (¢))dt’
0 4
sr(®)=(1-H(t- AT))%J:N e’%dt', t>0

t
Sir()=e"7,0<t<AT

and s;z(¢) =0 for t> AT and s,z(t) =1for t < 0. The other arm output is
simply sy, =1fort<0andsg, =0fort>0,asthenon-delayed armdrops
to zero as soon as the edge passesit at ¢ = 0. Thus, the output is:

£ () =5, () - 5, (O) =€ TH(O)(1- H (e~ AT))

Integrating this quantity over time gives the same turning bias as
the ON edge.

Generation of correlated noise stimuli and C(Ax,At). Correlated
noise stimuli were generated as previously described?. We used op-
togenetic bars that were parallel to the short axis (y) of the arena (for
example, perpendicular to the wind direction, which runs along x).
Eachbar hasawidth of one x-pixel; thus, we refer to an x-pixel as a pixel,
as correlations are defined just in the x-direction. The stimulus value
(where-land1arefordarkandlightbars, respectively) of abar at pixel
locationxandtime tis givenby c(x,t) = sgn(n(x,t) + an(x + BAX,t + At)),
where each value of the random field n(x,t) is independently chosen
from a standard normal distribution. Ax is the pixel spacing; At is the
interframeinterval. The constant fgoverns the direction of the correla-
tions: +1for stimuli correlated in the +x direction (with-wind in the main
text) and -1for stimuli correlated in the -x direction (against-wind). The
constant a governs the polarity of the correlations; +1 or -1for positive
or negative correlations, respectively.

The spatiotemporal correlations in pixel intensity can be computed
in a straightforward manner, as previously described®. Assume that

a = =1;the other cases are analogous. The correlation between two
pixels separated by spacing x” and timing ¢’ is denoted by the correla-
tion function C(x’,t’) = (c(x,t)c(x + x',t + t’)).In general,

Cx’, t) = (sgn((n, + )5+ 1)),

where n;is one sample of . For most choices of t’,x’, all p;are distinct, so
the correlationreducesto 0 asthesumsareindependent.Forx’=t'=0,
the correlation reduces to the variance of c(x,t), which is 1. However,
fort’= Atandx’ = Ax, n,=n,.Then,

Clx’, t") = (sgn((ng + ) (1, + 1))

Clx, ©)y=<sgn(n,— n,)(n,—n,))

as the random variables are symmetric about O. The sign depends
only on the ordering of the i, which are 3 independent samples from
astandard normal distribution. There are 6 ways to uniquely order the
1, only two of which give a positive sign (n,>n,>n,and n,<n,<n,);
thus, the expected value is 1/3 (ref. %). An analogous property holds
for t’ =—-At,x’ =—Ax. Finally, the @ and 3 factors are incorporated ina
straightforward manner as scale factors, giving:

7 4 1
CX,t") =6y o0y 0+ ag(‘sx',ﬁAx&r',At +6y gax0p -a0)

where the § denotes the Kronecker delta function. Note that the
correlation can be calculated by averaging over all of spacetime,
orjustinspace for a fixed set of times, or just in time for a fixed set
of points. The latter is our interpretation for the HRC output from
fixed antennae, assuming the correlation directionis perpendicular
to the fly body.

Generation of glider stimuli. Here, the stimulus value of abar at pixel
locationxand time tis given by c(x,t) = B(x — ftAx/At), where B=2X -1
with X = Bernoulli(p = 0.5), Ax is the pixel spacing and At is the inter-
frameinterval. The correlationbetween two pixels separated by spacing
x’and timing t’is

;on BtAx , BtAx Bt'Ax
C(X,t)—<{B[X—Ath[X+X TR )}>

Then, C(x’,t’) =1when ’;f = %, thatis, the correlation matrix has a
diagonal or antidiagonal structure for §=1and = -1, respectively.
These stimuli are a class of glider stimuli with a two-point correlation
structure®**, Visually, these gliders are a frozen pattern of random

light and dark bars moving at constant speed in the Sx direction.

HRC output for correlated noise stimuli. Here we calculate the HRC
output for correlated noise stimuli, which has been computed before
for any pair of filters on the two arms of the HRC?***, Assume that the
antennae are held at approximately the spacing of the correlation shift
Ax (see the ‘Generation of correlated noise stimuli and C(Ax,At)’ sec-
tion), and that the correlation direction is +x (rightward over the fly
body), so S=1fromthelast section. Then, one arm of the HRC gives:

10 et
S.g (0) :sR(t);J‘_we s (e)de.

Averaging over time gives:

100 _ev
(Sir(0)) =<c(x, t);f_we T c(x—Ax, t’)dt’).

As S=1,then only the last termin the correlation equation applies:



Article

10° .
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I |
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(sa(0) = a;—re’“/r, At>0.

This equation holds for At being positive. The other arm is analo-
gous, for At< 0.

100 et
Se () :SL(t)?I_we s () dt’

—t

|

(Spu()) = (c(x, t);j_w e T clx+Ax, t)de’)
10 o

(Spu (1)) = <clx, t);‘f_m erc(x+Ax, t+t”)dt”)

1¢° 1 .
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1 At/T
—a— LA
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Thus, the full correlator output is

|At|
J: F(O)dt=(s.(0)) ~ (5 (6)) = sgn(At)%e‘Tr

Note that the correlator output response switches sign if the cor-
relation polarity aflips, this is the reverse phiresponse. Thereis aslight
artificiality in this expression, in that the responseis discontinuous at
At=0.We have assumed an exponential filter, which technically has
animmediate response time, violating causality. Moreover, the optimal
response occurs for aninter-frameinterval At thatis arbitrarily small.
As amore realistic filter, one can use ;e /7, which has zero response
at time zero and maximal response at't = 7. Then,

IN]
L r(6)de= (s r()) — (s (D) =a sgn(At)S%lAtle‘Tt

Thisfilteris continuous at At = 0, and the maximum correlator output
occurs when the filter timescale T matches the interframe interval At.
Ineither case, the salient pointis that the response is antisymmetricin
both the temporal shift A¢tand the correlation polarity a, as expected.

HRC response for prefiltered inputs. Here, we motivate how filtering
of inputs affects the response curve of the HRC, that is, HRC output as
afunction of stimuluslatency AT. We assume delta-correlated stimuli
(asinthe ‘Generation of correlated noise stimuliand C(Ax,At)  section),
for which the response functions are expressed in simple, interpret-
able forms. Thus, we set cross-correlation between the left antennal
stimulus and right antennal stimulus atc(¢’) = (s, (O)sg(t - t')) = 6(t' - AT)
,where the averageis taken over instantiations of the stimulus, whichis
equivalentin this case to taking an average over time. Defining f, and f,
asthedelayfilters for the two arms (for example, 1fast and 1slow filter)
andinthe absence of any other filters, the averaged HRC output from
1side of the detector is:

siw@T) = [ derf (@rsyte-o) [ derf, (@)sele- 1)

= [ dvde'f @), (6@ -7-aT)
~[de@nf,@-am

(£ os)an.

In other words, the response is the convolution of the two filters.
Further assuming that f,(¢) is fast (that is, a delta function response),
this reduces to the slow filter evaluated at the inter-antennal latency:

siR(AT) =£ (AT).

Note that this and related derivations (and interpretations) have
been given in previous studies®*.

Now, assuming that the signals are each prefiltered with a smooth-
ing filter f5(¢), we get:

Sir(AT)
- <J‘dt,dt,ff]j (t/_ t”)f:; (t”)SL(t_ t/)J‘dt”Idtm/ A (tw_ t””)f:; (tllll)

se(t=t"),

=J‘dl"dt”dt”'dt”” i (o t”)f;,’ (t”)f2 - t””)f3 6" -t'-AT)
= [ dederdef (- enf, @, @+ ATt (07)
=[[derder @ -enf, @+ AT- 07 (f © )@ - 17)
= [[derdem (£ @F)AT-17+)(f; ®F )~ 1™)

=(fo5)® (5 08 )@n.
Again, iff,is adelta function response, this gives:

SRAT)=f ® (f, ®f,)(AT).

The full HRC response is this quantity, anti-symmetrized:

HRC(AT) =5z (AT) — s, (-AT)
=f ® (f, ®f,) (AT) ~f ® (f, ®F,)(~AT).

Thus, the HRCresponse is essentially the slow filter convolved with
the autocorrelation of the prefilter. Indeed, the effect of the prefilter,
alinear operation, is to ‘smear out’the HRC response—althoughitacts
twice, once for the right sensor and once for the left sensor.

What effect does prefiltering have on the HRC response? As the
HRC is defined anti-symmetrically in AT, it is direction selective by
construction, so the prefiltering will not affect direction selectivity.
However, filtering can affect the signal-to-noise ratio and, therefore,
theregime for which direction selectivity is resolvable given the noise.
For concreteness, let us calculate the closed-form HRC response,
assuming that the slow filter and prefilter are each exponential filters
with timescales 7ypc and T, respectively, and assuming that there
is noise in the external signal. We are considering binary valued cor-
related signals, so we imbue the noise as arandom variable that adds
external variability to the timing of the signals. As we are looking at
antenna-to-antenna correlations, we add the noise to just one antenna
for simplicity.



Inthe prior derivation, noise changes theintegrated timet”’tot””’ + X,
where we take X = N(0,6t) as the noise. Then, the noisy HRC response is:

HRC(AT|ST) = S g (AT~ X) — S g (AT +X)
=f, ® (f, ®f,)(AT-X)
~£, ®(f, ®f,)(-AT-X)

Inother words, the noise simply manifestsasAT~> AT—Xinthe HRC
response. We thus just designate AT;= AT + Xas anormal random
variable with mean AT and standard deviation 6T.

Now, the autocorrelation of an exponential pre-filter is:

(F, ®F)(0) = ——te Tmaar H(D)

smear

and therefore the response of 1arm of the noisy HRC gives:

1 ATs, _ ATst 1 AT ATt
(AT = — | <= "

THRCT smear
H(A T&t)' THre * Tsmear

1 _
! 1 (T, )2 (AT&)/THRCH(AT&) THRC ™ Tsmearr

Sr(ATg) =
2Tire

where A* =
Sir(=AT)). We tahen deflne the minimum resolvable AT as:

AT esolvable(60) =min|AT| s.t. (HRC(ATs))x

> [(HRC(AT;)?)y ~ (HRC(AT;)),

Inwords, itis, for agiven noise level 6¢, the minimum inter-antennal
latency AT for which themean of theresponseis larger than the s.d. of
theresponses. Inrealistic scenarios, the negative responses for AT, <0
canmixwiththe positive responses for ATy, > 0, confounding responses
for ATnear 0, and our interest here is the magnitude of this effect. We
calculate AT, va(0) numerically for the two-exponential response
given the above expressions (Extended Data Fig. 6) for various values
of T,neqr- We find that the minimum resolvable AT is limited entirely to
the noise level 6t, regardless of whether 7., is much larger or much
smaller than 7,zc. This indicates that the prefilter certainly affects the
values of the HRC output, but it does not affect the direction-sensing
abilities of the HRC.

Calculated HRC responses from electrophysiological measure-
ments. To estimate HRC outputs from a pair of recorded ORN spike
trains, we first manually shifted one recording from the pair by —AT/2
and the other by AT/2, which mimics anodour edge travelling from left
to right, hitting the two antennae sequentially at alatency of AT. The
magnitude of ATisinversely proportional tothe odour speed; assuming
aninterantennal distance of 300 pum, the corresponding odour speed
is 300/AT ums™. Leftward-travelling odours are simulated by choos-
ing AT < 0. We first produce ORN firing rates from these spike trains
by convolving the binary spike trains with a Gaussian filter (o =15 ms).
HRC outputs were generated from these firing rates using the proce-
duredescribed inthe above sections, choosing a7 =15 msexponential
filter for the delay arm.

For the scenarioin whichwe added multiple sources of noise (Fig. 5e),
we first took the recorded spike trains and shifted each spike by 7.,
where T, was chosen uniformly from -30 to 30 ms. Next, these spikes
were shifted by +AT/2 as above, to assign left and right ORNs, and then
filtered in time as above to get ORN firing rates rogy ((£) and rogy r(0).
Left and right projection neurons receive input from both ORNs, but

with differing weights”, which we mimicked by taking the input to the
left projection neuron rpy;n  (£) = 0.6 ropn (£) + 0.4 ropnr(€) and rpyin r(8) =
0.6 ropnr(t) + 0.4 ropy, (£). Projection neurons average over many ORN
inputs by filtering over 30 ms (ref.>*), which we mimicked by designat-
ing the projection neuron response as fy | =f,y ® fonin 1 Where fon(6)
is a30 ms exponential filter. Finally, rpy, and ryy  Were used as inputs
to the HRC described above.

Analysis of imaged plume. We reanalysed behavioural data previ-
ously extracted from Drosophila navigating an imaged complex
plume of smoke'° in the same walking assay used throughout this
study. The signal in the virtual antenna was quantified as described
previously;inbrief, the virtual antennais defined as an ellipse perpen-
dicular to the body axis with the long axis given by the width of the fly
(1.72 £ 0.24 mm) and the small axis equal to one-fifth the minor axis
of the fly (0.46 + 0.24 mm). We reanalysed the imaged fly and signal
data toresolve the virtual antenna signal into 14 pixels along its long
axis (averaged alongits short axis). Thus, the signal is a vector s, (t) =
[s(x,0),5(x,,0), ..., s(xy,t)1defined at locations along the antenna’slong
axis X,n =[xy, ..., X, ] foragiventimet.

The overall concentration in the antennawas calculated as the aver-
age signal over the centre of the virtual antenna, at the locations
[x5,x6,X7,Xs]. The gradient V¢, in the virtual antenna at a given ¢t was
calculated by regressing s, against x,,. and extracting the slope. The
odour velocity in the virtual antenna was estimated by calculating
correlations of the virtual antenna signal over space and time. For a
given ¢, we calculated Ax = argmax, (s(x;, )s(;+Ax, £+ At)>x where
Ax spanned integers from-7to 7, and Atis the interframe interval
(11 ms), and s(-) were mean subtracted. This gives the signed number
of pixels for which the correlation between two successive frames is
maximized, up to the length of the antenna. The odour velocity was
then defined as Ax x frame ratexresolution, where the imaging frame
rate was 90 frames per second and the spatial resolution is 0.153 mm
per pixel. We disregarded points for which Ax was +7, as those may not
represent local maxima but were instead limited by the size of the
antenna. All three quantities—total concentration, gradient and odour
velocity—were smoothed intime using a Savitsky-Golay filter of order2
and a smoothing window of 21 timepoints (350 ms).

Toremoveboundaryeffectsfromthearenaextent,weusedforFig.1c-e
only points for which the fly was in the central region of the arena,
100 <x <250 mm, |y — y,| <40 mm, where y, is the plume’s central
axis, and only points for which fly speed was greater than 0.1 mm s ™.
Angular velocity was calculated as the average orientation change
over 200 ms.

Analysis of simulated plume. The simulation generated concentration
fields c(x,y,t) and flow velocity fields v,;,q(x;,,t) defined on grid points
(x;,y,) of a non-uniform mesh. We first generated values on a 0.5 mm
square lattice, by triangulating the data and performing barycentric
linear interpolation over each triangle (scipy.interpolate.griddatain
Python, with the method ‘linear’). Fields in Fig. 6 and Extended Data
Fig. 7 were plotted every 1 cm, (that is, every 20 pixels on the original
0.5 mm lattice). Wind speed vectors at each point on this 1 cm lattice
were generated by averaging v,,.q over the 20 x 20 valuesinal cm?box.
The plotted v,,;,q0400r fi€ld was generated by considering only wind
vectors for which the odour concentration was above 1 x 107, Odour
gradients were generated by calculating local differences V¢, and vV,
inthe xand y directions, respectively. Specifically, for Vc,, we calcu-
lated (c(x,) —c(x.))/(c(x,) +c(x_)), where x, and x_were the averages in
the right and left half of a1cm?box centred at each lattice point, re-
spectively. V¢, was calculated analogously, using the top and bottom
half of the same box. Odour velocities were calculated similarly to those
intheimaged plume used in Fig. 1, by correlating the valuesin agiven
spatial region between two frames. Specifically, to get v, .4, at agiven
time ¢, we calculated argmax, (s (x;, £)s (x; + Ax, t + At))x} where s(x;,t)



Article

was the odour concentrationinal cm?box averaged over they direction
for each x; pixel spaced by 0.5 mm. The shifts Ax ran from -20 to 20
pixels (1 cm). This quantity was multiplied by the frame rate of 100
frames per second and by the spatial resolution 0.5 mm per pixel to get
V,.odour iIN MM s, An analogous operation was performed for v, ,4ou
using the same 1 cm?box. Allodour gradient and odour velocity values
for very low odour concentrations were set to Nan, as were any odour
velocity values that produced a maximum shift |Ax| = 20. The resulting
wind speed, gradient and odour velocity were all smoothed in time
using a Savitsky—-Golay filter of order 1and window length 11 (110 ms).

Analysis of fly navigation in complex virtual plumes. For the plume
navigation experiments (Extended Data Fig. 7), we considered tracks
thatbeganinthe downwind 50 mmofthearena (x>230 mm)and had
an average walking speed of at least 0.5 mm s™.. For the histograms
(Fig. 6f,i (middle and right plots)), we only plotted instances at which
thefly’sinstantaneous walking speed was greater than 5 mm s™. For the
success ratios (Fig. 6f,i (left plots)), we considered tracks that lasted
30 sorlonger, or thatreached the upwind end of the arena (x < 50 mm)
before then.

In silico virtual agent model and simulation. We used two different
navigation algorithms for the agent-based simulations.

The bio-inspired algorithm (Fig. 6j-1) was modelled on our previ-
ous work™, which quantified the navigational behaviour of walking
Drosophila in spatiotemporally complex odour plumes. We ran the
agents in the imaged complex plume used in the plume navigation
experiments (Fig. 6g). We recapitulate the algorithm briefly here, but
refer the reader to the original study for all details.

We generated two types of agents: DS— agents, which obeyed the
original navigational model and could not sense odour direction, and
DS+ agents, which combined the original model with odour-direction
sensing. Both DS+and DS-agents navigated using the timing of odour
hits—times at which c(¢) exceeded a threshold, here chosen tobe 3 (the
digitized signal ranges from 0 to 255). At each frame, agents underwent
stochastic transitions between walking, turning and stopped states.
Agents walked at a constant speed of 10 mm s™. During walking, their
heading underwentrotational diffusion, with as.d.of 0.22° every frame
(eachframeis1/60 s). Transitions from astopped to walking state were
inhomogeneous Poisson processes, inwhich the transitionrateincreased
monotonically with the frequency of odour hits. Transitions from walk-
ing to a stopped state were also inhomogeneous Poisson processes,
whereby the rate dipped at each odour hit, before decaying back to a
baseline; thus, flies keep walking when the frequency of odour hits is
high. Turns occurred only while walking, and were Poissonevents witha
rate of 0.5 Hz. Each turnmagnitude was arandom sample from N(30°,8°).

The key navigational aspect of the bio-inspired algorithm was the turn
direction. For DS—agents, the turndirection was a binary random vari-
able, either upwind or downwind, where p(upwind) = min(1,0.5 + aw(¢)),
where a =1and w(¢) is arunning average of the frequency of odour hits.
Asinthe original study, the running average is computed by convolv-
ing the binary vector of odour hit onsets (1at the onset of each odour
hits; O elsewhere) with an exponential filter of timescale 2 s. Thus, for
frequent odour hits, the turns are more likely to be directed upwind. For
DS+ agents, the turn direction was a binary variable, either against or
towards vy, where vy, is the vector sum of the odour motiondirection
and wind direction: p(against) = min(1,0.5 + aw(t)), where a =1. Thus,
as the frequency of the odour hits increases, the agent is more likely
to direct its turns against the summed direction v,

To compute the odour hit times (for both DS—-and DS+ agents) and
odour direction (for only DS+ agents), the agents had two antennae
separated by 1.5 mm, and each antennae received an odour signal, ¢, (¢)
and cg(t), respectively, that was the average signal value in a
0.5 x 0.5 mm?region. The total odour signal c(r) was L2 R Forps+
agents, the odour motion direction was computed by taking the sign

Of Cogour(t) = CL(t)cr(t + AT) — ¢ (¢ + AT)cy(t), where the delay ATwas cho-
sen as 1time frame. For ¢ 4,,(t) > 0, odour direction vector pointed
6+90°, and for c,q,,,(t) < 0, odour direction vector pointed 6 — 90°,
where fis the agent heading. Inother words, the agent canresolve only
the direction, left or right, of the odour motion. If the correlation mag-
nitude is too low (|Cogoul < 5), then DS+ agents ignore ¢ 4o, and turn
against the wind direction like DS- agents.

All100 agents in the bio-inspired algorithm were initialized in the
back 50 mm of the arena and uniformly in the lateral direction, and
their headings were initialized randomly in the upwind 180 sector.
Agents were simulated for 2,500 frames, or 41.7 s. If agents reached
therectangular boundary of the arena, they were reflected ballistically
from the wall.

Inthe simple algorithm (Extended Data Fig.9), virtual agents with 2
spatially separated sensors navigated the simulated plume (Fig. 6a)
using a simple algorithm. All agents were initialized at the back of the
arena, facing upwind. At each frame (10 ms), agents turned either left
or right 90° (except for upwind oriented DS- flies when within the
odour signal—these flies maintained upwind), depending on the navi-
gation strategy as described in the main text, and stepped forwards
0.75 mm. The sensors were placed 0.5 mm to the left or right of the
agent centroid. The measured odour signal concentration was defined
asc=1*%® where the concentration in each sensor was ¢, and c;,
respectively. We set the detection threshold at ¢,=1x 107%. The odour
correlation between the two sensors was defined as ¢4, (£) = ¢, (£)cp(t +
AT) - ¢ (¢t + AT)cp(t), where the delay timescale AT was chosen as 1frame
(1/100 s). From ¢, 4, the direction of odour motion v, 4, was defined
as +1 if abs(Cogou(£)) >1x 1078 and sgn(C o, (£)) > 0; as -1 if
abs(Cogour(£)) >1x 1078 and sgn(C,you(t)) < 0; and as O otherwise. In gen-
eral, odour signals with a leftward component over the virtual agent
initsbody frame had v, = 1, while those with a rightward component
had vy, = —1. Simulations were carried out separately for agents that
could sense (DS+) and could not sense (DS—) odour motion. Agents
followed the strategy as described in the main text. For DS+ flies, when-
€VET Cogour Was below the threshold (abs(c, g, (1)) > 1% 1078), but the
odourwasstill detectable (¢ > ¢,), the decisions obeyed the DS-strategy.
Allagents wereinitialized in the back 50 mm of the arena and uniformly
inthe crosswind direction, and simulated for 2,500 timesteps, or25s.

Theoretical analysis of odour motion in turbulent odour plumes.
Here we investigated the motion of odour signals perpendicular to the
mean flow using atoy model of turbulent plume similar in spirit to those
used inrefs. % Odour packets are released from a point source ata
givenrate. The concentration around the centre of each packetis given
by alocal diffusive process that spreads the concentration through
molecular diffusion of the odour. Meanwhile, the packets themselves
areadvected downwind by the mean flow, while being dispersed by the
fluctuating velocity u (ref.?). We consider the simple case of anisolated
packetand calculate its expected velocity crosswind to the flow, at dif-
ferent locations throughout the plume. For analytical simplicity, we
assume stationary homogeneous and isotropic turbulence and model
the turbulent velocity u as a telegraph process that switches between
left motion and right motion at speed v, where the switching rates from
lefttorightand vice versaarebothA=1/T.Thus, 2T is equivalent to the
Lagrangianintegral time scale and the packet speed vto ther.m.s. of the
turbulent velocity field. While the velocity u switches discontinuously
between +vand -v, its time correlation function is the same as that of
the Ornstein-Uhlenbeck process often used to model homogeneous
isotropic turbulence'®*:

[e-¢’|
(u@@u(t’)y=<e 21 .

Our goal is an estimate of the average odour motion velocity ata
givenlateral distance from the plume, atagiventimet, (v), . As packets
are advected downwind at some speed U> v, we have t = x/U, so that



this is equivalent to finding the average lateral velocity at some x,y
position inthe plume®*. Runtimes are distributed as %e't/r, o) packets
reaching a given y will have been travelling for some distance y,
where J'isdistributedas p (j') = ——e 7 /T".If the packets were originally
uniformly distributed, thenthe average velocity atywould be 0. How-
ever,anasymmetry arises due to the non-uniform packet distribution,
which is dispersing laterally from a delta function at y = 0. For times
t> T,thedistribution of packetsis approximately the diffusion kernel
with effective turbulent diffusivity D; =

—yz/ZTuzt

pQ, )=

2nTv?t

Under these assumptions, the average velocity at the fixed point
(V)y, is:

vf* p(y, t-y'fo)e o dy’ - vf 0y, t-y'fv)ee dy’

<U>y,t =

o ly-y'l
[ty -y e o dy

The first term in the numerator is for packets reaching y that have
come from its left (these are travelling in the +y direction), while the
second is forthose reaching y that have come fromthe right, which are
travellinginthe -ydirection. The denominatoris anormalization factor
given by the total number of packets reaching y at time ¢. This equation
canbeintegrated numerically. To obtain an analytical approximation,
we neglect the change inthe packet distribution over the time of travel-
ling one correlation time, approximating p(y’,t —y’/v) by p(y’,t), as the
packet distribution does not change appreciably over that time (the
validity of this assumption was verified by simulations). Integrating:

(R -R)
W)y,e=v (R.R)’
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for |yl <vt, and O otherwise. We are interested in (1) whether the aver-
age lateral velocity of the packets is directed outward from the plume,
which would be indicated by an asymmetrical dependence iny, and
(2) how thisasymmetry depends on the correlation time 7. The profile
of (v),is odd for all T (Extended Data Fig. 10a), indicating that, for
any T, the velocity of odour packets in the crosswind direction points
away fromthe plume’s central axis. Moreover, for higher T, the velocity
component points more strongly outward through alarger portion of
the plume, indicating that correlations in the packet motion underlie
this directional cue (Extended Data Fig. 10a).

We next investigate how the combination of packet diffusion and
packet centroid motion together caninfluence a spacetime correlation
of the odour concentration, as would be computed by time-resolved
bilateral measurements. For simplicity, we do this computationinone
dimension, considering diffusion of packets and dispersion of their
centroidsin theydirection only, along with ballistic transportin thex
direction. We start with asingle packet. Assuming that y,(t) isthetrajec-

e - J/I) /4Dpt
4nDpt
is the local concentration at a given location y and time ¢ around the
packet. We define the correlator as:

tory of the centroid of the packetand ¢ (y, ¢, |y, (¢)) =

CAy, Atly, 6,y =¢.,0_~&. @,

where

B, =0 +Ay/2, t+AL/21y(0)

¢ _=p(y-4y/2, t-At/2]y(0)
&_=pW+Ay/2, t-At/2]y(0))
¢, =p(y-Ay/2, t+At/2]y(D)

Thus, the correlator C(Ay,At|y,t,y,(t)) is a time-antisymmetrized
quantity, which at time ¢ and position y computes the correlation of
the odour concentration between two pointsinthe direction perpen-
dicular to the mean wind, separated by Ay at times separated by At,
given a packet of which the centre is at (x;,y;) and which was released
at t=0. We stress that we do not imply that this correlator is being
enacted by any circuitry, nor is it a unique definition. However, it has
key features—namely, comparisons across space and time and time
anti-symmetry—that we will show to be sufficient to detect the lateral
odour velocity. Expanding this correlator gives

c(ay, Atly, £,,(0) = AyAt(p0,0,¢ - 0,00,0)

to the lowest order. For the packet model, at appreciable times¢> T,
this gives:

EYHY7Y, erpan

C(Ay, Ady, t,y,()) = AyAt oD
p

Now we take the average of the correlator over the packet distribu-
tion p(y,t) to get the expectation at afixed y,t:

€8y, At,1y,0) = [ dycay,ac,

D, 63.(0)p0, 0

wherep 0, 8) = ﬁe T fort> T,asabove. We canapproximate
y;by W)y,.e —the average velocity for a packet at position y;as derived
above The expression for (C(Ay,At|y,t)) does notlenditselftoaclosed-
form expression due to the complexity of (v),, .; we integrate it
numerically.

Innature, the strength of the turbulence will vary in space and time,
so it is informative to examine how the average correlator output
(C(Ay,Atly,t)) depends on the Lagrangian integral time scale T and
the r.m.s. of the turbulent velocity field v, which controls the packet
speedinthedirection perpendicular to meanwind direction. We find
that, for D, < D;=v’T, the correlator (C(Ay,At|y,t)) has a clear asym-
metry about y = 0 as expected, and that the peaks are stronger with
increasing correlation time 7 (Extended Data Fig. 10b). Moreover,
(C(Ay,At|y,t)) increases on average with v, while decreasing with D,
(Extended Data Fig. 10c), indicating that the response essentially
derives from correlated motion over the detector rather than molecu-
lar diffusion alone.

Statistical quantification. All error bars, when shown, represent
s.e.m. Statistical tests used and significance levels (Pvalues) for given
comparisons are indicated in the main text; *P <5 x1072,*P<1x107,
P <1x1073, ****P<1x 107 In some instances, **** may refer to
P<1x107%, ifindicated in the text. For the plume navigation data, s.e.m.
values were taken over distinct fly trajectories.
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Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Allexperimental data are available at Dryad (https://doi.org/10.5061/
dryad.1nslrn8xd). Source data are provided with this paper.

Code availability

All datacollection was performed using custom codes written in Python
(v.3.65), using the scientific packages numpy and scipy, plotting pack-
age matplotliband the stimulus generation package psychopy. Custom
Python codes used for projecting fictive odour stimuli, for fly tracking,
and for behavioural and signal extraction and smoothing are available
at GitHub (https://github.com/emonetlab/opto-track).
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Extended DataFig.1|Verification of odour velocity calculationand themeanwind direction90°, as expected - a consistency check on the odour
distributions of signal-derived quantitiesin measured plume. a, Mean velocity calculation. b-d, Histograms of signal-derived quantities measured in
odour velocity measuredin the virtual antennaatall times for navigating flies the fly virtual antenna; the x-axis limits in Fig. 1c-e are determined by the extent
inmeasured smoke plume, plotted asafunction of fly orientation. The -cos(6) of these histograms.

trend reflects the fact that the main component of odour velocity is parallel to



Article

a Orco > Chrimson, ab2a
40
30 -
20 |-
10
1 1 | | 1 1 | | 1 1 1 | |
N
=
[0]
©
D
£
=
1 1 | | 1 1 | | 1 1 1 | 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 Time (s)
ORN using experienced stimulus of individual fly
navigating 15 mm/s wide bars
1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40  Time (s)
b . c - . A
laminar wind — Fictive odor signal experienced by fly
i o EL I N
Fly orientation
single fly 360°
trajectory 180°
00
Fly ground speed
stationary fictive g 15
odor ribbon g 10
5
0 1 1 1
0 10 20 30 40
Time (s)
d

laminar wind —

Trajectories for flies on bottom surface

e

Trajectories for flies on top surface

-_— | —

walking
upwind

walking
downwind

Extended DataFig.2|Electrophysiological and behavioural verification of
optogeneticactivation of Drosophila ORNs. a, Extracellular measurements
ofab2A firing rates for various odour signals mimicking those we use throughout
our study. Stimuli (red shades) are delivered using a Luxeon Rebel 627 nmred
LED (Lumileds Holding B.V., Amsterdam, Netherlands) at 10 uW/mm? The
frequency and duty cycle for the stimuliin the first plotare1.5Hzand 50%
respectively, whichmimics what astationary fly in the 5cmwide, 15 mm s fast
movingbars (Fig. 2b) would encounter. Longer stimuli approximate the stimuli
experienced inthe wide movingbars (Fig. 2e, f). The bottom plot shows the
firingrateinresponse to the stimulus experienced by one representative
measured fly navigating 15 mm s moving wide bars. All recordings were taken
from5ab2a ORNsin2differentflies. b, Illustrative track of a fly following

stationary fictive odour ribbons upwind. Red bars: optogenetic stimulus
location - barsare overlaid on the figure, but not actually imaged since the
imageisIR-passfiltered. ¢, Fictive odour signal experienced by afly (red bars)
canbe quantified simultaneously with fly behaviour (teal) by aligning

the cameraand projector coordinate systems (Methods). Plotted are the fictive
odour signal and behaviour for the track showninb. d, Verification that flieson
both the top and bottom glass surfaces of the assay respond similarly to
thefictive odour signals (here, 3 odour ribbonsinlaminar wind; scalebar:2cm;
left). Flies were manually annotated as being on the top or bottom surface.
Inboth cases (middle and right; scale bar: 2 cm), flies followed the fictive odour
ribbons upwind, similar to behavioural responses with real odours'.
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Extended DataFig.3|Odour directionselectivity insingle antennaand
single Or flies, and ON/OFF edge responses across speeds and for negative
controls.a, Component of fly walking velocity along +x direction during the 5s
stimulus (shaded grey) and blank periods (illustrated in Fig. 2b), in Orco>Chrimson
flies that have one antennaablated (compare to Fig. 2c). Shaded errors: SEM.
Blue and orange denote rightward and leftward moving bars, respectively.
Sinceitisdifficult to distinguish flies walking on the top and bottom surface of
the assay, right-and left-antenna ablated flies are pooled. n =100, 89 tracks for
rightward and leftward bar motion, respectively. Only flies oriented in the 90°
sector perpendicular to the bar motion areincluded.b, Distribution of fly
orientations during the 5s stimulus (top) and 5s blank periods (bottom), for
rightward (blue) and leftward (orange) bar motion, Orco>Chrimson flies with
one antennaablated (compare Fig. 2d). Orientations are symmetrized over the
x-axis.c-d, Same as a-b, for Or42b>Chrimson flies withboth antennaeintact.
n=37,50tracks for rightward and leftward bar motion, respectively. e, Turning
bias forallinstancesin which flies encounter the fictive odour ON (green) or
OFF (purple) edge, for flies oriented within a90° sector of the direction
perpendicular tobar motion. Turning bias s calculated as the sign of fly
orientation change from 150 ms to 300 ms after the edge hit. All flies are
Orco>Chrimsonand fed ATR (i.e. optogenetically active) exceptin the 7" plot,
whicharenot fed ATR. Dataare shown for bars that move at various speeds
(left 6 plots), as well as for negative controls (7""and 8" plot). Error bars: SEM.
Pvalues calculated using the chi-squared test (****p <107, **p <1073,**p <1072,
*p < 0.05). Specifically, p =9.60x10~ for n =1472 ON edge hitsand p = 0.23 for
n=1661 OFF edge hits for 30 mm s bars; p =3.49x10 7 for n =1167 ON edge hits
and p = 0.132for n=1306 OFF edge hits for20 mms™; p =1.03x10 "*forn =548
ON edge hitsand p =1.18x107 for n =470 OFF edge hits for 15mm s™; p<10~* for
n=11250N edge hits and p =1.78x107 for n =1039 OFF edge hits for 10 mms™;
p<10~*forn=1000 ON edge hitsand p = 0.816 for N=987 OFF edge hits for
Smms™; p=0.012forn=1284 ONedge hits and p = 0.2106 for n =1633 edge hits
forlmms™; p=0.423forn=1387 ON edge hitsand p = 0.701 for n =1484 OFF
edge hits forno ATR10-15mms;and p = 0.0295 for n =988 ON edge hits and

p=0.454for n=1153 OFF edge hits for1antenna10-15 mms™. Direction
selectivity is satisfied ifboth ON and OFF edge responses have the same sign;
gradientsensing would require opposite signs for the two edges. Dataindicate
that flies counterturn against the direction of fictive odour bars at both edges,
withinarange of bar speeds. Large ON responses for slow bar speeds are likely
attributed to gradient sensing: since the direction of odour motionand
gradients are the same for ON edges but opposite for OFF edges, this would
giveappreciable ON edge responses at slower speeds, but diminished OFF edge
responses. f, Turning responses for Or42b > Chrimson flies, in which light
activatesonly one ORN type, inresponse to bars movingat10-15 mms™. Error
shades: SEM. Turning responses are consistent with direction selectivity
(compare with Fig. 2f). p=4.82x107 for n=706 ON edge hits and p = 5.51x10>
forn=763 OFF edge hits. g, Dependence of the results on the choice of
thewindow over which the turningbias is calculated. The x-axis shows the
onset time of the window; the offset time was 150 ms later. The y-axis plots

the turningbias for flies oriented within a90°sector of the direction
perpendicular tobar motion (asin e). “Experimental” flies refer to Orco >
Chrimsoninresponsetobars moving at10-15mm s™ (same asin Fig. 2);
“no-ATR” and “1antenna” are the same flies not fed ATR or with only 1antenna,
respectively. The “null” conditionis calculated using random chosen
trajectories and calculating angle changes following fictitious moving bars at
random angles not actually presented to the flies. Over window onsets of
0-200 ms, the no ATR, 1 antenna and nullresponses are all within the same
regime (<~0.1), while the experimental responses are significantly higher.
Theseresults are consistent with previous findings. OFF response reaction
times of -500 ms have been observed®, but those were for flies counterturning
backintostaticribbons - the differing locomotive repertoire (flying vs.
walking) and plume dynamics (static vs. dynamic) would account for this
discrepancy. Reaction times of 400 ms have been observed for walking flies,
but this may reflectimprecisionin odour delivery®;indeed, reaction times are
aslowas 100 ms for tethered flies whose ORNs are stimulated optogenetically”
and as low as 85ms when ORNs are stimulated with real odours?.
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Extended DataFig.4|OFF edgeresponsesinlaminar wind and ON edge
responses for fast 30 mm s bars. a, Turning bias versus fly orientation when
bilateral optogenetic stimulus is turned off (compare with the first plotin
Fig.3bfor flash onset). n=1490 OFF flash hits. b-d, Fly turning bias for

15mm s bars moving parallel, antiparallel, and perpendicular to150 mms™
laminar wind (compare with Figs. 3de). Shaded errors: SEM. n=1493,1588, and
671 OFF edge encounters for bars parallel, antiparallel, and perpendicular to
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thewind, respectively.e, Fly turningbias vs. fly orientation at ON edge for
faster 30 mm s fictive odour bars without wind (analogous to15 mm s bar
responsesinsecond plot of Fig. 3c). Dotted line: fit of response to —0.16cos6.
N=1472 ON edge encounters. f, Additive model for ON edges of 30 mm s bars;
analogous to Figs.3de. Solid shaded region: mean+1SEM; dotted lines:
additive model prediction. N=323,319,and 1013 ON edge encounters for odour
barswith parallel, antiparallel, and perpendicular to the wind, respectively.
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Extended DataFig. 5|Supplementary figures and additional evidence
thatdirectionsensingis enacted using a correlation-based algorithm.

a, Schematicillustrating calculation of latency AT between antennae hits for
movingedges. Correlation-based models for direction selectivity depend on
thelatency AT of the time at which the edge hits the two sensors - in this case,
thefly’stwo antennae. Measuring AT does notrequireresolving theimage or
stimulus at antennal resolution (-300 um), rather AT canbe inferred with
knowledge of the fly’s orientationrelative to the bar direction ¢, aswell as the
speedsofthe fly and bar - all of which are known. See Methods for details of the
calculationand an estimate of the uncertainty. b, Spatiotemporal correlation
functions for correlated noise stimuli (Fig. 4c-f). Each type of correlated noise
stimulusis characterized by the correlation function C(Ax, At) computed
between all pairs of bars separated spatiotemporally by Ax pixels and At frames.
Since our stimuliare generated by summing and binarizing Gaussian variables,
nonzero correlations off of the origin have magnitude 1/3%. For example, for
positively correlated with-wind stimuli (top left plot), C(1,1) =C(-1,-1) =1/3,
and theremaining correlations are zero, while for negatively correlated with-
wind stimuli (bottomleft plot), C(1,1) = C (-1, -1) =-1/3.¢, Snapshots of glider
stimulus with correlations along +x axis, for 3 consecutive frames. Inone
instance of time, the stimulusisarandom pattern of light and dark 1-pixel-wide
bars perpendicular to the 150 mms™laminar wind. Each x-pixel is perfectly
correlated with the pixel toitsrightin the next frame; thus the patternin the
nextframeisthesameasthe patterninthe current frame, but shifted by one
pixel. Visually, this would be perceived as a fixed pattern moving coherently to
therightindiscrete steps.d, Like correlated noise stimuli, gliders are defined
by their correlation matrix C(Ax, At). Unlike correlated noise, the correlations i)
have magnitude1, and ii) exist for many spacetime points. Thatis, for rightward

correlated gliders, agiven pixelinagiven frameis perfectly correlated with
the pixeltoitsright one framelater, but also with the second pixel toits right 2
frames later, etc. Thus C(Ax, At) has values +1 along the diagonal. Similarly,
C(-Ax, At)hasvalues1along the anti-diagonal. Since +x points downwind,

we callgliders with correlations to the right “with-wind”, and gliders with
correlations to the left “against-wind,” inanalogy to the correlated noise
stimuli (Fig. 4d). e, Turning bias versus fly orientation for with-wind (blue) and
against-wind (red) gliders. Data using pattern updateratesof45or 60 Hzare
pooled.Shaded errors: SEM. Gliders are presented in 4s blocks, interleaved
with 4s of no stimulus. Turning bias is defined as the sign of the change in
orientation from200 to 500 ms after the block onset. We only used flies with
speeds <12 mms™ for gliders, since long-range correlations caninterfere with
theintended correlationif fly walking speed is near the glider speed.n=301,
247 onset events, for with-wind and against-wind, respectively. f, Turning bias
averaged over all orientations for different glider speeds. Glider speedis
calculated as (pixel width)x(pattern update rate) where the pixel width is

290 pmand the patternrateis some multiple of the inverse frame rate,
1/(180Hz).n=141,163,138,190 onset events for with-wind stimuliat glider
speeds 25,16,12,and10 mm s, respectively; n=159,119,128,137 onset events
foragainst-wind stimuli at same glider speeds, respectively. g, For correlated
stimulitobe sensedin our assay, the bar width (size of x-pixel, 290 um), must
beontheorder of the fly antennal separation (~300 pm®®). h, Glider stimuli
experiments repeated for bars that were double the width, 580 pm. Differences
now disappear for with and against-wind correlations, consistent with bilaterally
enabled direction sensing, since these bars are too wide to consistently stimulate
antennae differentially. Shaded errors: SEM. n=195,169 onset events for with-
wind and against-wind, respectively.
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Extended DataFig. 6 | HRCresponseis robust tosignal pre-filtering.
Minimumresolvableinter-antennal latency AT as afunction of the noise level,
forexponential pre-filters of varying timescale, 7 .., = 1, 15, 50 ms, respectively,
forthe 3 plots. Noise levelis quantified as arandom shift of AT, where each shift
is chosen from a normal distribution with mean zero and standard deviation t.
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The HRC’s delayed arm has an exponential filter of timescale 7 =15ms.
Dotted line:identity. A particular value of AT is deemed resolvable if the SD
over HRCresponsesis greater than the mean over HRC responses (see Methods
for details). The mean and SD are calculated over 100 samples (i.e. 100 random
shiftsof AT)foragivennoiselevel &t.
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Extended DataFig.7|Odour velocity and concentration gradients provide
complementary directional information in complex plumes. a, Vector field
ofthe negative gradient of odour concentration-Vc, averaged over the full
simulation (compare to Fig. 6¢c in the main text). Gradients contain strong
lateral components near the odour source. b, Time course of an estimate of the

direction of odour motion 64, = tan‘l(vyyodor, Vx,odor) atthecentre of the boxed

regionsinFig. 6a, determined by averaging all detectable 8 in the past tseconds.

Error bars are found by repeating this for 16 different 10 s time windows

C
Time to resolve to 1 SD from downwind (6 = 0°)

odor velocity

gradient
" 10
10°

10's

throughout the simulation, and taking the average and standard deviation over
these 16 samples - these correspond to the mean and standard error of the
mean. Dotsindicate the time needed to distinguish the direction of odour
motion from 0° (downwind) with a 68% confidence level for the 3regions.

¢, Heatmap of time taken to distinguish the direction of odour motion from 0°
towithin 68% confidence for fixed locations throughout plume. Black values
include the possibility that the odour motion directionis not distinguishable
from downwind no matter how long one samples.
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Extended DataFig. 8| Odour motion sensing aids plume navigation by
increasing lateral motion toward the plume centerline. a, Average change
in position parallel to wind, x (left), and away from the plume centerline, |y|
(right), in outward (purple) and inward (green) moving bars plume (Fig. 6d),
asafunctionoftime. Note thatx=0,y = 0isthefictive plume’s odour source
location. Theinitial values at ¢ = 0 of x (y) were subtracted, so the change Ax (Ay)
isplotted - thisis negative because flies progress toward to the centerline
(decreasingy) and upwind (decreasingx). Only flies beginning in the rear 50 mm
ofthe arenaand which navigated for atleast 30s were considered. Shades: SEM

Normal playback
Reverse playback
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Time (s)
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overdistinct fly trajectories. Dotted lines: times ¢ =10, 20, 30s. By t = 20s, flies
inthe outward bar plume have made more progress both in the upwind
direction (p =0.025;1-tailed t-test) and toward the plume centerline (p = 0.032;
1-tailed t-test). b, same for fictive odour plume shown in Fig. 6g, played
normally (purple) orinreverse (green). Here, flies make equal progress upwind
by 30s (left plot), but significantly faster progress toward the plume centerline
inthe forward played plume than the reverse one (right plot) (p = 0.035 at
t=10s,p=3.0x10att=20s,atp=1.6x10"*at = 30s; 1-tailed t-test). Shades:
SEMover distinct fly trajectories.
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Extended DataFig. 9| Odour motion sensing enhances performance of
virtual robots obeying asimple navigationstrategy onagrid. a, Model of
2-sensor virtual agents navigating the simulated odour plume (Fig. 6a). Agents
arealways oriented at 0°,90°,180° or 270°, and at each timestep turn 90°either
leftor right and move forward one step. Agents are either odour direction
sensing (DS+) or not odour direction sensing (DS-). When odour concentrationc
exceedssome threshold ¢, DS-agents turn upwind. DS+ agents, forc>c, turn
against the direction of odour motion when oriented upwind or downwind;
crosswind agents always turn upwind. DS+agentsinfer the direction of odour
signals using an HRC-like computation between their 2 sensors (Methods).

b, Example trajectories of robots navigating plumeina, when theyare
initialized in the back 50 mm of the arena, for DS- (top) and DS+ (bottom)
agents. ¢, Percentage of 500 agents reaching the 50x50 mmred source region;
more DS+ agents reach the source than DS- agents (38% vs.19%; p <10°%; 1-tailed
t-test) d, Lateral distance from plume axis|y|over time, for agents initialized
near the plume edges (>60 mm from plume axis, indicated by the solid boxesin
b; top plot) or near the plume axis (<60 mm fromaxis, indicated by the dashed
boxesinb; bottom plot). Odour direction sensing enhances lateral drift toward
the plume centerline, particularly for robots initialized at the plume edges.



Extended DataFig.10|Odour velocity in model of turbulent plumes points
outward from plume centerline and is computed by local space-time
correlators. We use asimple packet model of turbulent plumes. Packets are
released fromasourceand disperse inthe lateral direction while being
advected downwind (see Methods for model and calculation details). a, Packet
velocity (), . in the plume model, asafunction of y =y/~/T,fortwo correlation
times, T=0.2(purple) andT=1(green), atafixed timet=4.Here,vissetto1.
Todirectly compare velocity for plumes with different 7, (and therefore
different diffusivities) we plot the velocity versus the normalized length y.
Specifically, since (y2) =2Tv?t fort>> T thenatagivent, the packet distribution
intermsof y isthesame for plumeswithdistinct7. The distribution of packets
foreitherT isafunctionof y showningrey. The velocityisanodd functionofy,
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i.e.it points outward from the plume axis. Inaddition, the asymmetry is steeper
for higher correlation times. b, The value of the correlator {C(Ay, Atly, t))asa
function of lateral distance y, for various times ¢ for 7= 0.1 (left)and 7= 0.3 (right).
Here, D, =0.005.Since the packets are advected downwind with avelocity

U> v, the time axisis proportional to the downwind distance. The packet
distributionis shown on the bottom; the limits of the y-axis are chosen such
thatthe plume extentsare the sameinboth plots. ¢, Thetotaly-integral of the
absolute value of (C(Ay, Atly, t)) atafixed t=4,as afunction of odour packet
speed (y-axis) and molecular diffusivity (Dp), withT=1,v=1.Thisintegral
indicates the degree of directional sensing on average. Theintegralis highest
for greater packet speeds and lower molecular diffusivities (top left corner).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
n/a | Confirmed
|Z| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|z A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

IZ The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X] A description of all covariates tested
|Z| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

IZ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

IZ For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

D For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

D For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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|:] Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  All data collection was performed using custom codes written in Python (version 3.7), along with the PsychoPy package (version
2020.2.4.post1). Codes for projecting stimuli and tracking flies are available at: https://github.com/emonetlab/opto-track

Data analysis All data collection was performed using custom codes written in Python (version 3.7). The following packages (and their versions) were
used in Python: numpy (1.16.4), scipy (1.3.1), and matplotlib (3.1.0). All data were analyzed with custom written scripts. Code related to
processing fly and stimuli data are at: https://github.com/emonetlab/opto-track

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data are deposited in Dryad (https://doi.org/10.5061/dryad.1ns1rn8xd.).
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Human research participants
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Reporting on sex and gender
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Ethics oversight Not applicable

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

No statistical tests were used to determine sample size. We used more than 50 flies per experimental condition. Flies were reared at
10-15 flies per vial, so this gave 3-5 separate vials for each experimental condition, sufficient to remove any outlier effects
related to a single vial.

Sample size

Data exclusions Individual flies designated as non-behaving(average speed < 2 mm/s during experiment) were excluded from all analysis, as
these were nonbehaving flies. For natural plume experiments, (Fig. 6), only tracks lasting longer than 30 s were included in the analyses, so
Replication that individual fly identity could be tracked.
All experiments were replicated more than three times on the same flies and the same conditions were replicated at least 10 times with
different flies over several days.
Randomization
All flies in a given vial were tested on the same protocols, at the same time, in the behavioral assay; thus, they were not
Blinding aI'IocaFed into spgcific subgroups at any point once reargd‘ All s?m!lar experiment§ were randomly interleaved -- e.g. the
direction of moving bars was chosen randomly for each instantiation of an experiment.

The investigators were not blind to fly genotypes. Blinding was not possible, as crosses were done by the investigator also
performing the experiment.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
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[] Eukaryotic cell lines XI|[] Flow cytometry
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Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Drosophila melanogaster; genotypes used: w;gmr-hid;+ ;+;20XUAS-Chrimson w;+;0rco-Gal4, w;+;,0r42b-Gal4 , w;gmr-hid/+;20XUAS-
Laboratory animals Chrimson/Orco-Gal4, w;gmr-hid/+;20XUAS-Chrimson/Or42b-Gal4

. . No wild animals were used in this study.
Wild animals

All experiments were carried out on female flies.
Reporting on sex

Field-collected samples | No field collected samples were used in this study

Ethics oversight This study did not require ethical approval

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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