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Odour motion sensing enhances navigation 
of complex plumes


Nirag Kadakia1,2,3, Mahmut Demir1,2, Brenden T. Michaelis4, Brian D. DeAngelis1,2,5, 
Matthew A. Reidenbach4, Damon A. Clark1,2,5,6 ✉ & Thierry Emonet1,2,5,6 ✉

Odour plumes in the wild are spatially complex and rapidly fluctuating structures 
carried by turbulent airflows1–4. To successfully navigate plumes in search of food and 
mates, insects must extract and integrate multiple features of the odour signal, 
including odour identity5, intensity6 and timing6–12. Effective navigation requires 
balancing these multiple streams of olfactory information and integrating them with 
other sensory inputs, including mechanosensory and visual cues9,12,13. Studies dating 
back a century have indicated that, of these many sensory inputs, the wind provides 
the main directional cue in turbulent plumes, leading to the longstanding model of 
insect odour navigation as odour-elicited upwind motion6,8–12,14,15. Here we show that 
Drosophila melanogaster shape their navigational decisions using an additional 
directional cue—the direction of motion of odours—which they detect using temporal 
correlations in the odour signal between their two antennae. Using a high-resolution 
virtual-reality paradigm to deliver spatiotemporally complex fictive odours to freely 
walking flies, we demonstrate that such odour-direction sensing involves algorithms 
analogous to those in visual-direction sensing16. Combining simulations, theory and 
experiments, we show that odour motion contains valuable directional information 
that is absent from the airflow alone, and that both Drosophila and virtual agents are 
aided by that information in navigating naturalistic plumes. The generality of our 
findings suggests that odour-direction sensing may exist throughout the animal 
kingdom and could improve olfactory robot navigation in uncertain environments.

Like many animals, insects sense odours using two spatially separated 
sensors—their antennae. This pair of sensors can detect local concen-
tration differences, which encode odour concentration gradients and 
enable flies to navigate simple plumes such as steady ribbons, where 
gradients are resolvable and informative17,18. However, the relevance of 
bilateral sensing for natural plume navigation is less clear as, in turbu-
lent flows, odour gradients fluctuate rapidly and do not reliably point 
towards the source3.

Here we propose a distinct role for bilateral sensing: inferring the 
direction of motion of odour signals. To understand the ‘motion’ of 
an odour signal, picture smoke emanating from a chimney on a windy 
day. The dispersing smoke plume quickly breaks into disconnected 
filaments and, although these filaments move in seemingly random 
directions, their direction of motion at some instant is obvious by eye. 
We can think of the motion of odours (which are invisible) as analogous 
to the motion of these smoke filaments. Importantly, owing to the dis-
persive effects of turbulence and molecular diffusion, the direction of 
the filaments can differ from the wind19, thereby providing a directional 
cue that is distinct from the local airflow.

To investigate whether flies sense and respond to odour motion, 
we first reanalysed a dataset of walking Drosophila navigating a 

complex, visualizable odour plume of which the odour statistics 
resemble those in turbulent flows10 (Fig. 1a). In this plume, gradients 
can be randomly oriented relative to the source, and often differ 
substantially from the direction of odour motion (Fig. 1a (green and 
magenta vectors)). As the odour is visible, we can quantify the odour 
signal encountered during navigation, as well as infer the projections 
across the antennae of the odour gradient and of the odour velocity 
(which encodes the direction of odour motion) (Fig. 1b and Extended 
Data Fig. 1), while simultaneously measuring fly behaviour (Fig. 1b). 
Odour velocity was estimated by cross-correlating the odour con-
centration in the left and right antenna regions across subsequent 
frames (Methods), similar to methods that compute velocity using 
tracer particles in fluids.

Insects turn upwind when encountering odour signals6,9,10,15, which 
we verified for flies oriented slightly away from the upwind direction 
(Fig. 1c (blue and red curves)). For flies already oriented upwind, 
there was no turning bias relative to the intensity or gradient of the 
odour (Fig. 1c,d). Notably, their turn bias did correlate significantly 
with odour velocity (Fig. 1e), suggesting that flies respond to the 
direction of odour motion in the absence of directional information 
from the wind.
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Odour motion sensing without wind
Because odours are transported by the airflow, odour motion and wind 
motion are inherently connected. To break this connection, we turned 
to optogenetic stimulation of olfactory receptor neurons (ORNs) using 
the channelrhodopsin Chrimson20,21. We generated spatially complex, 
dynamic fictive odour stimuli using a DMD projector to display light 
patterns22 onto blind, freely walking flies in the 27 × 17 cm2 arena used 
in Fig. 1 (Fig. 2a). This set-up enabled optogenetic stimulation with 
sufficient spatial (<300 μm) and temporal (<6 ms) precision to hit fly 
antennae independently. We verified using electrophysiology and 
behavioural controls that optogenetic stimulation of Orco-expressing 
ORNs acts as an attractive fictive odour21 (Methods and Extended Data 
Figs. 2a–c), and that flies walking either on the bottom glass or upside 
down on the top glass responded similarly to the signal (Extended 
Data Fig. 2d). Using this set-up, we first presented a simple stimulus 
consisting of travelling fictive odour bars in the absence of wind. Flies 
oriented perpendicular to the bar motion receive differential stimula-
tion across their antennae when the edges of each bar pass across them. 

If flies responded selectively to the direction of fictive odour motion, we 
would expect opposing behaviours for bars travelling rightward versus 
leftward. We therefore presented 5-mm-wide bars travelling 15 mm s−1 
either left or right, in 5-s-long blocks followed by a 5-s-long block of no 
stimulus (Fig. 2b). Indeed, right-moving bars elicited a net displacement 
of fly position to the left, and vice versa (Fig. 2c). Furthermore, flies 
oriented against the direction of motion during the 5 s stimulus block, 
but exhibited no asymmetry during the 5 s blank (Fig. 2d). Notably, 
both of these behaviours were absent in Orco>Chrimson flies with one 
antenna ablated (Extended Data Fig. 3a,b), but were preserved when 
Chrimson was expressed only in ORNs expressing the receptor Or42b 
(Extended Data Fig. 3c,d), which is known to drive olfactory attraction 
to vinegar23 and represents a small fraction of all ORNs. These experi-
ments suggested that the olfactory responses of the flies were direction 
selective, and that direction selectivity is enabled by bilateral sensing 
from the two antennae. The key indicator of direction selectivity was 
counterturning against bar motion—a reasonable response for locating 
an odour source emitting propagating odour signals.

Direction sensing at ON and OFF edges
As insects and vertebrates both detect spatial gradients of odour 
concentration and use them to navigate18,24, we wondered whether 
gradient sensing could explain the directional biases that we observed. 
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Fig. 1 | Drosophila turning behaviours are correlated with the direction of 
odour motion in a spatiotemporally complex odour plume. a, Snapshot of 
walking flies navigating a spatiotemporally complex odour plume generated 
by stochastically perturbing an odour ribbon in laminar flow with lateral 
airjets, as described previously10. Odour gradients (magenta arrows) and odour 
velocity (green arrows) do not necessarily align and can point in random 
directions relative to the odour source. The blue oval shows the virtual fly 
antenna region used to estimate signal quantities during navigation. Scale bar, 
20 mm. b, Example time traces of fly behaviours (orange) and signal-derived 
quantities (blue) for the track shown in a. Odour velocity was computed by 
cross-correlating the signal in the virtual antenna over successive frames and 
determining the spatial shift with maximal correlation. Odour gradient was 
computed as the slope of the odour concentration along the major axis of the 
virtual antenna. AU, arbitrary units. c, Fly angular velocity as a function of 
odour concentration, for flies oriented in a 40° upwind sector (black), or in a 
40° sector centred 40° clockwise (red) or counterclockwise (blue) from the 
upwind direction. Positive values indicate a counterclockwise turn. Data are 
mean ± s.e.m. Correlations are significant for flies in the off-axis sectors. 
Slope = 0.037 ± 0.005, n = 174 tracks; and slope = −0.039 ± 0.003, n = 312 tracks 
for clockwise and counterclockwise sectors, respectively. P < 1 × 10−6 for both 
sectors, but not those oriented directly upwind (slope = 0.005 ± 0.003, 
P = 0.09, n = 285 tracks). NS, not significant. d,e, Fly angular velocity versus 
odour gradient (d) and odour velocity (e) for flies oriented in a 40° sector 
upwind. Angular velocity is uncorrelated with odour gradient (mean 
slope = −0.005 ± 0.003, P = 0.072, n = 284 tracks) but significantly correlated 
with odour velocity (mean slope = 0.040 ± 0.003, P < 1 × 10−6, n = 282 tracks) 
across the virtual antenna. For c–e, statistical analysis was performed using 
two-tailed t-tests.
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Fig. 2 | Turning responses are consistent with direction sensing, but not 
gradient sensing. a, Schematic of the optogenetic fly walking assay. Flies 
expressing Chrimson in ORNs received optical stimulation from a video 
projector mounted above the arena. IR, infrared. b, Fictive odour bars moving 
at 15 mm s−1 are presented in 5 s blocks, interleaved with a 5 s blank period.  
Scale bar, 5 mm. c, Component of fly walking velocity along the +x direction 
during the stimulus (shaded grey) and blank periods, for bars moving in the +x 
(blue; n = 178 tracks) or −x (orange, n = 192 tracks) direction. Data are mean ± s.e.m. 
Only flies facing in the 90° sector perpendicular to bar motion at odour onset 
(t = 0) are included. d, The distribution of fly orientations during stimulus (top) 
and blank (bottom) periods; colours are the same as in c. Orientations are 
symmetrized over the x axis. e, Direction sensing can be differentiated from 
gradient sensing by measuring turning responses versus fly orientation at both 
edges of wide, moving fictive odour bars: the ON edge (when the fictive odour 
first passes onto the fly) and the OFF edge (when it leaves the fly). f, Fly turning 
bias versus orientation for ON (green) and OFF (purple) edges moving at  
10–15 mm s−1. Darker curves indicate flies that were fed all-trans retinal (ATR); 
lighter curves indicate flies that were not fed ATR. Turning bias is quantified as 
the sign of orientation change after edge onset, where (+1) −1 is (counter)
clockwise. Each point covers ±45°; thus, distinct points contain overlapping 
data. Data are mean ± s.e.m. Turning bias for ATR-fed flies, when oriented 
perpendicular to the bar motion (θ = 0), are significantly different from zero for 
both ON and OFF edges (P < 1 × 10−6 for both edges, χ2 test; n = 1,673 and 
n = 1,509 ON and OFF edge encounters, respectively). Turning biases are not 
statistically distinct from zero for non-ATR fed flies (P = 0.09 and P = 0.77,  
χ2 test; and n = 1,397 and n = 1,484 ON and OFF edge encounters, respectively).
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We repeated the experiments described above with wider (30–45 mm) 
bars, which enabled us to quantify responses to each edge individu-
ally—the ON edge, when the fictive odour first passes over the fly, and 
the OFF edge, when fictive odour leaves the fly (Fig. 2e). Responses to 
these stimuli would clearly distinguish direction selectivity from gradi-
ent sensing, as gradient sensing would result in opposing behaviours 
at the ON and OFF edges, whereas direction-sensing responses would 
be the same (Fig. 2e). We calculated fly turning bias, defined as the 
sign of the cumulative change in orientation between 150 and 300 ms 
after the edge hit, as a function of the fly’s orientation relative to the 
moving edge. For both ON and OFF edges moving at 10–15 mm s−1, 
these plots had strong positive peaks for flies oriented parallel to the 
edge (that is, when the two antennae were stimulated differentially), 
indicating that the flies are responding to the odour motion, not the 
spatial gradient (Fig. 2f). Meanwhile, the responses were flat for con-
trol flies (Fig. 2f and Extended Data Fig. 3e). Repeating this for various 
bar speeds, we found strong directional selectivity for bars moving 
at 10 and 15 mm s−1, whereas, for higher speeds (20–30 mm s−1), the 
ON response was significant but reduced and the OFF response was 
abolished (Extended Data Fig. 3e). At slower speeds 1–5 mm s−1, the ON 
response was still present, but the OFF response was now slightly nega-
tive, although not statistically significant (Extended Data Fig. 3e). We 
attributed this to gradient sensing in the slow edges, which are nearly 
static odour environments: odour direction and gradients are parallel 
for ON edges but antiparallel for OFF edges (Fig. 2e), so the behavioural 
responses to motion and gradients compound for the former but cancel 
for the latter. Finally, similar directional turning responses for both ON 
and OFF edges were present in Or42b>Chrimson flies (Extended Data 
Fig. 3f), indicating directional selectivity at the level of the single ORN 
type. These observations were robust to changes in the behavioural 
integration window (Extended Data Fig. 3g), consistent with previously 
reported reaction times for ON responses9,25.

Odour motion sensing sums with wind sensing
Insects bias their heading upwind in the presence of attractive 
odours6–8,10,12,15, but the role of odour motion in this upwind response 
is unknown. Our patterned optogenetic set-up enabled us to investigate 
this by independently controlling the wind and odour motion, which 
is otherwise prohibitive in natural environments. In our earlier experi-
ments, we quantified turning bias in response to odour motion, but 
without wind (Fig. 2). In the presence of both wind and odour motion, 
we reasoned that fly responses would reflect some sort of summation 
of the responses to the isolated stimuli. We therefore presented fictive 
odours in the presence of wind, but without any motion of the odour.  
To remove odour motion, we flowed laminar wind and flashed the entire 
arena with light for 2.5 s, followed by 2.5 s of no stimulus (Fig. 3a). This 
stimulates both antennae simultaneously, removing bilateral infor-
mation—an artificial stimulus that is difficult to deliver with natural 
odours. In this situation, flies bias their heading upwind (against the 
wind) at the onset of the flash (Fig. 3b), reminiscent of their tendency 
to turn ‘against’ the odour motion in the absence of wind (Fig. 2f and 
reproduced in Fig. 3c). The similarity of turning responses to wind and 
odour motion separately is illustrated by fitting the turning bias versus 
orientation plots to a sinusoid (Fig. 3b,c (dashed lines)). In both cases, 
the plots are well fit by Acosθ, where Awind = −0.40 and Aodour = −0.30.

These simple functional forms encouraged us to consider a simple 
hypothesis for how flies respond to fictive odour edges moving at a given 
angle relative to the wind. We hypothesized that the response to the 
combined signal is a sum of the bar motion and odour motion responses. 
This hypothesis predicts that, when the odour motion direction and 
wind direction are aligned, the peak response should increase in mag-
nitude and remain centred at 0° and 180° (Fig. 3d (first row)). If odour 
and wind motion oppose each other, these peaks should nearly cancel 
(Fig. 3d (middle row)). Finally, in the interesting case of wind and odour 

velocity perpendicular to each other, the peaks should shift leftwards 
to ~145° and ~325° (Fig. 3d (bottom row)). To test these predictions, we 
presented fictive odour bars either parallel, antiparallel or perpendicu-
lar to 150 mm s−1 laminar wind. When the wind and odour were aligned, 
the turning bias at ON edges was nearly perfectly fit by the additive pre-
diction (Fig. 3e). The antiparallel motion of bars and odours was also fit 
well—extrema remained at 0° and 180°, although the cancellation over-
shot slightly. Notably, the response to perpendicularly oriented wind 
and odour reproduced the shift of the response curve peak from ~180° 
to 145°, and nearly reproduced the shift of the minimum from ~360° to 
~325°. These results suggest that odour-direction-selective responses 
integrate with directional information from the wind in a largely, but 
not entirely, additive manner. Moreover, universally observed upwind 
turning responses are more complex than naive mechanosensory reac-
tions triggered by the presence of odour—they can be enhanced and even 
cancelled by directional information from the odour itself. Interestingly, 
responses to OFF edges in the presence of laminar wind were very weak, 
suggesting that there are other nonlinear interactions between the loss 
of odour and wind (Extended Data Fig. 4).

Odour motion sensing is correlation based
We next tested the extent to which our observations were consist-
ent with elementary motion-detection algorithms. We began by 
analysing our data for moving bars in the absence of wind (Fig. 2).  
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turns counter to the wind direction; all measured values lie in this range. The 
dotted line is fit to −0.4cosθ. c, Turning bias versus fly orientation for moving 
fictive odour bars without wind, at the ON edge (same data as the darker green 
curve in Fig. 2f, but without symmetrizing orientations). Grey shades indicate 
values for which flies turn counter to the bar direction. The dashed line is fit to 
−0.3cosθ. d, The expected turning bias versus orientation (dashed curve) for 
bars moving parallel (top row), antiparallel (middle row) or perpendicular 
(bottom row) to the wind, assuming that turning bias is the sum of the fitted 
cosines from b (black curve) and c (grey curve). In the middle and bottom row, 
the grey curve has a phase shift depending on the bar direction relative to the 
wind. e, The solid curves show the mean of measured data. Bars move at 
15 mm s−1. The dashed curves show the expected responses from d. The shaded 
regions show the s.e.m. n = 1,361, n = 1,679 and n = 696 ON edge hits for bars 
parallel, antiparallel and perpendicular to the wind, respectively. The additive 
model is also consistent with faster bar speeds, which have reduced responses 
(Extended Data Figs. 4e,f).
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Odour motion creates a difference in latency ΔT between the stimula-
tion of the two spatially separated antennae, the sign and magnitude 
of which determines the output of direction-selective models such as 
the classical Hassenstein–Reichardt correlator (HRC)16. In our assay, 
ΔT can be inferred from the velocity of the bars relative to the flies 
using simple geometric considerations (Methods and Extended Data 
Fig. 5a). This enables us to express turning bias as a function of ΔT, 
thereby directly testing the predictions of an HRC model. In a simple 
rightward-selective HRC with two antennal inputs (Fig. 4a), a signal 
from the left antenna is multiplied with the delayed signal from the right 
antenna, where the delay is implemented as an exponential filter e−t/τ.  
Subtracting this product from a mirror-symmetric computation gives 
the detector output r(t). We modelled the turning bias as the time inte-
gral of r(t), for which the HRC predicts a turning bias proportional to 
1 − e−ΔT/τ for rightward-moving edges. Thus, plotting the turning bias 
against ΔT would enable us to extract the filter time constant τ for this 
model, revealing the timescale of olfactory motion detection. Pooling 
the data from both ON and OFF edges at 10–15 mm s−1 in the absence 
of wind (Fig. 2f), we found that the prediction was fit well, with filter 
timescales in the range τ = 25 ± 12 ms (Fig. 4b). Although this estimate 
is approximate and limited by the temporal and spatial resolution of 

the projector, it is notable that the timescale is comparable to those of 
visual motion detection in Drosophila26 and humans27.

Elementary motion detection algorithms respond fundamentally 
to correlations in the signal over space and time. To better compare 
behaviour to the predictions of the HRC, we moved beyond ON and OFF 
odour edges and turned to correlated noise stimuli, which have been 
used to characterize direction-selective computations in fly vision26. 
A snapshot of a correlated noise stimulus is a pattern of 1-pixel-wide 
bars, each of which is either light or dark (Fig. 4c). The pattern updates 
in time in such a way that it contains well-defined positive or negative 
correlations between adjacent pixels. Intuitively, a positive correlation 
in the +x direction means that a light bar at a given x is likely—but not 
guaranteed—to be proceeded in the subsequent frame by a light bar 
1 pixel to its right; visually, this would appear to be a rightward-moving 
pattern. To enhance the strength of the odour motion behaviour, we 
simultaneously flowed laminar wind as in the experiments in Fig. 3. 
Thus, there were four types of correlated noise stimuli, correspond-
ing to the possible combinations of correlation displacement (with 
or against the wind) and parity (negative or positive) (Fig. 4d), each of 
which is uniquely defined by its correlation function C(Δx,Δt) (Extended 
Data Fig. 5b).

In this experiment, turning responses to positively correlated noise 
stimuli mimicked those to moving bars: upwind turning was suppressed 
when the correlation displacement opposed the wind direction (Fig. 4e 
(top)). Importantly, spatial gradients in these stimuli quickly average to 
zero, so only a computation sensitive to spatiotemporal correlations, 
and not gradients, could account for behavioural suppression when 
the correlation displacement and wind were misaligned. Repeating for 
negative correlations, we found that upwind turning was suppressed 
when the correlation and wind were aligned (Fig. 4e (bottom)). Notably, 
this response is also consistent with a correlation-based algorithm, 
which predicts a reversal in the perceived direction of motion when 
the correlation changes sign26. In fact, this ‘reverse phi’ phenomenon is 
a common visual illusion—a feature of correlation-based algorithms—
that has been observed and investigated across several species26,28–30, 
including humans31. Subtracting the with-wind and against-wind 
responses for each polarity indicated clearly that the reverse-phi pre-
diction was satisfied (Fig. 4f).

We corroborated our results using gliders, another class of correlated 
stimuli32,33. Visually, a glider is a random pattern of light and dark bars 
moving in one direction (Extended Data Fig. 5c).  In contrast to cor-
related noise, the bars are correlated not only with a neighbouring 
bar in the subsequent frame, but also with more distant bars at later 
times. However, unlike the weaker magnitude correlations for corre-
lated noise, the correlations in glider stimuli are perfect (Methods and 
Extended Data Fig. 5d), so we expected similar trends as before, but with 
larger effect sizes. For positively correlated gliders, we found similar 
trends as with correlated noise, but much larger separations between 
the with-wind and against-wind responses (Extended Data Fig. 5e). We 
were also able to examine a range of correlation times by adjusting 
the frame update times. For update times in the range of 17 to 30 ms, 
we found direction-selective responses, whereas, for shorter update 
times (11 ms), direction selectivity disappeared (Extended Data Fig. 5f). 
Interestingly, the maximum separation of with-wind and against-wind 
responses was with a frame update of 17–22 ms, consistent with the 
estimate of the HRC filter time constant using moving bars (Fig. 4b).

For flies to sense these correlations in our assay, their antennae 
must be optogenetically stimulated by distinct pixels. We satisfied 
this requirement by mounting the projector such that the x-pixel width 
(~290 µm) approximated the D. melanogaster antennal separation 
(Extended Data Fig. 5g). We predicted that effects would also reduce 
for bars wider than the antennal separation, as antennae were less likely 
to be stimulated independently. Indeed, when we repeated the experi-
ments with the bar width doubled, we found no significant differences 
between with-wind and against-wind responses (Extended Data Fig. 5h). 
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Together, these data suggest that Drosophila odour-direction sensing 
involves a correlation-sensitive algorithm.

ORN timing enables motion sensing
Our results so far have supported a correlation-sensitive model of direc-
tion sensing, tuned to interantennal odour latencies as short as ~15 ms 
(Extended Data Fig. 5f). This raises the question of how temporal preci-
sion in the olfactory periphery enables the detection of such latencies. 
To address this, we turned to electrophysiological measurements of 
odour-elicited ORN responses, using these to predict HRC model out-
puts for naturalistic stimuli. We recorded responses of 14 ab3A ORNs 
from one antenna in 2 flies to 20 short (50 ms) puffs of ethyl acetate 
(Fig. 5a). Across all 280 presentations, we found a jitter of 5.1 ms in the 
timing of the first odour-elicited spike, significantly smaller than in pre-
vious studies34, but not insignificant compared with the 15 ms timescale 
of odour motion detection. To quantify how a correlator could extract 
directional information from noisy ORN responses, we chose at random 
a pair of spike trains measured in two different ORNs, shifted them 
in time by −ΔT/2 and ΔT/2, respectively, and we then passed this pair 
through the two arms of the HRC model (Fig. 5b). This procedure mim-
ics how ORNs in each antenna would respond to a rightward-travelling 
odour filament, that is, the right ORN would receive the same signal as 
the left ORN, but ΔT later. Odour speed and direction are set by scaling 
or flipping the sign of ΔT, respectively. We found that for |ΔT| above 
around 10 ms, HRC output was positive for rightward-moving signals 
(ΔT > 0) and negative for leftward-moving signals (ΔT < 0; Fig. 5b), 
indicating directional selectivity. Moreover, HRC responses were very 
similar across odour presentation trials (Fig. 5c), meaning that odour 
direction could be extracted reliably without averaging over multiple 

encounters. Finally, extending this to all 19,600 possible pairings of 140 
left and 140 right ORNs, we found that the simple HRC model could 
reliably resolve odour direction over a broad range of interantennal 
latencies 11 < |ΔT| < 153 ms (Fig. 5d), corresponding to odour speeds as 
high as 25 mm s−1. Together, this indicated that, at least at the level of 
single, noisy ORN pairs, sufficient information was present to encode 
odour direction. Moreover, the HRC timescale of τ = 15ms does not set 
a hard lower bound on the resolvable latency ΔT. This is because the 
filters in the HRC model smear the signals in time, so that HRC outputs 
are non-zero over a range of ΔT, not just when ΔT = τ. Thus, the HRC is 
strongly direction selective even at latencies far from τ.

Next, to see how some known downstream transformations might 
affect direction sensitivity, we added two processing steps upstream 
of the HRC computation: bilateral mixing of ORN signals with a 60/40 
ratio17 and a 30 ms low-pass filter representing projection neuron 
responses34. We also jittered each ORN spike up to 30 ms (ref. 34) to 
represent variability across the ORN population. The aggregate effect of 
these three transformations was to shift the resolvable response range 
to 21 < |ΔT| < 171 ms (Fig. 5e)—a notably small reduction in sensitivity. 
In fact, we show mathematically that temporal filtering should not 
degrade the resolution to a level naively suggested by the filtering 
timescales. For example, an HRC receiving inputs that have been filtered 
over τfilt = 100 ms can still respond direction selectively to latencies 
much lower than τfilt (Methods and Extended Data Fig. 6). Intuitively, 
while the projection neuron filter smears the two inputs, it acts on each 
input equally, thereby retaining the relative signal delay between them.

We next repeated the same calculations using the responses of ab2A 
ORNs to a naturalistic odour stimulus from our previous study35, which 
is composed of brief bursts of odour, or whiffs, interspersed with 
periods of clean air (Fig. 5f). In this signal, the whiff concentrations 
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and durations spanned an order of magnitude, typical of odour sta-
tistics in turbulent flows3. We estimated the HRC response to left- and 
right-travelling odours as described above by pairing different recorded 
ab2A ORNs and shifting them appropriately (Fig. 5g). Averaging over 
all left and right pairs, we found that odour direction for latencies 
|ΔT| = ±15 ms was resolvable in more than 90% of the individual whiff 
encounters (Fig. 5h). Together, these findings reveal that the temporal 
precision of ORN responses, together with putative circuit transforma-
tions in the Drosophila olfactory periphery, can robustly encode the 
direction of natural odour signals.

Finally, we note that, despite the robustness of the directionally selec-
tive odour computations shown above, our estimates here remain a 
worst-case scenario. We have simulated HRC responses using indi-
vidual ORNs on each antenna, but Drosophila antenna contain popu-
lations of ORNs of each type, which are pooled in projection neuron 
responses. This convergence increases detection accuracy by averaging 
over noise34,36, and a similar denoising upstream of direction sensing 
computations should enhance the robustness beyond what we have 
demonstrated here.

Odour motion sensing in natural plumes
In principle, animals could use measurements of odour motion to help 
them navigate complex plumes, provided this information comple-
ments other directional cues such as gradients or wind. To quantify 
the distribution of odour signal directions in a naturalistic plume,  

we ran numerical simulations of an environment replicating the plume 
from Fig. 1. These simulations provide not only a more finely resolved 
concentration field, but also the airflow velocity field (Fig. 6a), which is 
experimentally inaccessible. We first compared, for a few fixed points 
in the plume, the odour velocity vodour and the airflow vwind at a single 
time. Both vodour and vwind had x-components comparable to the mean 
flow speed 150 mm s−1. However, vodour also had large crosswind com-
ponents vy,odour pointing outwards from the plume centreline that were 
noticeably absent from vwind (Fig. 6b (left)). Averaging over all detect-
able odour filaments in the 120 s simulation revealed a similar trend: 
away from the plume centreline, the distribution of vodour spanned a 
tight angular range, pointing consistently outwards in the crosswind 
direction (Fig. 6b (middle column)). Meanwhile, vwind was distributed 
largely downwind, with much smaller outward angles (Fig. 6b; right 
column). To visualize the flow of odour motion, we calculated the time 
average of 〈vodour〉 at all locations in the plume. We compared this to the 
time average of the wind vector conditional on the presence of odour, 
〈vwind|odour〉. We used the latter rather than the unconditional wind veloc-
ity 〈vwind〉 because, for an ideal point source of odour within homoge-
neous turbulence, the latter does not encode the lateral location of 
the source. Throughout the plume, 〈vodour〉 flowed strongly outwards 
from the plume centre, whereas 〈vwind|odour〉 was directed essentially 
downwind (Fig. 6c).

This analysis suggests that, in naturalistic plumes emanating from a 
point source, the direction of odour motion is a strong indicator of the 
direction towards the centreline of the plume. This directional cue is 
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Scale bars, 20 mm. d, Illustration of fictive odour plume in which 2-mm-wide 
bars move outwards or inwards from the arena centreline at 15 mm s−1. Laminar 
wind flows at 150 mm s−1. e, Measured fly tracks for flies beginning in the 
downwind 50 mm end of the arena, for outward (left) or inward (right) bars.  
The black tracks represent flies that reached a 50 mm box around the fictive plume 
source. f, Flies in the outward bar plume were more likely to reach the source (left): 
56% (28 out of 50 tracks) versus 28% (12 out of 43 tracks) (P = 1.13 × 10−3, one-tailed 

t-test). Middle and right, the distributions of flies’ lateral ( y) position, in the 
downwind (left) or upwind (right) end of the arena, respectively. g, Projected 
complex plume, played either normally or in reverse. h,i Fly tracks (h) and 
quantification (i) as in e and f but for the complex plume in g. Flies in normal 
playback were more likely to reach the source: 32% (22 out of 69 tracks) versus 
14% (13 out of 91 tracks) (P = 6.39 × 10−3, one-tailed t-test). j, Simulated agent 
model based on Drosophila odour navigation10. DS− agents increase the 
upwind bias of stochastic left/right turns with odour hit frequency (top; green). 
DS+ agents turn against the vector sum of the wind and odour directions as the 
hit frequency increases (bottom; purple). k, Tracks of DS+ (left) and DS− (right) 
agents navigating the complex plume in g. l, The same as f and i, but with DS+ 
and DS− agents. DS+ agents were more likely to reach the source (34% versus 
25% of n = 500 tracks, P = 9.98 × 10−5; one-tailed t-test).
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not reflected in the local wind, nor in the local gradients, although we 
did find that odour gradients have a similar crosswind structure closer 
to the source, where the plume is less intermittent (Extended Data 
Fig. 7a). Of course, to be useful for navigation, odour motion must be 
resolvable on realistic timescales. By calculating the running average 
of the odour direction at a fixed location, we found that in most of the 
plume extent, only several hundred milliseconds were necessary to 
resolve the lateral components (Extended Data Fig. 7b,c). As odour 
bursts occurred at around 1–5 Hz in this particular plume10, a navigator 
could estimate the direction of odour motion orthogonal to the mean 
flow after only a few odour hits.

To investigate how Drosophila use odour motion during naviga-
tion, we designed a fictive odour plume of which the boundaries 
were subtended by a cone—as if emanating from a source—and within 
which thin bars moved laterally outward from or inward towards the 
centreline, while laminar wind flowed along the cone axis (Fig. 6d).  
The bars moved at 15 mm s−1 and were spaced by 5, 10 or 15 mm (data 
are pooled), giving fictive odour hits with short durations and frequen-
cies of around 1–3 Hz, similar to the complex plume considered above 
(Fig. 1a). We reasoned that inward-moving bars, which are reversed 
from their natural flow, would degrade the ability of the fly to move 
towards the plume axis, and therefore to localize the odour source, 
that is, the tip of the cone. We found that, for both bar directions, flies 
stayed within the conical fictive odour region, but were significantly 
more likely to reach the upwind source region when the bars moved 
outwards (56% versus 28% for outward versus inward bars, respectively; 
P < 0.01, one-tailed t-test) (Fig. 6e,f). Moreover, performance gains were 
attributed to increased lateral navigation towards the plume centreline 
(Fig. 6f and Extended Data Fig. 8a), as predicted. Notably, the fictive 
odour signals in these two paradigms at each location do not differ by 
frequency, duration or spatial gradients—differences in performance 
(Fig. 6f) can be explained by odour-direction sensing alone.

Next, we tried the more realistic case of projecting a video of a 
recorded complex smoke plume, playing the video not only normally, 
but also reversed in time (Fig. 6g). As in the previous conical bar stimu-
lus, reverse playback reverses odour motion without perturbing the 
steady-state distribution of spatial gradients or the frequency or dura-
tion of odour hits measured at each point. Notably, the likelihood to 
reach the odour source significantly degraded when the plume was 
played in reverse (32% versus 14%; P < 0.01, one-tailed t-test) (Fig. 6h), 
again driven by enhanced navigation towards the plume axis (Fig. 6i 
and Extended Data Fig. 8b). Together, these results indicate that the 
odour motion provides a directional cue complementary to odour gra-
dients and wind motion, and strongly enhances navigation in complex 
odour plumes, even when other aspects of the odour signal remain 
unchanged.

Finally, with an eye towards practical applications, we used in silico 
experiments to investigate the value of odour motion sensing for 
olfactory robots. Virtual navigators were modelled as described in our 
previous study10: low-curvature walking bouts were interrupted with 
stochastic left/right turns at a fixed Poisson rate, and turns were more 
likely to be directed upwind as the frequency of odour hits increased 
(Fig. 6j). These virtual agents are not direction-sensing (DS− agents); 
meanwhile, direction sensing (DS+) agents obeyed the same strat-
egy, but with turns biased against the vector sum of the odour motion 
direction and the wind direction (Fig. 6j). We simulated both DS+ and 
DS− agents in the imaged complex plume (Fig. 6g), finding that DS+ 
agents were better localized within the plume extent than DS− agents 
(Fig. 6k) and significantly more likely to find the odour source (n = 500 
agents; 34% versus 25%, P < 1 × 10−4, one-tailed t-test) (Fig. 6l). As above, 
performance was aided by increased drift towards the plume centreline 
(Fig. 6l). These results were not a by-product of the model’s behavioural 
repertoire—we found similar performance gains for direction-sensing 
virtual robots navigating a grid with a much simpler strategy (Extended 
Data Fig. 9). Together, these in silico experiments show that odour 

motion sensing can enhance the robustness of complex plume navi-
gation in both simplistic and bioinspired navigational algorithms.  
The simplicity of the direction-sensing mechanism, together with com-
putational methods to detect fast odour transients using metal oxide 
sensors37,38, suggests that odour motion detection could be incorpo-
rated into olfactory robots in a variety of existing schemes39,40 (see the 
Methods and Extended Data Fig. 10 for a discussion of the relationship 
between odour motion detection, the distance between the two sensors 
and the statistics of the turbulent air flow).

Discussion
Olfactory navigation relies on integrating various sensory signals that 
contain information about the odour source. Which features exist, 
and how much information they carry, can vary considerably between 
plume structures41–43. Gradient sensing can provide reliable directional 
information when navigating laboratory-controlled plumes, such as 
static ribbons18, or very close to the source of natural plumes before 
odour patches have dispersed (Extended Data Fig. 7). However, further 
away from the source, turbulent air motion stretches and fragments 
odour patches as they are carried downstream, producing odour sig-
nals that are patchy and intermittent1–3, and that span many spatial 
scales—the inertial convective range—from macroscopic eddies to 
molecular diffusion44. In these regions, concentration gradients tend 
to orient randomly, and therefore have limited value. Even in turbulent 
boundary layers, where concentrations are more regular4, gradients 
could aid navigation, but would require amplifying the gradient to an 
extreme degree not consistent with data6.

By contrast, our research suggests an entirely new role for bilateral 
sensing: measuring the direction of odour motion by comparing 
concentrations in both space and time. This information stream is 
especially relevant within the inertial convective range of turbulent 
plumes. Parallel to the plume axis, odour motion is redundant with 
the average wind direction. But perpendicular to the plume axis, 
odour packets spread through random continuous motions, with 
an effective diffusivity much larger than molecular diffusion19. What 
results is a strong flux of odour packets outward from the plume cen-
treline, providing a directional cue orthogonal and, therefore, com-
plementary to the mean wind. We corroborated this with a theoretical 
analysis of a simple turbulent plume model (Methods), finding that 
the outward flow of odour motion that we observed in simulations 
(Fig. 6c) exists in turbulent plumes more generally (Extended Data 
Fig. 10a,b). Moreover, these lateral odour velocity components can 
be detected by computing temporal correlations between two nearby 
points (Extended Data Fig. 10c). Thus, odour motion sensing is not 
just relevant to walking fruit flies—this directional cue could in prin-
ciple enhance natural plume navigation across the animal kingdom, 
across distinct olfactory anatomies and in distinct locomotive regimes 
(Supplementary Text).

Our set-up enables us to test the predictions of the HRC model using 
artificial correlation-type stimuli which would be prohibitive to produce 
with natural odours. In particular, we generated a reverse-phi illusory 
percept for negative correlations, a signature of correlation-based 
algorithms observed in visual motion detection in flies26,28 and other 
species16,29,30, including humans31. Although the HRC model replicates 
several features of odour-direction sensing, it is an incomplete descrip-
tion of the odour motion sensing algorithm, neglecting asymmetries 
between ON/OFF responses and higher-order correlations in odour 
scenes (Supplementary Discussion).

Where direction selectivity occurs in the olfactory circuit is unknown. 
Most ORNs project to both antennal lobes, but ipsilateral and contralat-
eral signals differ in magnitude and timing17, which could be amplified 
further downstream to enact bilateral computations. One potential 
region of interest is the third-order olfactory centre, the lateral horn, 
which mediates innate odour responses and projects bilaterally23,45.
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The lack of smooth concentration fields in naturalistic plumes has 
inspired a number of navigation studies focusing on how animals use 
the temporal features of the odour signal, such as the frequency or dura-
tion of encounters with odourized air packets. This reliance on timing 
is enabled by the substantial degree of temporal precision in olfactory 
circuits35,46–50. Here we show that odour timing can be combined with 
bilateral sensing to measure odour motion, a directional cue that is dis-
tinct from the only other reliable directional cue in turbulent plumes—
the wind. Our findings reveal a valuable role for bilateral sensing in the 
complex, dynamic odour environments that animals navigate in the wild.
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Methods

Fly strains and handling
Flies were reared at 25 ºC and 50% humidity under a 12 h–12 h light–
dark cycle in plastic vials containing 10 ml standard glucose-cornmeal 
medium (that is, 81.8% water, 0.6% agar, 5.3% cornmeal, 3.8% yeast, 7.6% 
glucose, 0.5% propionic acid, 0.1% methylparaben and 0.3% ethanol; 
medium was supplied by Archon Scientific). All flies used in behavioural 
experiments were female. Between 10 and 30 females were collected 
for starvation and placed in empty vials containing water-soaked cot-
ton plugs at the bottom and top. All flies were 3–10 days old and 3 days 
starved when the experiments were performed. Flies in optogenetic 
experiments were fed 1 mM all trans-Retinal (ATR) (MilliporeSigma, 
previously Sigma-Aldrich) dissolved in water. ATR was fed to flies 1 day 
before recording, and all of the flies were housed in the dark from the 
time of ATR feeding until the time of the recording.

All of the flies used throughout the study included a GMR-hid 
transgene, which causes photoreceptors to die, making these flies 
blind. Optogenetic activation was achieved by expressing Chrimson 
(20X-UAS-CsChrimson) in Orco-expressing ORNs (Orco-GAL4) in almost 
all of the experiments51. The one exception was the single-Or experi-
ments (Extended Data Fig. 3c,d), in which Chrimson was expressed 
only in neurons expressing the olfactory receptor Or42b.

The genotypes used were as follows: (1) w;gmr-hid;+ (gift from M. 
Murthy); (2) w;+;20XUAS-Chrimson (Bloomington, 55136); (3) w;+; 
Orco-Gal4 (gift from J. Carlson); (4) w;+;Or42b-Gal4 (gift from J. Carl-
son); (5) w;gmr-hid/+;20XUAS-Chrimson/Orco-Gal4 (Figs. 2–6, con-
structed from 1, 2 and 3); (6) w;gmr-hid/+;20XUAS-Chrimson/Or42b-Gal4 
(Extended Data Fig. 3c,d; constructed from 1, 2 and 4).

Behavioural assay and optogenetic stimulation
The fly walking arena is identical to the one used in a previous study10. 
All of the experiments were performed in a behavioural room held at 
21–23 °C and 50% humidity. The walking arena is 270 × 170 × 10 mm 
(Fig. 2a) and consists of top and bottom glass surfaces and acrylic 
sidewalls. The upwind end is an array of plastic coffee straws, which 
laminarize the airflow (when wind is turned on); the downwind end is a 
plastic mesh. For experiments with wind, dry air was passed through the 
straws at a flow rate giving a laminar flow at 150 mm s−1 within the arena. 
The only exception was the forward and reverse playback complex 
virtual plumes (Fig. 6g), for which the laminar flow speed was reduced 
to 100 mm s−1 to match the flow speed used to generate the recorded 
smoke plume (see the ‘Recorded smoke plume’ section below). Flies 
were introduced by aspirating through a hole near the downwind plastic 
mesh. Flies were illuminated using 850 nm infrared LED strips (Wave-
form Lighting) placed parallel to the acrylic sidewalls.

Experiments were recorded at 60 Hz with a FLIR Grasshopper USB 3.0 
camera with an infrared-pass filter. Optogenetic stimuli were delivered 
using a LightCrafter 4500 digital light projector (Texas Instruments) 
mounted 310 mm above the arena, illuminating an area larger than in 
the original method22. Only the red LED (central wavelength 627 nm) 
was used throughout this study. We used the native resolution of the 
projector (912 × 1,140 pixels), which illuminated the entire walking 
arena with pixels of size 292 µm (along the wind axis) × 146 µm (perpen-
dicular to the wind axis). The majority of our experiments used a 60 Hz 
stimulus update rate; the exceptions were the faster 20–30 mm s−1 
bar stimuli (Extended Data Figs. 3e and 4e,f), the glider experiments 
(Extended Data Figs. 5e,f) and the complex virtual plume playback 
(Fig. 6g), for which we used a 180 Hz update of projected images. 
The average intensity of the red light within the walking arena was 
4.25 µW mm−2. Although all data presented in this Article used blind 
flies, initial exploratory experiments used flies that were not blind. To 
remove visual effects from the stimulating red light, we shone green 
light using an LED (Luxeon Rebel LED 530 nm) throughout the arena 
to flood the visual response. Although this was not necessary for blind 

flies, we retained the green light throughout the experiments presented 
here to compare to past data.

The projector and camera have distinct coordinate axes—camera and 
projector pixels are different sizes and their native coordinate systems 
are not the same handedness. To infer the virtual encountered stimuli 
for navigating flies, one must transform between a 2D camera coordi-
nate xcam and a 2D stimulus coordinate xstim. We assume that the two are 
related by a combination of linear transformations and translations:

A= + .cam stimx x B

To estimate the matrix A and vector B, 3 mm diameter dots were 
projected at random locations xi

stim in the arena while recording with 
the camera; camera coordinates i

camx  were determined in the imaged 
frame using the SimpleBlobDetector function in OpenCV. The six ele-
ments of A and B were then determined by minimizing the least squares 
difference:

∑C A= ( − − )
i

i i
cam stim

2x x B

We verified manually that this procedure generated accurate trans-
formations. We generated all stimuli using custom-written scripts in 
Python (v.3.7.4), and delivered these stimuli to the projector using the 
Python package PyschoPy (v.2020.2.4.post1).

Recorded smoke plume
The complex odour plume presented virtually with light (Fig. 6g) was 
derived from an imaged smoke plume in the same arena. The smoke 
plume was obtained using an identical protocol as in our previous 
work10, but with slightly modified airflow conditions. There, the laminar 
flow speed was 150 mm s−1, whereas here it was reduced to 100 mm s−1. 
The speed of the two lateral perturbing upwind airjets was also reduced 
from ~1,500 mm s−1 to ~1,000 mm s−1. The airjets were stochastically 
switched at a Poisson rate of 10 s−1 as in the original study. To convert 
the smoke plume to the virtual optogenetic plume, the images in the 
video were scaled with an affine transformation and presented with 
8-bit resolution.

Electrophysiology
Single sensillum recordings from Drosophila antennae were performed 
as described previously35,47,52. The recording electrode was inserted 
into a sensillum on the antenna of an immobilized fly and a reference 
electrode was placed in the eye. Electrical signals were amplified using 
an Ext-02F extracellular amplifier (NPI electronic instruments). The 
ab2 sensillum was identified by (1) its size and location on the antenna 
and (2) test pulses of ethyl 3-hyrdoxybutyrate, to which the B neuron is 
very sensitive. Spikes from the A and B neurons in this sensillum were 
identified and sorted as described previously35, using a spike-sorting 
software package written in MATLAB (MathWorks) (https://github.
com/emonetlab/spikesort). For responses to real odour stimuli (Fig. 5), 
odours were delivered as in our previous work35,53. In brief, an odourized 
stream was fed into a main airstream and delivered through a glass tube 
positioned within 10 mm of the fly antenna, while mass flow controllers 
(Aalborg instruments and Controls, and Alicat Scientific) were used to 
regulate airflows.

Experimental protocol
Experiments were carried out between 09:00 and 12:00. This cor-
responds to between 0 and 3 h after lights on in our incubators, in 
which lights were on from 09:00 to 21:00. Between 10 and 30 flies were 
aspirated into the arena and allowed to acclimatize for 2 min before 
the experiments began. Before all of the experiments, optogenetic 
activation was verified by presenting static fictive odour ribbons (as 
in Extended Data Fig. 2c) with laminar wind for 120 s, and ensuring 
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that the flies followed the ribbons upwind as a positive control.  
In our assay, flies could walk on the top glass surface or bottom glass 
surface, and as the spacing between the surfaces was appreciable 
(1 cm), flies could flip to the top surface during a trial without climb-
ing the sidewalls. In our videos, we could not reliably distinguish 
which surface the fly walked on, so we pooled flies for all analyses 
throughout. We verified that optogenetic activation of ORNs for flies 
on either surface was similar, by manually annotating 300 tracks 
of flies navigating fictive odour ribbons, and demonstrating that 
both similarly followed fictive odour ribbons upwind (Extended Data 
Fig. 2d). Unless otherwise noted, each experiment ran for 60–120 s, 
with 60 s in between the experiments.

No statistical tests were used to determine sample size. More than  
50 flies were used for each experimental condition. As flies were reared 
in vials containing 10–15 individuals, this gave 5–10 vials per experimen-
tal condition, sufficient to mitigate outlier effects from any single vial. 
All of the experiments were replicated more than three times on the 
same flies, and the same conditions were replicated at least ten times 
with different flies over several days. Investigators were not blinded 
to fly genotype. Throughout, experiments were interleaved such that 
the directions of the moving stimuli were randomized. No more than 
30 videos were recorded on a single set of flies.

Quantification of fly behaviour and encountered fictive odour 
stimulus
Extraction of fly position, speed and orientation from videos. All 
scripts were written in Python (v.3.7.4). Fly centroids were determined 
using SimpleBlobDetector in OpenCV, assuming a minimum area of 
5 mm2. Given the centroids, fly identities were determined using custom 
tracking scripts. In brief, centroids in subsequent frames were matched 
to the nearest centroid, and if the centroids could not be matched, they 
were marked as disappeared. Flies marked as disappeared for more 
than 30 frames (0.5 s) were then deregistered. Subsequent detected 
centroids were then marked as new fly tracks. Fly orientations θ were 
determined by first using the canny function in the Python module 
scikit-image to determine the points defining the fly edges around 
the centroid, then fitting these to an ellipse using custom-written  
Python scripts. Fly orientations are defined on the interval [0, 360°], 
but ellipse-fitting does not distinguish head (0°) from rear (180°).  
We properly resolved this using the fly velocity (below).

The above data defines the fly positions (x,y) and orientations θ.  
To remove measurement noise, we filtered each of these quantities 
with a Savitsky–Golay filter using a fourth-order polynomial and win-
dow size of 21 points (to avoid branch cuts in θ, it was first converted 
to an un-modded quantity). Velocities  ̇x and  y ̇and angular velocity θ ̇
were defined by taking the analytical derivative of the fitted Savitsty–
Golay polynomials for x, y, and θ. To resolve the two-fold symmetry 
in the fitted ellipses, and therefore distinguish the fly head from the 
rear, we used the fly velocity. For fly speeds greater than a given speed 
threshold, we matched the orientation to the fly velocity vector as 
flies predominantly walked forwards. For other times, we matched 
the fly heading at the beginning and end of bouts when the fly speed 
was below the speed threshold. The result was an estimate that may 
still have errors, which occur as unnatural jumps in orientation.  
We repeated this process for various speed thresholds from 1 to 
4 mm s−1, and chose the orientation trace with the least number of 
jumps. We verified manually with several tracks that this procedure 
was highly reliable.

We noticed that, during the experiments, particularly those with long 
fictive odour encounters such as the wide bars in Figs. 2 and 3, there was 
a slow, gradual bias towards one side of the arena (along the shorter axis 
of the arena). This occurred only for flies with optogenetic constructs 
that were fed ATR, and we reasoned that it might be due to a shadowing 
effect of the projector light from the fly body onto the antenna, or from 
one antenna onto the other, as the projector lens is nearer to the bottom 

of its projected image. This shadowing effect appears to create a fictive 
odour gradient across the arena. To account for this bias, we repeated 
all of the experiments that had an asymmetry in the perpendicular 
direction, such as bars perpendicular to the wind (Fig. 3d (third row)), 
in both directions. We then averaged the turning biases from these two 
directions, after flipping the orientations appropriately. This would 
retain the effects due to direction sensing but remove the bias, under 
the assumption that this bias was an additive effect.

Estimation of encountered fictive odour stimulus in antennae. Given 
these smoothed and corrected x, y, θ measurements, we then estimated 
the encountered fictive odour signal in the antenna region by defining 
a virtual antenna at a location 1.5 mm from its centroid along the ellipse 
major axis toward the fly head. To generate stable estimates—that is, not 
relying on a single pixel value—we use the stimulus value averaged over 
a box of 0.25 mm2 around this location. Stimulus values in the antennal 
region are not measured by imaging, as the images are infrared-pass 
filtered. Rather, they are obtained from knowledge of the stimulus pat-
tern and the stimulus-to-camera coordinate transformation defined 
above. In PsychoPy, stimulus values are defined as 8-bit integers, from 
0 to 255, but in practice we deliver stimuli only as maximum intensity 
(255) or 0. Accordingly, we treat the signal in the virtual antenna as 
binary, equal to 1 when the average stimulus value in the 0.25 mm2 
region is above 200, and 0 otherwise.

Quantification of behaviour for moving bar stimuli. For all wide bar 
stimuli, only flies walking between 2 and 20 mm s−1 at the time of the 
edge hit were included. For fast-moving bars (Fig. 2b–d and Extended 
Data Fig. 3), only tracks lasting longer than 10 s and of which the mean 
speed was between 3 and 10 mm s−1 were included. For the bar stimuli 
in Figs. 2 and 3, we identified ON and OFF edge hits as the times that 
the antennal signal switched from 0 to 1 or 1 to 0, respectively, where 
this binarization was calculated as described above. To calculate 
turning biases, we followed previous work10 and considered saccadic 
turning events, identified as points at which the absolute value of the 
angular velocity exceeded 100° s−1, and ignored small jitters. Turn 
biases at a given time ti (for example, at an ON or OFF edge hit (Figs. 2 
and 3)) were defined as the sign of the change in fly orientation from 
ti + 150 ms to ti + 300 ms, provided that the absolute value of angular 
velocity in that window exceeded 100° s−1 at some point in that window.  
We used this 150 ms latency after ti to account for uncertainties in ti 
due to uncertainties in the exact position of the antenna, which we 
estimated as being upper bounded by 2 mm. For all plots, to remove 
tracks in which flies may have been turning before the hit, we ignored 
points for which the absolute angular velocity exceeded 100° s−1 be-
tween 300 ms and 150 ms before the hit. The dependence of the results 
on this window is shown in Extended Data Fig. 3g; although the effects 
are largest in this regime, they are not strongly sensitive to the choice 
of window following ti.

Quantification of behaviour for correlated noise and glider stimuli. 
Turn biases for correlated noise and glider stimuli (Fig. 4) were calcu-
lated similarly to those for moving bars. Correlated noise and glider 
stimuli (Fig. 4) were presented in blocks of 4 s of stimulus interleaved 
with 4 s of no stimulus; thus, the stimulus turned on at times 0, 8, 16 s 
and so on. For correlated noise stimuli, we considered orientation 
changes from ti to ti + 300 ms, where ti was time of the stimulus initia-
tion (that is, 0 s, 8 s, 16 s and so on); the 150 ms latency used for bar 
stimuli was not needed in this case as the signal was independent of 
fly behaviour, so the hit time was known to the precision of the inverse 
frame rate (6 ms). For glider stimuli, we considered orientation changes 
from ti + 200 ms to ti + 500 ms stimuli as this gave the largest response. 
We also only included flies with speeds <12 mm s−1 for glider responses, 
as long-range correlations can interfere with the intended correlation 
if the fly walking speed is near the glider speed.
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Plume simulations
Direct numerical simulations were generated using the CFX hydrody-
namic simulation software package of Ansys 2019 (Ansys). Parameters 
were chosen to emulate the flow and intermittent odour structure 
of the plume analysed in Fig. 1 (ref. 10). The mean flow speed was 
150 mm s−1, with an air viscosity of 1.5 × 10−5 m2 s−1. An odourant with 
molecular diffusivity Dm = 7.3 × 10−6 m2 s−1 was injected mid-stream (ver-
tically and horizontally). The odourant was modelled as a conservative, 
neutrally buoyant tracer. The dimensions of the computational model 
domain were 30 × 18 × 1 cm, approximately matching those of the 
walking arena10. The computational air inlet boundary was modelled 
as a uniform velocity condition, representing an idealized collimated 
flow. The outlet boundary condition was modelled as a zero-pressure 
gradient opening allowing for bidirectional flow across the boundary. 
Walls were modelled using hydraulically smooth, no-slip boundary 
conditions. To reproduce the stochastic airjets creating the complex 
flow and plume, alternating jet pulses of air were applied from two 
orifices on opposite sides of the flume. The time series of pulses were 
identical to the experiments10. The model domain was broken up into 
4.7 × 106 tetrahedral elements where velocity and concentration were 
computed, with the largest element’s length at 5 mm with an inflation 
layer along the domain boundaries and a refined mesh around the 
inlet orifices.

The flow was simulated at a 2.5 ms time step using a k − ε eddy viscos-
ity model54, which solves the Reynold-averaged Navier Stokes equa-
tions, where the momentum equation is defined as:
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where ρ is the fluid density, p is pressure and μeff is the effective fluid 
viscosity. The turbulent eddy viscosity is treated analogously to vis-
cosity in laminar flow such that μeff = μt + μ where μt is the turbulent 
viscosity and μ the fluid viscosity. The k − ε model assumes that the local 
turbulent viscosity is related to the local turbulent kinetic energy (k)  
and the eddy dissipation rate (ε) as follows:
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The advection–diffusion equation for conservative tracers was used 
to model the transport of the odorant:

C C D ε C∂ + ⋅ ∇ = ( + )∇ ,t x xm
2u

where Cx is the tracer concentration, u is the velocity field, Dm is the 
molecular diffusivity and ε is the local eddy diffusivity solved from the 
turbulence model. For all further analysis, we used the concentration 
and velocity in a plane 1 mm above the bottom of the domain, in the 
approximate z-plane of the fly antennae.

Mathematical modelling and data analysis
Inter-antennal latency of edge hit ΔT. The inter-antennal latency 
ΔT as a function of fly walking speed |vfly| and bar speed |vbar| can be 
calculated with basic geometric considerations. Here we assume that 
the fly speed along the bar direction is sufficiently slow such that the 
bar passes over the fly. Consider a coordinate system in the frame of 
the moving bar, where the bar direction is +y (that is, the bar’s edge is 
in x). The fly velocity in this frame is

ϕ ϕ= [− sin , cos − ],r fly fly barv v v v

where ϕ is the angle of rotation from vbar to vfly in the experimenter 
frame. The inter-antennal latency ΔT is then the projection of the anten-
nal spacing L along vbar divided by the projection of vr along vbar. The 
former is Lsinϕ and the latter is the y-component of vr; the sign of Lsinϕ 
is treated as meaningful, so that a positive/negative value means the 
left/right antenna is hit first. Thus:

T
L ϕ

ϕ
Δ =

sin

− cos
,

bar flyv v

where the sign is given by the numerator since the denominator is 
always positive for bars passing over the fly.

This expression ignores the fly’s angular velocity while walking. 
Assuming that the fly is walking forward while also turning at a rate ω, 
then the total accumulation of orientation over the ΔT interval is ωΔT, 
which for typical values of the maximum rotation rate during normal 
turns (ω ≈ 300° s−1) and typical inter-antennal latencies without turning 
ΔT ≈ 15 ms) is ~5°. This would be if the fly were turning at a maximum 
angular velocity. More typically, rotation rates are approximately 20° s−1 
(ref. 10), giving an accumulated angle during of less than 1°. If we incor-
porate this error as an uncertainty on ϕ, δϕ, then ΔT acquires an error of
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With the values assumed throughout, |δΔT| < 1 ms, so ω is safely 
ignored to the resolution of our experiments.

HRC output versus ΔT for travelling edges. Our prediction for the 
turning bias as a function of the latency ΔT at which an edge of odour 
hits the right antenna after hitting the left, is based on the output r(t) 
of a mirror-symmetrized HRC16. To calculate r(t), we model the correla-
tor architecture as depicted in Fig. 4a. Specifically, the time-varying 
signals from the 2 sensors are sL(t) and sR(t). In one arm of the computa-

tion, sL(t) is linearly filtered with an exponential eτ
1 − t

τ
, while sR(t) is trans-

mitted unchanged; these are then multiplied. For a travelling ON edge 
moving left to right, we have sL(t) = H(t) and sR(t) = H(t − ΔT), where H(·) 
is the Heaviside function. Then, the product of the filtered values is:

∫s t H t T
τ

H t t( ) = ( − Δ )
1

e ( ′)d ′
t t t

τLR −∞

− − ′

∫s t H t T
τ

t( ) = ( − Δ )
1

e d ′
t t t

τLR 0

− − ′

( )s t H t T( ) = ( − Δ ) 1 − e
t
τLR

−

The other arm is similar, except that sR(t) is filtered and sL(t) is trans-
mitted unchanged. Then the product of the filtered inputs is:

∫s H t
τ

H t T t= ( )
1

e ( ′ − Δ )d ′
t t t

τRL −∞

− − ′

H t T= ( − Δ )(1 − e ).
t T

τ− −Δ

The correlator output is therefore:

r t s t s t H t T( ) = ( ) − ( ) = ( − Δ ) e − e .
t T

τ t τ
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− −Δ − / 
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
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Assuming that flies sense odour motion using this computation, the 
output of the correlator, r(t), must be converted to a behaviour; here, 
we model this behaviour as the turning bias being proportional to 
∫ r t t( )d :

∫ ∫r t t tTurning bias ∝ ( )d = e − e d
T

T

T

T t T
τ t τ

− Δ

− −Δ − /

−

+ +
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
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∫ r t dt eTurning bias ∝ ( ) ∝ 1 −
T

τ
−∞

∞
− Δ

 

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
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This second expression is valid provided that behavioural timescales 
T− and T+, over which the correlator response is integrated to produce 
the turning response, are large compared to both τ and ΔT. Long after 
the edge hit, t ≫ T−, the signals are both sL = sR = 1, giving an HRC output 
of 0, as expected for the anti-symmetric architecture.

To estimate the filtering constant τ, we minimize:
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C A τ T A( , ) = Turning bias(Δ ) − 1 − e
T

τ− Δ
2

over A,τ. The turning bias is plotted in increments of ΔT = 4 ms, where 
the value at a given ΔT includes values from ±4 ms. Neighbouring points 
therefore contain overlapping data; this has the effect of smoothing, 
but not biasing, the turning bias versus ΔT curve.

Responses to rightward-moving OFF edges are analogous. The signal 
switches from 1 to 0 at the OFF edge (set it to t = 0), so the signal on the 
left sensor is sL(t) = 1 − H(t) and for the right sensor is sR = 1 − H(t − ΔT). 
Then, one arm of the HRC is:

∫s t H t T
τ

H t t( ) = (1 − ( − Δ ))
1

e (1 − ( ′))d ′
t t t

τLR −∞

− − ′

∫s t H t T
τ

t t( ) = (1 − ( − Δ ))
1

e d ′, > 0
t t

τLR −∞

0
− − ′

s t t T( ) = e , 0 < < Δ
t
τLR

−

and sLR(t) = 0 for t > ΔT and sLR(t) = 1 for t < 0. The other arm output is 
simply sRL = 1 for t < 0 and sRL = 0 for t > 0, as the non-delayed arm drops 
to zero as soon as the edge passes it at t = 0. Thus, the output is:

r t s t s t H t H t T( ) = ( ) − ( ) = e ( )(1 − ( − Δ ))
t
τLR RL

−

Integrating this quantity over time gives the same turning bias as 
the ON edge.

Generation of correlated noise stimuli and C(Δx,Δt). Correlated 
noise stimuli were generated as previously described26. We used op-
togenetic bars that were parallel to the short axis (y) of the arena (for 
example, perpendicular to the wind direction, which runs along x). 
Each bar has a width of one x-pixel; thus, we refer to an x-pixel as a pixel, 
as correlations are defined just in the x-direction. The stimulus value 
(where −1 and 1 are for dark and light bars, respectively) of a bar at pixel 
location x and time t is given by c(x,t) = sgn(η(x,t) + αη(x + βΔx,t + Δt)),  
where each value of the random field η(x,t) is independently chosen 
from a standard normal distribution. Δx is the pixel spacing; Δt is the 
interframe interval. The constant β governs the direction of the correla-
tions: +1 for stimuli correlated in the +x direction (with-wind in the main 
text) and −1 for stimuli correlated in the −x direction (against-wind). The 
constant α governs the polarity of the correlations; +1 or −1 for positive 
or negative correlations, respectively.

The spatiotemporal correlations in pixel intensity can be computed 
in a straightforward manner, as previously described26. Assume that 

α = β = 1; the other cases are analogous. The correlation between two 
pixels separated by spacing x′ and timing t′ is denoted by the correla-
tion function C(x′,t′) = 〈c(x,t)c(x + x′,t + t′)〉. In general,

C x t η η η η( ′, ′) = ⟨sgn(( + )( + ))⟩,1 2 3 4

where ηi is one sample of η. For most choices of t′,x′, all ηi are distinct, so 
the correlation reduces to 0 as the sums are independent. For x′ = t′ = 0, 
the correlation reduces to the variance of c(x,t), which is 1. However, 
for t′ = Δt and x′ = Δx, η2 = η3. Then,

C x t η η η η( ′, ′) = ⟨sgn(( + )( + ))⟩1 2 2 4

C x t η η η η( , ) = ⟨sgn(( − )( − ))⟩1 2 2 4

as the random variables are symmetric about 0. The sign depends 
only on the ordering of the ηi, which are 3 independent samples from 
a standard normal distribution. There are 6 ways to uniquely order the 
ηi, only two of which give a positive sign (η1 > η2 > η4 and η1 < η2 < η4); 
thus, the expected value is 1/3 (ref. 26). An analogous property holds 
for t′ = −Δt,x′ = −Δx. Finally, the α and β factors are incorporated in a 
straightforward manner as scale factors, giving:

C x t δ δ α δ δ δ δ( ′, ′) = +
1
3

( + ),x t x β x t t x β x t t′,0 ′,0 ′, Δ ′,Δ ′,− Δ ′,−Δ

where the δ denotes the Kronecker delta function. Note that the 
correlation can be calculated by averaging over all of spacetime, 
or just in space for a fixed set of times, or just in time for a fixed set 
of points. The latter is our interpretation for the HRC output from 
fixed antennae, assuming the correlation direction is perpendicular 
to the fly body.

Generation of glider stimuli. Here, the stimulus value of a bar at pixel 
location x and time t is given by c(x,t) = B(x − βtΔx/Δt), where B = 2X − 1 
with X ≈ Bernoulli(p = 0.5), Δx is the pixel spacing and Δt is the inter-
frame interval. The correlation between two pixels separated by spacing 
x′ and timing t′ is
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Δ
Δ , that is, the correlation matrix has a 

diagonal or antidiagonal structure for β = 1 and β = −1, respectively. 
These stimuli are a class of glider stimuli with a two-point correlation 
structure32,33. Visually, these gliders are a frozen pattern of random 
light and dark bars moving at constant speed in the βx direction.

HRC output for correlated noise stimuli. Here we calculate the HRC 
output for correlated noise stimuli, which has been computed before 
for any pair of filters on the two arms of the HRC26,55. Assume that the 
antennae are held at approximately the spacing of the correlation shift 

xΔ  (see the ‘Generation of correlated noise stimuli and C(Δx,Δt)’ sec-
tion), and that the correlation direction is +x (rightward over the fly 
body), so β = 1 from the last section. Then, one arm of the HRC gives:

∫s t s t
τ

s t t( ) = ( )
1

e ( ′)d ′.
t t t

τLR R −∞

− − ′

L

Averaging over time gives:

∫s t c x t
τ

c x x t t⟨ ( )⟩ = ⟨ ( , )
1

e ( − Δ , ′)d ′⟩.
t t t

τLR −∞

− − ′

As β = 1, then only the last term in the correlation equation applies:
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3
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This equation holds for Δt being positive. The other arm is analo-
gous, for Δt < 0.
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Thus, the full correlator output is

∫ r t t s t s t α t
τ

( )d = ⟨ ( )⟩ − ⟨ ( )⟩ = sgn(Δ )
1

3
e

t

t
τLR RL

−
|Δ |

Note that the correlator output response switches sign if the cor-
relation polarity α flips, this is the reverse phi response. There is a slight 
artificiality in this expression, in that the response is discontinuous at 

tΔ = 0. We have assumed an exponential filter, which technically has 
an immediate response time, violating causality. Moreover, the optimal 
response occurs for an inter-frame interval Δt that is arbitrarily small. 
As a more realistic filter, one can use et

τ
t τ− /

2 , which has zero response 
at time zero and maximal response at t = τ. Then,

∫ r t t s t s t α t
τ

t( )d = ⟨ ( )⟩ − ⟨ ( )⟩ = sgn(Δ )
1

3
|Δ |e

t

t
τLR RL 2

−
|Δ |

This filter is continuous at Δt = 0, and the maximum correlator output 
occurs when the filter timescale τ matches the interframe interval Δt. 
In either case, the salient point is that the response is antisymmetric in 
both the temporal shift Δt and the correlation polarity α, as expected.

HRC response for prefiltered inputs. Here, we motivate how filtering 
of inputs affects the response curve of the HRC, that is, HRC output as 
a function of stimulus latency ΔT. We assume delta-correlated stimuli 
(as in the ‘Generation of correlated noise stimuli and C(Δx,Δt)’ section), 
for which the response functions are expressed in simple, interpret-
able forms. Thus, we set cross-correlation between the left antennal 
stimulus and right antennal stimulus at c(t′) =  〈sL(t)sR(t − t′)〉 = δ(t′ − ΔT)
, where the average is taken over instantiations of the stimulus, which is 
equivalent in this case to taking an average over time. Defining f1 and f2 
as the delay filters for the two arms (for example, 1 fast and 1 slow filter) 
and in the absence of any other filters, the averaged HRC output from 
1 side of the detector is:

∫ ∫s T t f t s t t t f t s t t(Δ ) = ⟨ d ′ ( ′) ( − ′) d ″ ( ″) ( − ″)⟩LR 1 L 2 R

∫ t t f t f t δ t t T= d ′d ″ ( ′) ( ″) ( ′ − ″ − Δ )1 2

∫ t f t f t T= d ′ ( ′) ( ′ − Δ )1 2

( )f f T= ⊗ (Δ ).1 2

In other words, the response is the convolution of the two filters. 
Further assuming that f2(t) is fast (that is, a delta function response), 
this reduces to the slow filter evaluated at the inter-antennal latency:

s T f T(Δ ) = (Δ ).LR 1

Note that this and related derivations (and interpretations) have 
been given in previous studies26,55.

Now, assuming that the signals are each prefiltered with a smooth-
ing filter f3(t), we get:

∫ ∫
s T

t t f t t f t s t t t t f t t f t

s t t
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∫ t t f f T t t f f t t= d ″d ‴′( ⊗ )(Δ − ‴′ + ″)( ⊗ )( ″ − ‴′)1 2 3 3

( ) ( )f f f f T= ⊗ ⊗ ⊗ (Δ ).1 2 3 3

Again, if f2 is a delta function response, this gives:

s T f f f T(Δ ) = ⊗ ( ⊗ )(Δ ).LR 1 3 3

The full HRC response is this quantity, anti-symmetrized:

T s T s T

f f f T f f f T

HRC(Δ ) = (Δ ) − (−Δ )

= ⊗ ( ⊗ ) (Δ ) − ⊗ ( ⊗ )(−Δ ).
LR LR

1 3 3 1 3 3

Thus, the HRC response is essentially the slow filter convolved with 
the autocorrelation of the prefilter. Indeed, the effect of the prefilter, 
a linear operation, is to ‘smear out’ the HRC response—although it acts 
twice, once for the right sensor and once for the left sensor.

What effect does prefiltering have on the HRC response? As the 
HRC is defined anti-symmetrically in ΔT, it is direction selective by 
construction, so the prefiltering will not affect direction selectivity. 
However, filtering can affect the signal-to-noise ratio and, therefore, 
the regime for which direction selectivity is resolvable given the noise. 
For concreteness, let us calculate the closed-form HRC response, 
assuming that the slow filter and prefilter are each exponential filters 
with timescales τHRC and τsmear, respectively, and assuming that there 
is noise in the external signal. We are considering binary valued cor-
related signals, so we imbue the noise as a random variable that adds 
external variability to the timing of the signals. As we are looking at 
antenna-to-antenna correlations, we add the noise to just one antenna 
for simplicity.



In the prior derivation, noise changes the integrated time t′′′ to t′′′ + X, 
where we take X ≈ N(0,δt) as the noise. Then, the noisy HRC response is:

T δT s T X s T X

f f f T X

f f f T X

HRC(Δ ) = (Δ − ) − (−Δ + )

= ⊗ ( ⊗ )(Δ − )

− ⊗ ( ⊗ )(−Δ − )

LR LR

1 3 3

1 3 3

In other words, the noise simply manifests as T T XΔ → Δ −  in the HRC 
response. We thus just designate ΔTδT = ΔT + X as a normal random 
variable with mean ΔT and standard deviation δT.

Now, the autocorrelation of an exponential pre-filter is:
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and therefore the response of 1 arm of the noisy HRC gives:
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smear
. Again, the full response is HRC(ΔTδt) = sLR(ΔTδt) −  

sLR(−ΔTδt). We then define the minimum resolvable ΔT as:

T δt T T

T T

Δ ( )=min|Δ | s.t. ⟨HRC(Δ )⟩

> ⟨HRC(Δ ) ⟩ − ⟨HRC(Δ )⟩

δt X

δt X δt X

resolvable

2 2

In words, it is, for a given noise level δt, the minimum inter-antennal 
latency ΔT for which the mean of the response is larger than the s.d. of 
the responses. In realistic scenarios, the negative responses for ΔTδt < 0 
can mix with the positive responses for ΔTδt > 0, confounding responses 
for ΔT near 0, and our interest here is the magnitude of this effect. We 
calculate ΔTresolvable(δt) numerically for the two-exponential response 
given the above expressions (Extended Data Fig. 6) for various values 
of τsmear. We find that the minimum resolvable ΔT is limited entirely to 
the noise level δt, regardless of whether τsmear is much larger or much 
smaller than τHRC. This indicates that the prefilter certainly affects the 
values of the HRC output, but it does not affect the direction-sensing 
abilities of the HRC.

Calculated HRC responses from electrophysiological measure-
ments. To estimate HRC outputs from a pair of recorded ORN spike 
trains, we first manually shifted one recording from the pair by −ΔT/2 
and the other by ΔT/2, which mimics an odour edge travelling from left 
to right, hitting the two antennae sequentially at a latency of ΔT. The 
magnitude of ΔT is inversely proportional to the odour speed; assuming 
an interantennal distance of 300 μm, the corresponding odour speed 
is 300/ΔT μm s−1. Leftward-travelling odours are simulated by choos-
ing ΔT < 0. We first produce ORN firing rates from these spike trains 
by convolving the binary spike trains with a Gaussian filter (σ = 15 ms). 
HRC outputs were generated from these firing rates using the proce-
dure described in the above sections, choosing a τ = 15 ms exponential 
filter for the delay arm.

For the scenario in which we added multiple sources of noise (Fig. 5e), 
we first took the recorded spike trains and shifted each spike by τjitter, 
where τjitter was chosen uniformly from −30 to 30 ms. Next, these spikes 
were shifted by ±ΔT/2 as above, to assign left and right ORNs, and then 
filtered in time as above to get ORN firing rates rORN,L(t) and rORN,R(t). 
Left and right projection neurons receive input from both ORNs, but 

with differing weights17, which we mimicked by taking the input to the 
left projection neuron rPN in,L(t) = 0.6 rORN,L(t) + 0.4 rORN,R(t) and rPN in,R(t) =  
0.6 rORN,R(t) + 0.4 rORN,L(t). Projection neurons average over many ORN 
inputs by filtering over 30 ms (ref. 34), which we mimicked by designat-
ing the projection neuron response as r f r= ⊗PN,L PN PN in,L, where fPN(t) 
is a 30 ms exponential filter. Finally, rPN,L and rPN,R were used as inputs 
to the HRC described above.

Analysis of imaged plume. We reanalysed behavioural data previ-
ously extracted from Drosophila navigating an imaged complex 
plume of smoke10 in the same walking assay used throughout this 
study. The signal in the virtual antenna was quantified as described 
previously; in brief, the virtual antenna is defined as an ellipse perpen-
dicular to the body axis with the long axis given by the width of the fly 
(1.72 ± 0.24 mm) and the small axis equal to one-fifth the minor axis 
of the fly (0.46 ± 0.24 mm). We reanalysed the imaged fly and signal 
data to resolve the virtual antenna signal into 14 pixels along its long 
axis (averaged along its short axis). Thus, the signal is a vector sant(t) =  
[s(x1,t),s(x2,t), …, s(x14,t)] defined at locations along the antenna’s long 
axis xant = [x1, …, x14] for a given time t.

The overall concentration in the antenna was calculated as the aver-
age signal over the centre of the virtual antenna, at the locations 
[x5,x6,x7,x8]. The gradient ∇cant in the virtual antenna at a given t was 
calculated by regressing sant against xant and extracting the slope. The 
odour velocity in the virtual antenna was estimated by calculating 
correlations of the virtual antenna signal over space and time. For a 
given t, we calculated �x s x t s x x t tΔ = argmax ( , ) ( + Δ , + Δ )x i i xΔ i

, where 
Δx spanned integers from −7 to 7, and Δt is the interframe interval 
(11 ms), and s(·) were mean subtracted. This gives the signed number 
of pixels for which the correlation between two successive frames is 
maximized, up to the length of the antenna. The odour velocity was 
then defined as �xΔ × frame rate×resolution, where the imaging frame 
rate was 90 frames per second and the spatial resolution is 0.153 mm 
per pixel. We disregarded points for which xΔ� was ±7, as those may not 
represent local maxima but were instead limited by the size of the 
antenna. All three quantities—total concentration, gradient and odour 
velocity—were smoothed in time using a Savitsky–Golay filter of order 2  
and a smoothing window of 21 timepoints (~350 ms).

To remove boundary effects from the arena extent, we used for Fig. 1c–e  
only points for which the fly was in the central region of the arena, 
100 < x < 250 mm, |y − y0| < 40 mm, where y0 is the plume’s central 
axis, and only points for which fly speed was greater than 0.1 mm s−1. 
Angular velocity was calculated as the average orientation change 
over 200 ms.

Analysis of simulated plume. The simulation generated concentration 
fields c(xi,yi,t) and flow velocity fields vwind(xi,yi,t) defined on grid points 
(xi,yi) of a non-uniform mesh. We first generated values on a 0.5 mm 
square lattice, by triangulating the data and performing barycentric 
linear interpolation over each triangle (scipy.interpolate.griddata in 
Python, with the method ‘linear’). Fields in Fig. 6 and Extended Data 
Fig. 7 were plotted every 1 cm, (that is, every 20 pixels on the original 
0.5 mm lattice). Wind speed vectors at each point on this 1 cm lattice 
were generated by averaging vwind over the 20 × 20 values in a 1 cm2 box. 
The plotted vwind|odour field was generated by considering only wind 
vectors for which the odour concentration was above 1 × 10−3. Odour 
gradients were generated by calculating local differences ∇cx and ∇cy 
in the x and y directions, respectively. Specifically, for ∇cx, we calcu-
lated (c(x+) −c( x−))/(c(x+) + c(x−)), where x+ and x− were the averages in 
the right and left half of a 1 cm2 box centred at each lattice point, re-
spectively. ∇cy was calculated analogously, using the top and bottom 
half of the same box. Odour velocities were calculated similarly to those 
in the imaged plume used in Fig. 1, by correlating the values in a given 
spatial region between two frames. Specifically, to get vx,odour at a given 
time t, we calculated s x t s x x t targmax ⟨ ( , ) ( + Δ , + Δ )⟩x j j xΔ j

, where s(xj,t) 
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was the odour concentration in a 1 cm2 box averaged over the y direction 
for each xj pixel spaced by 0.5 mm. The shifts Δx ran from −20 to 20 
pixels (±1 cm). This quantity was multiplied by the frame rate of 100 
frames per second and by the spatial resolution 0.5 mm per pixel to get 
vx,odour in mm s−1. An analogous operation was performed for vy,odour 
using the same 1 cm2 box. All odour gradient and odour velocity values 
for very low odour concentrations were set to Nan, as were any odour 
velocity values that produced a maximum shift |Δx| = 20. The resulting 
wind speed, gradient and odour velocity were all smoothed in time 
using a Savitsky–Golay filter of order 1 and window length 11 (110 ms).

Analysis of fly navigation in complex virtual plumes. For the plume 
navigation experiments (Extended Data Fig. 7), we considered tracks 
that began in the downwind 50 mm of the arena (x > 230 mm) and had 
an average walking speed of at least 0.5 mm s−1. For the histograms 
(Fig. 6f,i (middle and right plots)), we only plotted instances at which 
the fly’s instantaneous walking speed was greater than 5 mm s−1. For the 
success ratios (Fig. 6f,i (left plots)), we considered tracks that lasted 
30 s or longer, or that reached the upwind end of the arena (x < 50 mm) 
before then.

In silico virtual agent model and simulation. We used two different 
navigation algorithms for the agent-based simulations.

The bio-inspired algorithm (Fig. 6j–l) was modelled on our previ-
ous work10, which quantified the navigational behaviour of walking 
Drosophila in spatiotemporally complex odour plumes. We ran the 
agents in the imaged complex plume used in the plume navigation 
experiments (Fig. 6g). We recapitulate the algorithm briefly here, but 
refer the reader to the original study for all details.

We generated two types of agents: DS− agents, which obeyed the 
original navigational model and could not sense odour direction, and 
DS+ agents, which combined the original model with odour-direction 
sensing. Both DS+ and DS− agents navigated using the timing of odour 
hits—times at which c(t) exceeded a threshold, here chosen to be 3 (the 
digitized signal ranges from 0 to 255). At each frame, agents underwent 
stochastic transitions between walking, turning and stopped states. 
Agents walked at a constant speed of 10 mm s−1. During walking, their 
heading underwent rotational diffusion, with a s.d. of 0.22° every frame 
(each frame is 1/60 s). Transitions from a stopped to walking state were 
inhomogeneous Poisson processes, in which the transition rate increased 
monotonically with the frequency of odour hits. Transitions from walk-
ing to a stopped state were also inhomogeneous Poisson processes, 
whereby the rate dipped at each odour hit, before decaying back to a 
baseline; thus, flies keep walking when the frequency of odour hits is 
high. Turns occurred only while walking, and were Poisson events with a 
rate of 0.5 Hz. Each turn magnitude was a random sample from N(30°,8°).

The key navigational aspect of the bio-inspired algorithm was the turn 
direction. For DS− agents, the turn direction was a binary random vari-
able, either upwind or downwind, where p(upwind) = min(1,0.5 + αw(t)), 
where α = 1 and w(t) is a running average of the frequency of odour hits. 
As in the original study, the running average is computed by convolv-
ing the binary vector of odour hit onsets (1 at the onset of each odour 
hits; 0 elsewhere) with an exponential filter of timescale 2 s. Thus, for 
frequent odour hits, the turns are more likely to be directed upwind. For 
DS+ agents, the turn direction was a binary variable, either against or 
towards vsum, where vsum is the vector sum of the odour motion direction 
and wind direction: p(against) = min(1,0.5 + αw(t)), where α = 1. Thus, 
as the frequency of the odour hits increases, the agent is more likely 
to direct its turns against the summed direction vsum.

To compute the odour hit times (for both DS− and DS+ agents) and 
odour direction (for only DS+ agents), the agents had two antennae 
separated by 1.5 mm, and each antennae received an odour signal, cL(t) 
and cR(t), respectively, that was the average signal value in a 
0.5 × 0.5 mm2 region. The total odour signal c(t) was c t c t( ) + ( )

2
L R . For DS+ 

agents, the odour motion direction was computed by taking the sign 

of codour(t) = cL(t)cR(t + ΔT) − cL(t + ΔT)cR(t), where the delay ΔT was cho-
sen as 1 time frame. For codour(t) > 0, odour direction vector pointed 
θ + 90°, and for codour(t) < 0, odour direction vector pointed θ − 90°, 
where θ is the agent heading. In other words, the agent can resolve only 
the direction, left or right, of the odour motion. If the correlation mag-
nitude is too low (|codour| < 5), then DS+ agents ignore codour and turn 
against the wind direction like DS− agents.

All 100 agents in the bio-inspired algorithm were initialized in the 
back 50 mm of the arena and uniformly in the lateral direction, and 
their headings were initialized randomly in the upwind 180 sector. 
Agents were simulated for 2,500 frames, or 41.7 s. If agents reached 
the rectangular boundary of the arena, they were reflected ballistically 
from the wall.

In the simple algorithm (Extended Data Fig. 9), virtual agents with 2 
spatially separated sensors navigated the simulated plume (Fig. 6a) 
using a simple algorithm. All agents were initialized at the back of the 
arena, facing upwind. At each frame (10 ms), agents turned either left 
or right 90° (except for upwind oriented DS− flies when within the 
odour signal—these flies maintained upwind), depending on the navi-
gation strategy as described in the main text, and stepped forwards 
0.75 mm. The sensors were placed 0.5 mm to the left or right of the 
agent centroid. The measured odour signal concentration was defined 
as c =

c c( + )
2

L R , where the concentration in each sensor was cL and cR, 
respectively. We set the detection threshold at c0 = 1 × 10−3. The odour 
correlation between the two sensors was defined as codour(t) = cL(t)cR(t +  
ΔT) − cL(t + ΔT)cR(t), where the delay timescale ΔT was chosen as 1 frame 
(1/100 s). From codour, the direction of odour motion vodour was defined 
as +1 if abs(codour(t)) > 1 × 10−8 and sgn(codour(t)) > 0; as −1 if 
abs(codour(t)) > 1 × 10−8 and sgn(codour(t)) < 0; and as 0 otherwise. In gen-
eral, odour signals with a leftward component over the virtual agent 
in its body frame had vodour = 1, while those with a rightward component 
had vodour = −1. Simulations were carried out separately for agents that 
could sense (DS+) and could not sense (DS−) odour motion. Agents 
followed the strategy as described in the main text. For DS+ flies, when-
ever codour was below the threshold (abs(codour(t)) > 1 × 10−8), but the 
odour was still detectable (c > c0), the decisions obeyed the DS− strategy.  
All agents were initialized in the back 50 mm of the arena and uniformly 
in the crosswind direction, and simulated for 2,500 timesteps, or 25 s.

Theoretical analysis of odour motion in turbulent odour plumes. 
Here we investigated the motion of odour signals perpendicular to the 
mean flow using a toy model of turbulent plume similar in spirit to those 
used in refs. 19,56,57. Odour packets are released from a point source at a 
given rate. The concentration around the centre of each packet is given 
by a local diffusive process that spreads the concentration through 
molecular diffusion of the odour. Meanwhile, the packets themselves 
are advected downwind by the mean flow, while being dispersed by the 
fluctuating velocity u (ref. 19). We consider the simple case of an isolated 
packet and calculate its expected velocity crosswind to the flow, at dif-
ferent locations throughout the plume. For analytical simplicity, we 
assume stationary homogeneous and isotropic turbulence and model 
the turbulent velocity u as a telegraph process that switches between 
left motion and right motion at speed v, where the switching rates from 
left to right and vice versa are both λ = 1/T. Thus, 2T is equivalent to the 
Lagrangian integral time scale and the packet speed v to the r.m.s. of the 
turbulent velocity field. While the velocity u switches discontinuously 
between +v and −v, its time correlation function is the same as that of 
the Ornstein–Uhlenbeck process often used to model homogeneous 
isotropic turbulence19,54:

u t u t⟨ ( ) ( ′)⟩ ∝ e .
t t

T
−

− ′
2

Our goal is an estimate of the average odour motion velocity at a 
given lateral distance from the plume, at a given time t, 〈v〉y,t. As packets 
are advected downwind at some speed U ≫ v, we have t ≈ x/U, so that 



this is equivalent to finding the average lateral velocity at some x,y 
position in the plume54. Run times are distributed as eT

t T1 − / , so packets 
reaching a given y will have been travelling for some distance  y∼, 
where  ∼y  is distributed as p y( ) = eTv

y Tv1 − /∼ ͠ . If the packets were originally 
uniformly distributed, then the average velocity at y would be 0. How-
ever, an asymmetry arises due to the non-uniform packet distribution, 
which is dispersing laterally from a delta function at y = 0. For times 
t ≫ T, the distribution of packets is approximately the diffusion kernel 
with effective turbulent diffusivity DT = Tv2:

p y t
πTv t

( , ) =
1

2
e y Tv t

2
− /22 2

Under these assumptions, the average velocity at the fixed point 
〈v〉y,t is:
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The first term in the numerator is for packets reaching y that have 
come from its left (these are travelling in the +y direction), while the 
second is for those reaching y that have come from the right, which are 
travelling in the −y direction. The denominator is a normalization factor 
given by the total number of packets reaching y at time t. This equation 
can be integrated numerically. To obtain an analytical approximation, 
we neglect the change in the packet distribution over the time of travel-
ling one correlation time, approximating p(y′,t − y′/v) by p(y′,t), as the 
packet distribution does not change appreciably over that time (the 
validity of this assumption was verified by simulations). Integrating:

v v
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R R
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for |y| < vt, and 0 otherwise. We are interested in (1) whether the aver-
age lateral velocity of the packets is directed outward from the plume, 
which would be indicated by an asymmetrical dependence in y, and  
(2) how this asymmetry depends on the correlation time T. The profile 
of 〈v〉y,t is odd for all T (Extended Data Fig. 10a), indicating that, for 
any T, the velocity of odour packets in the crosswind direction points 
away from the plume’s central axis. Moreover, for higher T, the velocity 
component points more strongly outward through a larger portion of 
the plume, indicating that correlations in the packet motion underlie 
this directional cue (Extended Data Fig. 10a).

We next investigate how the combination of packet diffusion and 
packet centroid motion together can influence a spacetime correlation 
of the odour concentration, as would be computed by time-resolved 
bilateral measurements. For simplicity, we do this computation in one 
dimension, considering diffusion of packets and dispersion of their 
centroids in the y direction only, along with ballistic transport in the x 
direction. We start with a single packet. Assuming that yi(t) is the trajec-

tory of the centroid of the packet and ϕ y t y t( , , | ( )) = ei πD t
y y D t1

4
−( − ) /4

p
i p

2
 

is the local concentration at a given location y and time t around the 
packet. We define the correlator as:

C y t y t y t ϕ ϕ ϕ ϕ(Δ , Δ | , , ( )) = − ,i ++ −− +− −+

where

ϕ ϕ y y t t y t= ( + Δ /2, + Δ /2| ( ))i++

ϕ ϕ y y t t y t= ( − Δ /2, − Δ /2| ( ))i−−

ϕ ϕ y y t t y t= ( + Δ /2, − Δ /2| ( ))i+−

ϕ ϕ y y t t y t= ( − Δ /2, + Δ /2| ( ))i−+

Thus, the correlator C(Δy,Δt|y,t,yi(t)) is a time-antisymmetrized 
quantity, which at time t and position y computes the correlation of 
the odour concentration between two points in the direction perpen-
dicular to the mean wind, separated by Δy at times separated by Δt, 
given a packet of which the centre is at (xi,yi) and which was released 
at t = 0. We stress that we do not imply that this correlator is being 
enacted by any circuitry, nor is it a unique definition. However, it has 
key features—namely, comparisons across space and time and time 
anti-symmetry—that we will show to be sufficient to detect the lateral 
odour velocity. Expanding this correlator gives

( ) ( )C y t y t y t y t ϕ ϕ ϕ ϕΔ , Δ | , , ( ) = Δ Δ ∂ ∂ − ∂ ∂i t y y t

to the lowest order. For the packet model, at appreciable times t ≫ T, 
this gives:

C y t y t y t y t
t y y y

πD t
(Δ , Δ , , ( )) = Δ Δ

+ −
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y y D t
2 3

−( − ) /2i p
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Now we take the average of the correlator over the packet distribu-
tion p(yi,t) to get the expectation at a fixed y,t:

∫y t y t y C y t y t y t p y t⟨C(Δ , Δ , , , )⟩ = d (Δ , Δ , , , , ( )) ( , )i i i

where p y t( , ) = ei πTv t

y Tv t1

2

− /2
2

2
i
2

 for t ≫ T, as above. We can approximate 
yi

̇ by v y t,i
— the average velocity for a packet at position yi as derived 

above. The expression for 〈C(Δy,Δt|y,t)〉 does not lend itself to a closed-
form expression due to the complexity of v y t,i

; we integrate it 
numerically.

In nature, the strength of the turbulence will vary in space and time, 
so it is informative to examine how the average correlator output 
〈C(Δy,Δt|y,t)〉 depends on the Lagrangian integral time scale T and 
the r.m.s. of the turbulent velocity field v, which controls the packet 
speed in the direction perpendicular to mean wind direction. We find 
that, for Dp ≪ DT = v2T, the correlator 〈C(Δy,Δt|y,t)〉 has a clear asym-
metry about y = 0 as expected, and that the peaks are stronger with 
increasing correlation time T (Extended Data Fig. 10b). Moreover, 
〈C(Δy,Δt|y,t)〉 increases on average with v, while decreasing with Dp 
(Extended Data Fig. 10c), indicating that the response essentially 
derives from correlated motion over the detector rather than molecu-
lar diffusion alone.

Statistical quantification. All error bars, when shown, represent 
s.e.m. Statistical tests used and significance levels (P values) for given 
comparisons are indicated in the main text; *P < 5 × 10−2, **P < 1 × 10−2, 
***P < 1 × 10−3, ****P < 1 × 10−4. In some instances, **** may refer to 
P < 1 × 10−6, if indicated in the text. For the plume navigation data, s.e.m. 
values were taken over distinct fly trajectories.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All experimental data are available at Dryad (https://doi.org/10.5061/
dryad.1ns1rn8xd). Source data are provided with this paper.

Code availability
All data collection was performed using custom codes written in Python 
(v.3.65), using the scientific packages numpy and scipy, plotting pack-
age matplotlib and the stimulus generation package psychopy. Custom 
Python codes used for projecting fictive odour stimuli, for fly tracking, 
and for behavioural and signal extraction and smoothing are available 
at GitHub (https://github.com/emonetlab/opto-track).
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Extended Data Fig. 1 | Verification of odour velocity calculation and 
distributions of signal-derived quantities in measured plume. a, Mean 
odour velocity measured in the virtual antenna at all times for navigating flies 
in measured smoke plume, plotted as a function of fly orientation. The - θcos ( )  
trend reflects the fact that the main component of odour velocity is parallel to 

the mean wind direction 90 o, as expected – a consistency check on the odour 
velocity calculation. b–d, Histograms of signal-derived quantities measured in 
the fly virtual antenna; the x-axis limits in Fig. 1c–e are determined by the extent 
of these histograms.



Article

Extended Data Fig. 2 | Electrophysiological and behavioural verification of 
optogenetic activation of Drosophila ORNs. a, Extracellular measurements 
of ab2A firing rates for various odour signals mimicking those we use throughout 
our study. Stimuli (red shades) are delivered using a Luxeon Rebel 627 nm red 
LED (Lumileds Holding B.V., Amsterdam, Netherlands) at 10 uW/mm2. The 
frequency and duty cycle for the stimuli in the first plot are 1.5 Hz and 50% 
respectively, which mimics what a stationary fly in the 5 cm wide, 15 mm s−1 fast 
moving bars (Fig. 2b) would encounter. Longer stimuli approximate the stimuli 
experienced in the wide moving bars (Fig. 2e, f). The bottom plot shows the 
firing rate in response to the stimulus experienced by one representative 
measured fly navigating 15 mm s−1 moving wide bars. All recordings were taken 
from 5 ab2a ORNs in 2 different flies. b, Illustrative track of a fly following 

stationary fictive odour ribbons upwind. Red bars: optogenetic stimulus 
location – bars are overlaid on the figure, but not actually imaged since the 
image is IR-pass filtered. c, Fictive odour signal experienced by a fly (red bars) 
can be quantified simultaneously with fly behaviour (teal) by aligning 
the camera and projector coordinate systems (Methods). Plotted are the fictive 
odour signal and behaviour for the track shown in b. d, Verification that flies on 
both the top and bottom glass surfaces of the assay respond similarly to 
the fictive odour signals (here, 3 odour ribbons in laminar wind; scale bar: 2 cm; 
left). Flies were manually annotated as being on the top or bottom surface.  
In both cases (middle and right; scale bar: 2 cm), flies followed the fictive odour 
ribbons upwind, similar to behavioural responses with real odours10.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Odour direction selectivity in single antenna and 
single Or flies, and ON/OFF edge responses across speeds and for negative 
controls. a, Component of fly walking velocity along +x direction during the 5s 
stimulus (shaded grey) and blank periods (illustrated in Fig. 2b), in Orco>Chrimson 
flies that have one antenna ablated (compare to Fig. 2c). Shaded errors: SEM. 
Blue and orange denote rightward and leftward moving bars, respectively. 
Since it is difficult to distinguish flies walking on the top and bottom surface of 
the assay, right- and left-antenna ablated flies are pooled. n = 100, 89 tracks for 
rightward and leftward bar motion, respectively. Only flies oriented in the 90o 
sector perpendicular to the bar motion are included. b, Distribution of fly 
orientations during the 5s stimulus (top) and 5s blank periods (bottom), for 
rightward (blue) and leftward (orange) bar motion, Orco>Chrimson flies with 
one antenna ablated (compare Fig. 2d). Orientations are symmetrized over the 
x-axis. c-d, Same as a-b, for Or42b>Chrimson flies with both antennae intact. 
n = 37, 50 tracks for rightward and leftward bar motion, respectively. e, Turning 
bias for all instances in which flies encounter the fictive odour ON (green) or 
OFF (purple) edge, for flies oriented within a 90 o sector of the direction 
perpendicular to bar motion. Turning bias is calculated as the sign of fly 
orientation change from 150 ms to 300 ms after the edge hit. All flies are 
Orco>Chrimson and fed ATR (i.e. optogenetically active) except in the 7th plot, 
which are not fed ATR. Data are shown for bars that move at various speeds  
(left 6 plots), as well as for negative controls (7th and 8th plot). Error bars: SEM.  
P values calculated using the chi-squared test (****p < 10−4, ***p < 10−3, **p < 10−2, 
*p < 0.05). Specifically, p = 9.60×10−5 for n = 1472 ON edge hits and p = 0.23 for 
n = 1661 OFF edge hits for 30 mm s−1 bars; p = 3.49×10−3 for n = 1167 ON edge hits 
and p = 0.132 for n = 1306 OFF edge hits for 20 mm s−1; p = 1.03×10−6 for n = 548 
ON edge hits and p = 1.18×10−3 for n = 470 OFF edge hits for 15 mm s−1; p<10−6 for 
n = 1125 ON edge hits and p = 1.78×10−5 for n = 1039 OFF edge hits for 10 mm s−1; 
p < 10−6 for n = 1000 ON edge hits and p = 0.816 for N=987 OFF edge hits for 
5 mm s−1; p = 0.012 for n = 1284 ON edge hits and p = 0.2106 for n = 1633 edge hits 
for 1 mm s−1; p = 0.423 for n = 1387 ON edge hits and p = 0.701 for n = 1484 OFF 
edge hits for no ATR 10-15 mm s−1; and p = 0.0295 for n = 988 ON edge hits and 

p = 0.454 for n = 1153 OFF edge hits for 1 antenna 10-15 mm s−1. Direction 
selectivity is satisfied if both ON and OFF edge responses have the same sign; 
gradient sensing would require opposite signs for the two edges. Data indicate 
that flies counterturn against the direction of fictive odour bars at both edges, 
within a range of bar speeds. Large ON responses for slow bar speeds are likely 
attributed to gradient sensing: since the direction of odour motion and 
gradients are the same for ON edges but opposite for OFF edges, this would 
give appreciable ON edge responses at slower speeds, but diminished OFF edge 
responses. f, Turning responses for Or42b > Chrimson flies, in which light 
activates only one ORN type, in response to bars moving at 10-15 mm s−1. Error 
shades: SEM. Turning responses are consistent with direction selectivity 
(compare with Fig. 2f). p = 4.82×10−3 for n = 706 ON edge hits and p = 5.51×10−3 
for n = 763 OFF edge hits. g, Dependence of the results on the choice of 
the window over which the turning bias is calculated. The x-axis shows the 
onset time of the window; the offset time was 150 ms later. The y-axis plots 
the turning bias for flies oriented within a 90o sector of the direction 
perpendicular to bar motion (as in e). “Experimental” flies refer to Orco > 
Chrimson in response to bars moving at 10–15 mm s−1 (same as in Fig. 2);  
“no-ATR” and “1 antenna” are the same flies not fed ATR or with only 1 antenna, 
respectively. The “null” condition is calculated using random chosen 
trajectories and calculating angle changes following fictitious moving bars at 
random angles not actually presented to the flies. Over window onsets of 
0-200 ms, the no ATR, 1 antenna and null responses are all within the same 
regime (< ~0.1), while the experimental responses are significantly higher. 
These results are consistent with previous findings. OFF response reaction 
times of ~500 ms have been observed9, but those were for flies counterturning 
back into static ribbons – the differing locomotive repertoire (flying vs. 
walking) and plume dynamics (static vs. dynamic) would account for this 
discrepancy. Reaction times of 400 ms have been observed for walking flies, 
but this may reflect imprecision in odour delivery6; indeed, reaction times are 
as low as 100 ms for tethered flies whose ORNs are stimulated optogenetically17 
and as low as 85ms when ORNs are stimulated with real odours25.



Extended Data Fig. 4 | OFF edge responses in laminar wind and ON edge 
responses for fast 30 mm s−1 bars. a, Turning bias versus fly orientation when 
bilateral optogenetic stimulus is turned off (compare with the first plot in 
Fig. 3b for flash onset). n = 1490 OFF flash hits. b–d, Fly turning bias for 
15 mm s−1 bars moving parallel, antiparallel, and perpendicular to 150 mm s−1 
laminar wind (compare with Figs. 3de). Shaded errors: SEM. n = 1493, 1588, and 
671 OFF edge encounters for bars parallel, antiparallel, and perpendicular to 

the wind, respectively. e, Fly turning bias vs. fly orientation at ON edge for 
faster 30 mm s−1 fictive odour bars without wind (analogous to 15 mm s−1 bar 
responses in second plot of Fig. 3c). Dotted line: fit of response to θ−0.16cos . 
N = 1472 ON edge encounters. f, Additive model for ON edges of 30 mm s−1 bars; 
analogous to Figs. 3de. Solid shaded region: mean ± 1 SEM; dotted lines: 
additive model prediction. N = 323, 319, and 1013 ON edge encounters for odour 
bars with parallel, antiparallel, and perpendicular to the wind, respectively.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Supplementary figures and additional evidence  
that direction sensing is enacted using a correlation-based algorithm.  
a, Schematic illustrating calculation of latency TΔ  between antennae hits for 
moving edges. Correlation-based models for direction selectivity depend on 
the latency TΔ  of the time at which the edge hits the two sensors – in this case, 
the fly’s two antennae. Measuring TΔ  does not require resolving the image or 
stimulus at antennal resolution (~300 μm), rather TΔ  can be inferred with 
knowledge of the fly’s orientation relative to the bar direction ϕ, as well as the 
speeds of the fly and bar – all of which are known. See Methods for details of the 
calculation and an estimate of the uncertainty. b, Spatiotemporal correlation 
functions for correlated noise stimuli (Fig. 4c–f). Each type of correlated noise 
stimulus is characterized by the correlation function C x t(Δ , Δ ) computed 
between all pairs of bars separated spatiotemporally by xΔ  pixels and tΔ  frames. 
Since our stimuli are generated by summing and binarizing Gaussian variables, 
nonzero correlations off of the origin have magnitude 1/326. For example, for 
positively correlated with-wind stimuli (top left plot), C C(1, 1) = (−1, − 1) = 1/3, 
and the remaining correlations are zero, while for negatively correlated with-
wind stimuli (bottom left plot), C C(1, 1) = (−1, − 1) = − 1/3. c, Snapshots of glider 
stimulus with correlations along x+  axis, for 3 consecutive frames. In one 
instance of time, the stimulus is a random pattern of light and dark 1-pixel-wide 
bars perpendicular to the 150 mm s−1 laminar wind. Each x-pixel is perfectly 
correlated with the pixel to its right in the next frame; thus the pattern in the 
next frame is the same as the pattern in the current frame, but shifted by one 
pixel. Visually, this would be perceived as a fixed pattern moving coherently to 
the right in discrete steps. d, Like correlated noise stimuli, gliders are defined 
by their correlation matrix C x t(Δ , Δ ). Unlike correlated noise, the correlations i) 
have magnitude 1, and ii) exist for many spacetime points. That is, for rightward 

correlated gliders, a given pixel in a given frame is perfectly correlated with  
the pixel to its right one frame later, but also with the second pixel to its right 2 
frames later, etc. Thus C x t(Δ , Δ ) has values +1 along the diagonal. Similarly, 
C x t( − Δ , Δ ) has values 1 along the anti-diagonal. Since x+  points downwind,  
we call gliders with correlations to the right “with-wind”, and gliders with 
correlations to the left “against-wind,” in analogy to the correlated noise 
stimuli (Fig. 4d). e, Turning bias versus fly orientation for with-wind (blue) and 
against-wind (red) gliders. Data using pattern update rates of 45 or 60 Hz are 
pooled. Shaded errors: SEM. Gliders are presented in 4s blocks, interleaved 
with 4s of no stimulus. Turning bias is defined as the sign of the change in 
orientation from 200 to 500 ms after the block onset. We only used flies with 
speeds < 12 mm s−1 for gliders, since long-range correlations can interfere with 
the intended correlation if fly walking speed is near the glider speed. n = 301, 
247 onset events, for with-wind and against-wind, respectively. f, Turning bias 
averaged over all orientations for different glider speeds. Glider speed is 
calculated as (pixel width)×(pattern update rate) where the pixel width is  
290 µm and the pattern rate is some multiple of the inverse frame rate,  
1/(180 Hz). n = 141, 163, 138, 190 onset events for with-wind stimuli at glider 
speeds 25, 16, 12, and 10 mm s−1, respectively; n = 159, 119, 128, 137 onset events 
for against-wind stimuli at same glider speeds, respectively. g, For correlated 
stimuli to be sensed in our assay, the bar width (size of x-pixel, 290 µm), must  
be on the order of the fly antennal separation (∼300 µm58). h, Glider stimuli 
experiments repeated for bars that were double the width, 580 µm. Differences 
now disappear for with and against-wind correlations, consistent with bilaterally 
enabled direction sensing, since these bars are too wide to consistently stimulate 
antennae differentially. Shaded errors: SEM. n = 195, 169 onset events for with-
wind and against-wind, respectively.
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Extended Data Fig. 6 | HRC response is robust to signal pre-filtering. 
Minimum resolvable inter-antennal latency TΔ  as a function of the noise level, 
for exponential pre-filters of varying timescale, τ = 1, 15, 50smear  ms, respectively, 
for the 3 plots. Noise level is quantified as a random shift of TΔ , where each shift 
is chosen from a normal distribution with mean zero and standard deviation δt. 

The HRC’s delayed arm has an exponential filter of timescale τHRC = 15 ms. 
Dotted line: identity. A particular value of TΔ  is deemed resolvable if the SD 
over HRC responses is greater than the mean over HRC responses (see Methods 
for details). The mean and SD are calculated over 100 samples (i.e. 100 random 
shifts of TΔ ) for a given noise level δ t.



Extended Data Fig. 7 | Odour velocity and concentration gradients provide 
complementary directional information in complex plumes. a, Vector field 
of the negative gradient of odour concentration c−∇ , averaged over the full 
simulation (compare to Fig. 6c in the main text). Gradients contain strong 
lateral components near the odour source. b, Time course of an estimate of the 
direction of odour motion ( )θ vv vv= tan ,y xodor

−1
,odor ,odor  at the centre of the boxed 

regions in Fig. 6a, determined by averaging all detectable θ in the past t seconds. 
Error bars are found by repeating this for 16 different 10 s time windows 

throughout the simulation, and taking the average and standard deviation over 
these 16 samples – these correspond to the mean and standard error of the 
mean. Dots indicate the time needed to distinguish the direction of odour 
motion from 0o (downwind) with a 68% confidence level for the 3 regions.  
c, Heatmap of time taken to distinguish the direction of odour motion from 0o 
to within 68% confidence for fixed locations throughout plume. Black values 
include the possibility that the odour motion direction is not distinguishable 
from downwind no matter how long one samples.
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Extended Data Fig. 8 | Odour motion sensing aids plume navigation by 
increasing lateral motion toward the plume centerline. a, Average change  
in position parallel to wind, x (left), and away from the plume centerline, |y| 
(right), in outward (purple) and inward (green) moving bars plume (Fig. 6d),  
as a function of time. Note that x = 0, y = 0 is the fictive plume’s odour source 
location. The initial values at t = 0 of x ( y) were subtracted, so the change xΔ  ( yΔ ) 
is plotted – this is negative because flies progress toward to the centerline 
(decreasing y) and upwind (decreasing x). Only flies beginning in the rear 50 mm 
of the arena and which navigated for at least 30s were considered. Shades: SEM 

over distinct fly trajectories. Dotted lines: times t = 10, 20, 30s. By t = 20s, flies 
in the outward bar plume have made more progress both in the upwind 
direction (p = 0.025; 1-tailed t-test) and toward the plume centerline (p = 0.032; 
1-tailed t-test). b, same for fictive odour plume shown in Fig. 6g, played 
normally (purple) or in reverse (green). Here, flies make equal progress upwind 
by 30s (left plot), but significantly faster progress toward the plume centerline 
in the forward played plume than the reverse one (right plot) (p = 0.035 at 
t = 10s, p = 3.0×10–3 at t = 20s, at p = 1.6×10–4 at t = 30s; 1-tailed t-test). Shades: 
SEM over distinct fly trajectories.



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Odour motion sensing enhances performance of 
virtual robots obeying a simple navigation strategy on a grid. a, Model of 
2-sensor virtual agents navigating the simulated odour plume (Fig. 6a). Agents 
are always oriented at 0o, 90o, 180o or 270o, and at each timestep turn 90o either 
left or right and move forward one step. Agents are either odour direction 
sensing (DS+) or not odour direction sensing (DS-). When odour concentration c  
exceeds some threshold c0, DS- agents turn upwind. DS+ agents, for c c> 0, turn 
against the direction of odour motion when oriented upwind or downwind; 
crosswind agents always turn upwind. DS+ agents infer the direction of odour 
signals using an HRC-like computation between their 2 sensors (Methods).  

b, Example trajectories of robots navigating plume in a, when they are 
initialized in the back 50 mm of the arena, for DS- (top) and DS+ (bottom) 
agents. c, Percentage of 500 agents reaching the 50x50 mm red source region; 
more DS+ agents reach the source than DS- agents (38% vs. 19%; p < 10–6; 1-tailed 
t-test) d, Lateral distance from plume axis |y| over time, for agents initialized 
near the plume edges (>60 mm from plume axis, indicated by the solid boxes in 
b; top plot) or near the plume axis (<60 mm from axis, indicated by the dashed 
boxes in b; bottom plot). Odour direction sensing enhances lateral drift toward 
the plume centerline, particularly for robots initialized at the plume edges.



Extended Data Fig. 10 | Odour velocity in model of turbulent plumes points 
outward from plume centerline and is computed by local space-time 
correlators. We use a simple packet model of turbulent plumes. Packets are 
released from a source and disperse in the lateral direction while being 
advected downwind (see Methods for model and calculation details). a, Packet 
velocity v⟨ ⟩y t,  in the plume model, as a function of   y y T= / , for two correlation 
times, T = 0.2 (purple) and T = 1 (green), at a fixed time t = 4. Here, v is set to 1.  
To directly compare velocity for plumes with different T, (and therefore 
different diffusivities) we plot the velocity versus the normalized length y . 
Specifically, since y Tv t⟨ ⟩ = 22 2  for ≫t T  then at a given t, the packet distribution 
in terms of   y  is the same for plumes with distinct T . The distribution of packets 
for either T  is a function of   y  shown in grey. The velocity is an odd function of y, 

i.e. it points outward from the plume axis. In addition, the asymmetry is steeper 
for higher correlation times. b, The value of the correlator y t y t⟨C(Δ , Δ | , ) ⟩as a 
function of lateral distance y, for various times t for T = 0.1 (left) and T = 0.3 (right). 
Here, D = 0.005p . Since the packets are advected downwind with a velocity 

≫U v, the time axis is proportional to the downwind distance. The packet 
distribution is shown on the bottom; the limits of the y-axis are chosen such 
that the plume extents are the same in both plots. c, The total y-integral of the 
absolute value of y t y t⟨C(Δ , Δ | , ) ⟩ at a fixed t = 4, as a function of odour packet 
speed ( y-axis) and molecular diffusivity (Dp), with T = 1, v = 1. This integral 
indicates the degree of directional sensing on average. The integral is highest 
for greater packet speeds and lower molecular diffusivities (top left corner).
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