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A R T I F I C I A L  I N T E L L I G E N C E

Insect-inspired AI for autonomous robots
G. C. H. E. de Croon1*, J. J. G. Dupeyroux1, S. B. Fuller2, J. A. R. Marshall3,4

Autonomous robots are expected to perform a wide range of sophisticated tasks in complex, unknown environ-
ments. However, available onboard computing capabilities and algorithms represent a considerable obstacle to 
reaching higher levels of autonomy, especially as robots get smaller and the end of Moore’s law approaches. Here, 
we argue that inspiration from insect intelligence is a promising alternative to classic methods in robotics for the 
artificial intelligence (AI) needed for the autonomy of small, mobile robots. The advantage of insect intelligence 
stems from its resource efficiency (or parsimony) especially in terms of power and mass. First, we discuss the main 
aspects of insect intelligence underlying this parsimony: embodiment, sensory-motor coordination, and swarm-
ing. Then, we take stock of where insect-inspired AI stands as an alternative to other approaches to important 
robotic tasks such as navigation and identify open challenges on the road to its more widespread adoption. Last, 
we reflect on the types of processors that are suitable for implementing insect-inspired AI, from more traditional 
ones such as microcontrollers and field-programmable gate arrays to unconventional neuromorphic processors. 
We argue that even for neuromorphic processors, one should not simply apply existing AI algorithms but exploit 
insights from natural insect intelligence to get maximally efficient AI for robot autonomy.

INTRODUCTION
Autonomous mobile robots, such as drones, rovers, and legged robots, 
promise to perform a wide range of tasks, from autonomously moni-
toring crops in greenhouses to last-kilometer delivery. These applica-
tions require robots to operate for extended periods while performing 
complex tasks, often in unknown, changing, and complicated envi-
ronments. This brings great challenges (1), among which is the dif-
ficulty of executing a rich repertoire of autonomous, robust, and 
adaptive behaviors with onboard resources. This challenge is exem-
plified by the task of navigation. The state of the art typically relies 
on simultaneous localization and mapping (SLAM) algorithms, which 
require more computational resources than can be mustered by many 
processors embedded onboard robots (2). More than 10 years ago, 
it was reasonable to anticipate that further improvements to micro-
processors would soon close this performance gap. At that time, 
processor development still kept pace with Moore’s law, which pre-
dicted a doubling of the number of transistors in a dense integrated 
circuit about every 2 years. However, with the end of Moore’s law in 
sight (3, 4), we can no longer count on this. Hence, we need to ex-
plore alternative approaches to both the computing hardware and 
the AI of small, autonomous robots.

In this article, we argue that inspiration from insect intelligence 
represents an important alternative route to achieving artificial in-
telligence (AI) in small, mobile robots. Here, we adopt the view that 
AI is the “pursuit of intelligent behavior by artificial methods” (5), 
explicitly acknowledging that insect behaviors are intelligent (6). If 
we succeed in harnessing insect-inspired AI, small robots will be able 
to tackle difficult tasks while staying within their limited computa-
tional and memory budget. We first discuss the main aspects of insect 
intelligence that make it so appealing. Next, we reflect on the state 
of the art in this area and identify the main challenges on the road 

to its more widespread adoption. Last, we discuss how insect AI can 
be implemented on various types of computing hardware.

INSECT INTELLIGENCE
Insects diverged around 480 million years ago (7) within the group 
of arthropods. They form a dominant phylum among animals, with 
roughly one million species identified and an expected 5.5 million 
overall, compared with only 70,000 known species of vertebrates (8). 
Because of their proliferation, insects have developed a wide range 
of adaptations to different environments. These include diverse loco-
motion strategies such as crawling, flying, and swimming; complex 
visual systems (9, 10); robust navigation strategies (11–14); and even 
cooperative social behaviors (15, 16). Furthermore, their behaviors 
are implemented by a very limited number of neurons, with about 
1 million neurons for the honeybee (12) and, astonishingly, fewer 
than 10,000 in the smallest flying wasps, Megaphragma mymaripenne 
(17). Although neurons are not identical and hence not directly 
comparable between species (18), these small numbers of neurons 
are indicative of the processing efficiency of insect intelligence. 
Especially in the light of this processing efficiency, insects’ amazing 
capabilities represent a rich source of inspiration for the design of 
robotic solutions (19, 20).

The main property of insect intelligence is its parsimony (21), that 
is, the way in which insects use minimalistic yet robust solutions to 
achieve successful behavior in complex, dynamic, and sometimes 
hostile environments. “Minimalistic” here should be interpreted as 
a high level of efficiency in the required resources, with energy as 
one of the prime resources. Because the brain consumes considerable 
energy (22), it may come as no surprise that evolution has driven 
insects and other animals to achieve their repertoire of behaviors 
with as small a brain as possible, for which the energy consumption 
reaches only a few milliwatts of power. Important in achieving this 
parsimony is that insect intelligence—just like that of more complex 
animals like humans—is characterized by “embodied cognition” 
(23, 24). This refers to the recognition that intelligence does not de-
pend only on the brain, but is crucially shaped by the insect’s 
embodiment, that is, its body and sensory apparatus. Furthermore, 
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it implies that insect intelligence builds on the capability to interact 
with the world, combining feedback from a diverse array of sensors 
and exploiting the closed loop of sensory inputs and actions to sim-
plify the cognitive operations performed by the brain. Last, social 
insects live together in colonies and are thus able to perform tasks 
that go beyond the limits of their individual capabilities. Figure 1 
shows three key aspects (embodiment, sensory-motor coordination, 
and swarming) that contribute to the parsimony of insect intelligence. 
Note that these three aspects are commonly ignored in robotics 
studies, with a focus on developing software for standard robot 
hardware, passive sensing [e.g., detecting cars in prerecorded video 
sequences (25)], and an emphasis on single-robot intelligence. Below, 
we discuss the aspects from an insect point of view and illustrate 
them with examples from robotics.

Embodiment
Evolution simultaneously adapts the bodies, sensory systems, and 
brains of animals to their ecological niche. In many cases, intelligent 
behavior is achieved by means of the “embodiment” itself, here inter-
preted as the design of the body, including the sensor and actuator 
apparatus. By doing so, cognitive load can be reduced or even eliminated 
entirely. This idea is exemplified by passive dynamic walking robots 
(26). In insect robotics, a decisive advance in robotic flies occurred 
when researchers removed active actuation of the wing angle of attack. 
By simplifying the mechanism to allow it to passively rotate, mass 
was reduced, whereas the lift-producing leading-edge vortex aero-
dynamics observed in insect flight were retained (27). This realized 
lift greater than weight at insect scale for the first time (28) and paved 
the way for subsequent controlled flight (29). The aerodynamics of 

the flapping wings of insects can also play 
a role in the exploitation of passive effects. 
For instance, with the help of a flapping 
wing drone, it was shown that fruit flies 
passively turn into the flight direction after 
rapid escape maneuvers (30). Beyond pure-
ly passive mechanisms, simple neuron-
mediated reflexes underlie many behaviors 
such as flight stabilization. Such active 
reflexes do depend on a coevolution of 
body and sensors, though. To illustrate, 
flight stabilization is also facilitated by 
mechanosensory structures on the wing, 
campaniform sensilla, which encode 
information on wing deformation and 
consequently on the flight dynamics (31). 
Hence, insect wings not only are actuators 
but also influence sensing and consequent 
active control. The scale of insects also 
fundamentally affects their body design 
and cognition. For example, the efficiency 
of flapping wing motion for propulsion 
heavily depends on the Reynolds number 
(viscosity of the air) (32), with small fly-
ing insects such as Drosophila relying on 
higher-frequency flapping (33) than larger 
ones, which even rely on gliding (34). These 
differences are reflected in robotic designs 
(29, 30, 35). Similarly, scale influences 
limb tip contact forces and the potential 
to adhere to vertical surfaces, influenc-
ing walking gaits exhibited by insects 
(36). Furthermore, much like how ants 
can carry many times their body weight, 
insects’ small scale protects them from col-
lision damage. This makes occasional mis-
takes or inaccuracies in motion control 
less problematic. For example, honeybees 
do make crash landings (37). This has 
inspired collision-resilient robot designs 
(38–40), allowing for a less computa-
tionally expensive AI.

The sensory apparatus of insects is 
also tailored to the tasks they need to 
perform. Their compound eyes have a 
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Fig. 1. Insect intelligence is characterized by parsimonious solutions to achieve successful behavior in com-
plex, dynamic, and sometimes hostile environments. Three key aspects to parsimony are embodiment, sensory-motor 
coordination, and swarming. These are illustrated with robotic studies. (A) Antbot is a hexapod robot, which is 
equipped with an ultraviolet sensor for detecting the polarization of the sky for improved navigation skills (101). 
(B) Smellicopter is a tiny biohybrid drone equipped with moth antennae to sense odor and fins that passively align 
it with the wind (54). (C) The honeybee-sized Robobee (29), which was successfully miniaturized by having a passive 
mechanism for varying the wing angle while only the wing stroke angle is actively controlled. (D) In (119), a drone 
uses the oscillations that arise during active optic flow control to estimate distances to objects in its environment. 
(E) In (70), an artificial compound eye is actively controlled to remain parallel to the ground surface, allowing the 
robot to deal with oncoming slopes. (F) The swarm gradient bug algorithm enables a swarm of tiny drones to explore 
unknown environments and return to the base location (96). (G) Tiny Kilobots (192) used in a study on foraging with 
virtual pheromone trails (93). (H) A swarm of drones flying as a flock in the presence of no-fly-zones (160).C

R
E

D
IT

: A
. M

A
ST

IN
/S

C
IE

N
C

E
 R

O
B

O
TI

C
S;

 IM
A

G
E

 O
F 

K
IL

O
B

O
TS

 IN
 (G

), 
K

-T
E

A
M

 C
O

R
PO

R
A

TI
O

N
D

ow
nloaded from

 https://w
w

w
.science.org at D

elft U
niversity on June 27, 2022

ramdya
Highlight

ramdya
Highlight



de Croon et al., Sci. Robot. 7, eabl6334 (2022)     15 June 2022

S C I E N C E  R O B O T I C S  |  R E V I E W

3 of 11

low resolution compared with human vision, wide field of view, and 
a high temporal bandwidth (10, 41), exceeding a 200-Hz flicker 
fusion frequency in some species (42). These eyes are particularly 
suited for capturing fast motion cues that are relevant for agile flight, 
capturing prey (43), and avoiding predators (44). In robotics, it is 
common to have cameras with a 30-Hz frame rate, limiting response 
speed. Inspired by insects, lightweight artificial compound eyes with a 
high frame rate and wide field of view have been produced (45–47). It is 
also possible to use arrays of smaller cameras for an omnidirectional 
view (48) or down-sample a standard omnidirectional camera (49) at 
the cost of a heavier system. Event-based cameras are highly promising 
as neuromorphic vision sensors, because they asynchronously register 
per-pixel changes in illumination, resulting in a large dynamic range 
and high temporal rate (50).

Insects combine vision with multiple other sensors to achieve 
parsimonious motion control. They have one pair of antennae, which 
are sensitive to airflow and function as olfactory organs (51). In 
translatory motion, flies linearly combine low-latency mechanosensory 
feedback from their wind-sensing antennae with higher-latency visual 
feedback to control their flight velocity (52). A strikingly similar super-
position exists for the gyroscopic mechanosensory halteres and vision 
in rotatory motion (53). Currently, antennae have a far superior 
performance for olfaction compared with artificial sensors, which 
has led to biohybrid robot designs incorporating live tissue from, 
e.g., moths, for odor source localization (54, 55). However, the 
antennae are also sensitive to airflow (52, 56), something that is also 
hard to measure onboard small robots. Promising airflow sensor 
designs have been demonstrated (57–59), but they are not yet widely 
available for robotic integration. Sensing airflow is important not 
only for flight control but also for tasks such as odor source localiza-
tion. Flying insects like moths and fruit flies are known to find odor 
sources by interleaving casting (flying orthogonally to the wind 
direction to detect an odor) and surging (flying upwind when sensing 
the odor) (60–62). In (54), wind sensing and processing were bypassed 
by means of a physical design that passively steered the robot into 
the wind. In general, the robotic equivalent to the evolutionary 
co-development of both the body and brain can take the shape of an 
artificial evolution (63, 64) or an extensive investigation of existing 
hardware and software options (65).

Sensory-motor coordination
The brain evolved to control motion as organisms gained the ability 
to move; conversely, evolution drove animals to move in such a way 
as to make the task of the brain easier. Active vision is an important 
example and entails moving the visual system to simplify visual 
processing (66–68). Many flying insects use their neck muscles to 
maintain a constant head orientation, known as gaze stabilization, 
during flight maneuvers. This ensures that compound eyes capture 
the translational and not the rotational flow, because only the former 
carries distance information (69). Gaze stabilization also reduces 
visual processing requirements, something that has been exploited 
in few published robotic studies because it has traditionally required 
heavier hardware (70–73). Interestingly, active vision in the form of 
microsaccades allows insects to resolve objects with an acuity beyond 
that expected from the coarse layout of their ommatidia (74, 75). 
This has been exploited on robotic platforms (76, 77). The break-
through for this type of hyperacuity—and active vision in general—
to microrobots, though, may depend on scaling down the hardware 
for performing these microsaccades (68, 73). Furthermore, motions 

of the full body can be useful to insect and robot vision. For example, 
in (78), a flying robot moved actively up and down to induce clear 
translational flow for identifying gaps to fly through, which was 
similar to the peering behaviors observed in bumblebees attempting 
to cross a gap (79). Moreover, in (80), it was shown that the oscillations 
inherent to optic flow control can be used for gauging distances.

Another example of how sensory-motor coordination can sim-
plify required processing comes from insect navigation. One theory 
on ant navigation postulates that they use a visual guidance in which 
they move toward the most familiar view (81). From time to time, 
ants rotate on the spot to find which viewing direction is most 
familiar to them. They physically perform an action (rotation of the 
view) that would require additional cognitive capabilities if it had to 
be performed mentally. Moreover, in (82), it was observed that ants 
often deviate from the straight-line path. Modeling this behavior has 
led to the insight that if the magnitude of the oscillations correlates 
with the uncertainty of view recognition, it leads to much more robust 
navigation (83, 84). In addition, in flying animals, motion is essential 
to navigation. For instance, honeybees and wasps perform elaborate 
maneuvers around their nest, termed “learning flights,” which facili-
tate homing in on the nest when returning (85, 86). Although the 
examples given here have focused on vision, insects also make use 
of other senses, such as that of touch (87, 88). Touching offers the possi-
bility of active tactile sensing or even “interactive perception,” in which 
perception is facilitated by moving objects in the environment (89).

Swarming
To transcend their individual limitations, social insects live together 
in colonies. Social insects have inspired the design of computational 
models (90) and have led to the field of swarm robotics (91). Swarming 
allows for parsimonious solutions to robotic tasks, because these 
can be achieved by robots with many fewer resources than a compa-
rable single-robot system. Moreover, performing tasks with swarms 
holds the promise of robustness (e.g., failing robots do not immediately 
endanger the mission), scalability (i.e., the local perception and actions 
of robots allow adding more robots to, e.g., explore a larger area in 
an exploration task), and flexibility (just as in insect colonies, differ-
ent proportions of these robots can be assigned to different tasks 
depending on the need). Swarm robotics examples include crossing 
gaps (92), shortest-path finding (93), global decision-making (94), 
surveillance (95), exploration of unknown cluttered environments 
(96), and gas source localization (97).

Parsimony
The three aspects of embodiment, sensory-motor coordination, and 
swarming all feed into the parsimony of the solutions used by in-
sects to solve complex tasks. Let us take navigation as an example. A 
well-known example of a highly skilled navigator is the desert ant 
Cataglyphis. It is able to forage for hundreds of meters along mean-
dering paths and then travel back home in a straight line (98). Because 
of the large body of biological work in this area, it has become clear that 
the underlying mechanisms consist mostly of path integration (odometry) 
and visual guidance (99, 100). Moreover, insects’ parsimonious solu-
tion to navigation relies on the exploitation of specific characteristics 
of the environment. For example, when navigating outdoors, they 
use the polarization of the light for better path integration (101–105).

However, there is still a debate about the exact mechanisms 
involved in navigation in any particular exemplar species. The 
well-known “snapshot theory” (102, 106) proposes that ants compare 
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stored, coarse omnidirectional views with their current percepts, al-
lowing them to move in directions that minimize the difference. A 
more recent familiarity-based theory (81) states that ants follow the 
most familiar view, rotating physically to move into the best matching 
direction. This removes the need to explicitly recall views. In a similar 
vein, it has been asked whether a neural network can directly map 
percepts to a motion direction (107). Recently, a nest-centric coordinate 
scheme has been proposed, which suggests how ants can travel from 
one feeding place to another without having traveled such a route 
before (99). Multiple robotics studies have drawn inspiration from 
these navigation schemes. Path integration has been successfully im-
plemented onboard wheeled and legged robots with remarkable accu-
racy (101, 103). Several different approaches have been proposed 
for how to incorporate visual guidance (103, 108, 109). In one of the 
most advanced published studies in terms of real-world experiments 
(109), a robot traveled outdoor paths of ~100 m with a memory require-
ment of 3 megabytes (MB)/km. By comparison, a typical SLAM solu-
tion constructs three-dimensional metric maps, which requires hundreds 
of megabytes, even for datasets consisting of a single room (2).

Parsimonious solutions used by insects exist for many other 
tasks that are relevant to robotics. These include optic flow–based 
visual navigation for obstacle avoidance (48,  72,  110–112), target 
following (113), altitude control (114, 115), and landing (116). For 
many of these tasks, the main principles are known, but the exact 
mechanisms that should be implemented in robots are an area of 
active research. For example, it has been found that honeybees use 
optic flow divergence for landing (117, 118), but the algorithms for 
successfully executing such landings are the subject of ongoing study 
(119). For some tasks, such as the detection of looming objects by 
locusts, the neural basis is quite well understood (120–123). Under-
standing the locust’s lobula giant movement detector neuron has led 
to computationally efficient neural models, which have been tested 
on mobile robots and lend themselves well to implementation with 
neuromorphic vision sensors and processors (124–129). Detection 
and avoidance of dynamic obstacles is one of the areas where the 
low latency of event-based vision can make a difference, as has been 
recently demonstrated by drones capable of avoiding thrown ob-
jects or other drones (112, 130, 131). Other tasks for which relevant 
insect behaviors are known include odor source localization (60, 61) 
and various forms of learning and classification (132, 133).

The emphasis on parsimony should not be misinterpreted as an 
argument against cognitive capabilities. Insects and robots alike can 
definitely benefit from more processing, for instance, to allow for 
the interpretation of more complex visual information (134) or to 
accommodate various forms of learning, such as in the mushroom 
bodies (135–138). Moreover, for more advanced cognitive capabili-
ties, insect intelligence can serve as inspiration for robot AI. For 
instance, a model of olfactory learning of the Drosophila (139) has 
recently been used for creating a computationally highly efficient 
algorithm for visual place recognition (140).

It may be clear that the parsimonious nature of insect intelli-
gence is of considerable interest for autonomous robots. However, 
to fully exploit this, we need to tackle a few hard challenges.

CHALLENGES ON THE ROAD TO INSECT-INSPIRED AI FOR 
AUTONOMOUS ROBOTS
We have sketched the potential of insect-inspired AI for creating 
autonomous, small robots with extremely limited computational 

resources. However, the advantages of insect-inspired AI have been 
heralded before (5, 6, 141, 142). Here, we reflect on why insect-
inspired AI has not yet been adopted more widely. We identify two 
main challenges that have been holding this approach back, but on 
which accelerating progress is being made.

Designing insect-inspired AI
We have given many examples of how different aspects of insect-
inspired AI have been applied to small autonomous robots. Still, it 
may be unclear to a designer how to apply “insect-inspired AI” to a 
new robotic task that has not yet been treated before in the litera-
ture. In (143), three types of design methods are discussed: manual 
design following the typical divide-and-conquer approach to engi-
neering, manual design following findings from biology, and auto-
matic design by machine learning.

The first approach typically follows a divide-and-conquer strategy, 
separating the solution into submodules. A commonly used division 
is perception, state estimation, and control modules, each of which 
is then developed in isolation without exploiting sensory-motor coor-
dination. The problem with this is that it typically does not lead to a 
parsimonious solution in which simple elements interact in a com-
plex manner to give rise to the desired robot behavior. Rethinking 
manual design methodology may be a solution. For example, in (89), 
it is proposed to split up the solution in submodules consisting of 
active sensorimotor loops, forming a hierarchy of complexity.

The second approach is to draw inspiration from a biological 
analog of the robotic task. The main challenge here is that insects 
themselves are highly complex systems, for which it is difficult to 
reveal the exact mechanisms underlying their behaviors. Consider 
navigation, in which the main ingredients are clear [see (99, 144)], 
but many of the details that are required for devising a full algorithm 
or robotic implementation are not fully known. In addition, natural 
evolution involves implicit constraints such as those for growth and 
procreation, leading to, for example, courtship displays or metabolic 
transitions from larval to adult life stages. Such implicit constraints 
and the multiple objectives optimized by an insect’s body and be-
havior make it difficult to identify which elements may be informa-
tive for a robot design. The typical approach to drawing inspiration 
from biology is to identify a virtuoso, an animal that excels in some 
specific behavior (14). This may be a Cataglyphis ant (102) or honeybee 
(145) in the case of navigation, or a fruit fly for maneuvering (44). 
This must be combined with a design process in which knowledge 
gaps are filled by the designer. This second approach benefits from 
novel techniques that are accelerating the scientific endeavor of un-
derstanding insect intelligence. Advances in computing and graphics 
now allow us to place free-moving animals in virtual reality (52, 146), 
enabling us to precisely probe a mobile animal’s input-output map-
ping. Moreover, deep machine learning methods and tools like 
focused ion beam scanning electron microscopy have recently im-
mensely accelerated the construction of obtaining full connectomes 
(147). This enabled the construction of a complete map of the entire 
central brain region of Drosophila, containing 25,000 neurons and 
2 million synapses. Another relatively recent technique is optoge-
netics, which allows for more fine-grained, noninvasive control and 
analysis of neurons inside insects’ brains (148). For instance, this 
technique has revealed the neural basis for heading integration in 
fruit flies, which turns out to work by means of ring attractors (149). 
This finding has led to new computational models for path integra-
tion (129, 144). We expect that these novel techniques will fill in the 
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knowledge gaps more quickly and at a much more detailed level than 
ever before, facilitating manual insect-inspired design.

The third approach tries to circumvent the difficulties associated 
with complexity by automatically designing the solution. A main 
approach to achieving automatic design of bioinspired intelligence 
is to use evolutionary robotics (143, 150, 151), which typically en-
tails evolving a neural network in simulation. There is a consider-
able parallel with reinforcement learning (152), although evolution 
can comply with all aspects of parsimonious solutions by evolving 
not only the controller (153) but also the sensors (154) and body 
(63, 64). An advantage compared with the bioinformed approach 
discussed previously is that evolutionary robotics can make better 
use of the available technological building blocks, which may be far 
behind their biological counterparts (e.g., olfaction and efficient 
parallel processing in the brain) or far ahead (e.g., efficiency of elec-
tric motors compared with muscle and capability of fast serial com-
putations in silicon). A major challenge in evolutionary robotics is 
to find solutions to difficult tasks while starting evolution from scratch. 
As a consequence, evolution can become stuck in unsatisfying local 
optima. This problem can be tackled with varying success by adapting 
the selective pressure on evolution (151), growing the controller’s 
size and complexity over evolution (155), scaffolded learning (156), 
or novelty search (157). Moreover, simulation necessarily abstracts 
away from many properties of the real world. This means that if a 
successful solution is found by evolution, it still has to cross the reality 
gap (158). This can be tackled by incorporating improved models of 
the most relevant real-world properties, combining evolution with 
online learning or development (159), randomizing factors that may 
not be modeled well (158), and abstracting away from sensory 
inputs and control actions in evolution so that already working 
low-level perception and control modules can cover the reality gap 
(97, 160–162). Last, both failures and successes of automatic design 
present challenges. On the one hand, in case of failure, the causes 
for this are difficult to identify. The cause may lie in the represent
ational complexity of the solution (e.g., the size of a neural network), 
the learning process (e.g., the number of individuals or the mutation 
rate), or the sensory information available to the robot. Many choices 
made by the designer lead to implicit constraints on the learning 
process and solution, which may prevent success. On the other hand, 
if automatic design succeeds, it is still necessary to analyze the solution 
to understand how it works and characterize its weaknesses. Although 
such artificial solutions are more accessible than a live biological 
organism, the analysis of an evolved complex system can be challeng-
ing as well, potentially requiring many of the same statistical and ex-
perimental methods used in the scientific analysis of living organisms.

Figure 2 illustrates complexity at various levels, from a single 
neuron to networks of neurons, brain regions, and the complexity 
of interactions with other agents and the environment. When de-
signing insect-inspired AI, each level plays a role.

Full-stack autonomy solution
Mobile robots that autonomously perform real-world tasks need a 
“full-stack” autonomy solution. This means that they must be able 
to move, avoid collisions, and navigate to places of interest for the 
task including recharging, and they need to take actions to achieve 
their assigned goals. The mainstream approach in robotics to navi-
gation, SLAM (163), creates a metric map of the environment and 
uses it for localization and motion planning. This resource-intensive 
process is then complemented with additional specific task capabilities. 

If small, resource-constrained autonomous robots are to be fully 
autonomous, they will have to follow an alternative approach.

Insect-inspired AI entails one such alternative approach that avoids 
detailed world modeling (141). Instead, different behaviors are tightly 
interlinked in a sophisticated way to achieve complex tasks (164). 
The design of such AI—with extreme resource constraints—is chal-
lenging for single tasks, but even more so for a full-stack autonomy 
solution. Indeed, insect-inspired AI until now has mostly produced 
studies on individual tasks such as landing (116), obstacle avoidance 
(110, 111), or odor source finding (54). Moreover, these studies often 
take place in simplified environments. For example, studies on the 
use of optic flow often use spaces with ample texture, because optic 
flow becomes harder to determine when texture is lacking. Part of 
the reason for this is that engineered visual sensors are currently 
outclassed by insect eyes—they have a smaller field of view and slower 
update rates. Multiple successful designs for artificial compound eyes 
have been proposed in the academic literature (46, 165), but the lack 
of mass production and hence wide availability of such sensors is 
related to the absence of the full-stack autonomy—and hence the 
promise of widespread real-world application.

Most importantly, there are no scientific studies yet that demon-
strate insect-inspired navigation methods working robustly over 
longer distances and time scales in large, real-world environments. 
There are multiple reasons for this. First, as stated before, the exact 
navigation mechanisms in different insects are still being investigat-
ed. Published theories leave out important elements that must be 
implemented for robotic applications. Second, most insect-inspired 
navigation methods have only been tested in simulation or in envi-
ronments of limited size or scope, like laboratory environments. 
Benchmark real-world datasets that are well accepted by most of the 
robotics community, like the KITTI car dataset (25), are typically 
not suitable for using insect-based navigation. The sensors are dif-
ferent from those required (e.g., they use small field-of-view cameras). 
However, even more importantly, insect-inspired methods vitally 
depend on active interaction with the environment, which is not 
possible with a passive dataset. Last, because insect-inspired naviga-
tion makes a different choice at the highest abstraction level, different 
performance metrics need to be used as well. For instance, instead 
of the error between estimated and real position, one should look at 
the percentage of runs in which a robot successfully returns to within 
a few meters of the base station. State-of-the-art studies on insect-
inspired navigation strategies, e.g., (109), are very close to having 
viable strategies for large real-world environments. Interestingly, they 
will likely have properties that mainstream SLAM research is still 
striving to achieve (166,  167). For example, the coarse resolution 
and omnidirectional vision of insects is robust against dynamic ob-
jects that may confound SLAM algorithms. Moreover, their parsi-
monious nature permits execution even on very small embedded 
processors, leaving computation resources available for other pro-
cesses such as visual object recognition.

Successful navigation is the key to achieving a full-stack autonomy 
of robots endowed with insect-inspired AI. It will lead to more 
successful applications of insect-inspired AI to complex, real-world 
tasks. Of course, there are already such applications, with the most 
compelling example being the Roomba robotic vacuum cleaner, 
which performed a biology-inspired random walk to cover the floor 
of a room (168). We hope that advances in insect-inspired navigation 
will allow for more complex and spatially extended tasks, and stim-
ulate the production and availability of sensing and computing 
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hardware specifically tailored to the autonomous navigation of 
small robots.

COMPUTING HARDWARE
We set out to argue that drawing inspiration from insects is a way to 
create parsimonious solutions for the AI of small autonomous ro-
bots. This raises the question what kind of processors are suitable 
for a full-stack autonomy. Marr’s levels of abstraction (169) help us 
to tease apart the problem. They are as follows: the computational 
level, specifying which problem is solved and why this problem is 

relevant; the algorithmic level, capturing 
how the problem is solved, e.g., what 
representations are used and how they 
are processed; and the implementation/
physical level, being the physical reali-
zation of the system. The type of proces-
sor concerns the third layer of abstraction. 
Choosing a processor will determine 
the types of autonomy algorithms that 
can be implemented and the correspond-
ing time and energy efficiency. Figure 3 
shows various types of computing hard-
ware with a coarse indication of their 
energy expenditure and processing speed 
(assuming parallel computing as with 
neural networks). We will discuss the types 
of processors shown in the figure below.

Let us start with microcontrollers. 
Microcontrollers contain one or more 
central processing units (CPUs), which 
are general-purpose, von Neumann ar-
chitectures, executing computations one 
after another in series. Microcontrollers 
draw comparatively little energy, have 
limited memory, and—compared with 
modern-day desktop/laptop processors—
have a slow processing speed. For in-
stance, an STM32F04 has 192 kB of RAM 
(random-access memory), has a 168-MHz 
processor, and draws ~0.4 W of power. 
For the sake of comparison, a state-of-
the-art CPU such as the AMD Ryzen 9 fea-
tures 12 cores (cache memory of 64 MB) 
with a base clock frequency as high as 
3.7 GHz, drawing 105 W of power. We 
have shown multiple examples though, 
in which insect-inspired AI has enabled 
small robots with microcontrollers to 
perform complex tasks (96, 97, 170). 
The key here was making different choices 
at Marr and Poggio’s first and second 
abstraction levels. For example, in (96), 
implementation of swarm exploration 
on a microcontroller was made possible 
by accepting that, in terms of navigation, 
the robots will only be able to come back 
to the base station (first level) and that 
behaviors are represented using a finite 

state machine (second level). We think that insect-inspired AI can 
extend the autonomy of robots equipped with microcontrollers far 
beyond what is generally thought possible. The limits of micro-
controllers lie largely in the processing of high-dimensional sensor 
data such as visual data. In principle, insect vision is characterized 
by low-resolution visual sensors. For instance, fruit flies have 
~800 ommatidia with 8 photoreceptors per ommatidium (41, 171). 
Processing in the order of thousands or a few tens of thousands of 
pixels at the frame rate of a normal complementary metal-oxide 
semiconductor camera is possible, see (170), as well as with insect-
inspired artificial retinas as demonstrated with the CurvACE 

A

B C D

Fig. 2. Insect-inspired AI aims to solve complicated tasks with parsimonious solutions, which rely on complex 
systems at multiple scales. These systems consist of many components that interact with each other to give rise to 
a (desired) global behavior. Understanding and harnessing this complexity lies at the heart of the challenges faced 
by the insect-inspired approach. In the figure, we show biological and artificial elements side by side, where the latter 
are typically abstract versions of the former: (A) At the macroscale, the insect or robot interacts with the environment 
and other agents. (B) Different brain regions/functional neural modules connect and interact to give rise to the full 
behavioral repertoire. (C) A single part of the brain/neural network can perform a function, such as extracting global 
optic flow fields from local optic flow measurements. (D) A single biological neuron is a complex system in itself, 
which can implement sophisticated functions (193). In computational models, artificial neurons are typically the lowest 
level of complexity, and by themselves often still have relatively simple dynamics, representing simple functions. 
Here, an integrate-and-fire (IF) and a leaky-integrate-and-fire (LIF) neural model are shown, which lead to different 
dynamic behaviors and hence a different information processing capability.
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(Curved Artificial Compound Eye) visual sensor (46). However, for 
faster sensors like event-based cameras, or more elaborate processing 
such as deep convolutional neural networks, the limited von Neumann 
processor on a microcontroller may become a bottleneck. A similar 
line of reasoning goes for more powerful CPUs, although the limits 
are less severe.

This is where parallel processing—a fundamental feature of pro-
cessing in the brain—comes into the picture. Graphical processing 
units (GPUs) are an alternative computing architecture that is 
explicitly designed to perform parallel computations using many 
parallel processors. Notably, they can readily implement traditional 
(i.e., non-neuromorphic) artificial neural network inference. This 

speeds up the execution of deep neural networks, making it possible 
to operate in real time even on onboard embedded devices such as 
the NVidia TX 2. For instance, in (78), a TX 2 was used to determine 
dense optic flow, enabling a drone to detect and fly through gaps. 
However, existing embedded GPUs are still relatively heavy and 
consume a substantial amount of energy. The NVidia TX 2 weighs 
85 g and consumes 7.5 W of power, which is unacceptable for many 
of the small robots discussed in this article. The size and energy con-
sumption of GPUs has been improving at a faster rate than CPUs in 
recent years [see (65) for a thorough investigation of various embedded 
processors for running deep neural networks], but both are restricted 
by the physical limits that limit indefinite extension of Moore’s law. 
Exploiting potential sparsity in neural networks can make their 
implementation on GPUs more energy efficient, e.g., (172), but other 
processor architectures in which low power and high throughput have 
been at the core of the design from the start promise even greater gains.

An alternative for parallel processing with very high throughput 
is to use a field-programmable gate array (FPGA). In addition to their 
widespread availability on the market, FPGAs offer noise robust-
ness and, most importantly, high implementation flexibility (173). 
This flexibility allows, for example, for the implementation of spik-
ing neural networks (SNNs) (174) on FPGAs to obtain low latency 
and energy efficiency (173, 175–177) or computing dense optic flow 
(178, 179). A disadvantage of FPGAs with respect to CPUs or GPUs 
is that programming them is more burdensome. Traditionally, floating-
point math operations were inefficient on FPGAs, but new designs 
now incorporate built-in floating-point units. We believe the extra 
effort required for FPGAs is justified if one needs to specialize be-
yond the traditional deep neural networks. A similar line of reasoning 
can be followed for application-specific integrated circuits, for which 
the engineering effort and especially the costs of production are 
orders of magnitude higher.

Neuromorphic processors represent an important alternative 
with substantial promise. These processors are aimed specifically at 
implementing the parallel, sparse, and asynchronous processing of 
SNNs (174) and/or exploiting other desirable characteristics of tran-
sistors. The latter includes operating in their efficient subthreshold 
regime (180) or using floating-gate arrays to compute the harmonic 
mean for low-power localization (181). SNNs have temporal dy-
namics that more closely model natural neurons. For instance, in 
the so-called leaky-integrate-and-fire model, the neurons integrate 
incoming weighted input currents in the membrane voltage, which 
decays over time and produces a spike when it exceeds a threshold 
(182). In real brains, spikes have likely evolved to transmit informa-
tion over longer distances (22). Each spike consumes considerable 
energy, so the spike rate is minimized, which leads to sparse, energy-
efficient processing. Examples of neuromorphic processors include 
Intel’s Loihi (183), IBM’s TrueNorth (184), HICANN (185), Neuro-
Grid (186), and SpiNNaker (187). There is an increasing number of 
examples that show the potential of these processors both in terms 
of energy expenditure and in execution speed. For instance, in (188), 
an SNN composed of only 35 spiking neurons controlled a flying 
robot for performing optic flow landings, with the controller running 
onboard the Loihi neuromorphic processor at 265 kHz. In (189), an 
on-chip SNN model of a proportional, integrative, derivative (PID) 
controller was used to control a 1-DOF (degree of freedom) quadrotor 
arm at 1 kHz, with an average 0.0126 mW power consumption per 
time stamp for a total of 40,000 neurons. However, there remain 
obstacles that must be overcome to realize neuromorphic processing’s 

Fig. 3. Computing hardware used for insect-inspired AI, illustrated with high-
ly resource-restricted, flying robots. The central graph gives a very coarse indi-
cation of the energy expenditure and processing speed of different types of 
computing hardware, with processing speed including the parallel nature of pro-
cessing in architectures such as the GPU, FPGA, and neuromorphic chips. Around 
the graph, examples are given in which the computing hardware is used for 
achieving insect-inspired AI. (A) In (97), an STM32F4 microcontroller was used for a 
fully autonomous swarm of tiny drones to explore an unknown cluttered environ-
ment and collaboratively localize a gas source. (B) In (78), the GPUs on an NVidia TX 
2 were used to determine dense flow with a deep neural network. An active vision 
strategy allowed for a drone to pass through gaps of different unknown shapes. 
(C) Design of the MiniBee (49), which has been equipped with FPGA-based optic 
flow for autonomous navigation (inset, Opteran’s FPGA-based visual navigation 
kit). (D) In (188), an onboard Loihi neuromorphic chip (Kaphoho bay) was used for 
controlling autonomous constant divergence optic flow landings. (E) In (189), a 
Loihi chip was used for the complete perception-to-action pipeline for the attitude 
control of a drone clamped to allow for rotation as the single degree of freedom.
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full potential, both in terms of software (how to have SNNs learn 
robustly, preferably online in the neuromorphic hardware) and in 
terms of hardware (how to interface neuromorphic processors 
with a robot’s sensors and actuators so that the energy efficiency 
and execution speed is not lost).

Last, also for the choice of a processor, the scale of envisaged 
robots is essential. For tiny insects, the neural elements start to hit 
biophysical limits related to channel noise, leading to different neural 
solutions (17, 22). For example, the tiny wasp Megaphragma caribea 
(average body length of 170 m) has many neurons without a 
nucleus (190). If we intend to design robots at such tiny scales, they 
may require custom processors that deal with similar physical phenomena 
and that are currently beyond the horizon.

CONCLUSION
In this article, we have argued that drawing inspiration from insect 
intelligence will enable reaching higher autonomy levels, even with 
modest processing capabilities available on small robots and devices. 
To achieve this, we argue that the right approach is not to implement 
existing autonomy algorithms in novel processors. Instead, the robot 
engineer will have to strive for the same kind of parsimony that is 
found in insect intelligence. This will be vital for small robots with 
limited resources, like tiny insect-like flying drones (29, 191), but it 
will also be important for larger robots when they have to execute 
many complex tasks, when their bodies are covered with tiny sensors, 
and when energy efficiency is an overriding concern. Indeed, in 
nature, parsimony is not reserved for insects alone; it is a governing 
principle for all animals.
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