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ARTIFICIAL INTELLIGENCE

Insect-inspired Al for autonomous robots
G. C.H. E. de Croon'*, J. J. G. Dupeyroux’, S. B. Fuller? J. A. R. Marshall**

Autonomous robots are expected to perform a wide range of sophisticated tasks in complex, unknown environ-
ments. However, available onboard computing capabilities and algorithms represent a considerable obstacle to
reaching higher levels of autonomy, especially as robots get smaller and the end of Moore’s law approaches. Here,
we argue that inspiration from insect intelligence is a promising alternative to classic methods in robotics for the
artificial intelligence (Al) needed for the autonomy of small, mobile robots. The advantage of insect intelligence
stems from its resource efficiency (or parsimony) especially in terms of power and mass. First, we discuss the main
aspects of insect intelligence underlying this parsimony: embodiment, sensory-motor coordination, and swarm-
ing. Then, we take stock of where insect-inspired Al stands as an alternative to other approaches to important
robotic tasks such as navigation and identify open challenges on the road to its more widespread adoption. Last,
we reflect on the types of processors that are suitable for implementing insect-inspired Al, from more traditional
ones such as microcontrollers and field-programmable gate arrays to unconventional neuromorphic processors.
We argue that even for neuromorphic processors, one should not simply apply existing Al algorithms but exploit
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insights from natural insect intelligence to get maximally efficient Al for robot autonomy.

INTRODUCTION

Autonomous mobile robots, such as drones, rovers, and legged robots,
promise to perform a wide range of tasks, from autonomously moni-
toring crops in greenhouses to last-kilometer delivery. These applica-
tions require robots to operate for extended periods while performing
complex tasks, often in unknown, changing, and complicated envi-
ronments. This brings great challenges (1), among which is the dif-
ficulty of executing a rich repertoire of autonomous, robust, and
adaptive behaviors with onboard resources. This challenge is exem-
plified by the task of navigation. The state of the art typically relies
on simultaneous localization and mapping (SLAM) algorithms, which
require more computational resources than can be mustered by many
processors embedded onboard robots (2). More than 10 years ago,
it was reasonable to anticipate that further improvements to micro-
processors would soon close this performance gap. At that time,
processor development still kept pace with Moore’s law, which pre-
dicted a doubling of the number of transistors in a dense integrated
circuit about every 2 years. However, with the end of Moore’s law in
sight (3, 4), we can no longer count on this. Hence, we need to ex-
plore alternative approaches to both the computing hardware and
the AI of small, autonomous robots.

In this article, we argue that inspiration from insect intelligence
represents an important alternative route to achieving artificial in-
telligence (AI) in small, mobile robots. Here, we adopt the view that
Al is the “pursuit of intelligent behavior by artificial methods” (5),
explicitly acknowledging that insect behaviors are intelligent (6). If
we succeed in harnessing insect-inspired Al, small robots will be able
to tackle difficult tasks while staying within their limited computa-
tional and memory budget. We first discuss the main aspects of insect
intelligence that make it so appealing. Next, we reflect on the state
of the art in this area and identify the main challenges on the road
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to its more widespread adoption. Last, we discuss how insect Al can
be implemented on various types of computing hardware.

INSECT INTELLIGENCE

Insects diverged around 480 million years ago (7) within the group
of arthropods. They form a dominant phylum among animals, with
roughly one million species identified and an expected 5.5 million
overall, compared with only 70,000 known species of vertebrates (8).
Because of their proliferation, insects have developed a wide range
of adaptations to different environments. These include diverse loco-
motion strategies such as crawling, flying, and swimming; complex
visual systems (9, 10); robust navigation strategies (11-14); and even
cooperative social behaviors (15, 16). Furthermore, their behaviors
are implemented by a very limited number of neurons, with about
1 million neurons for the honeybee (12) and, astonishingly, fewer
than 10,000 in the smallest flying wasps, Megaphragma mymaripenne
(17). Although neurons are not identical and hence not directly
comparable between species (18), these small numbers of neurons
are indicative of the processing efficiency of insect intelligence.
Especially in the light of this processing efficiency, insects’ amazing
capabilities represent a rich source of inspiration for the design of
robotic solutions (19, 20).

The main property of insect intelligence is its parsimony (21), that
is, the way in which insects use minimalistic yet robust solutions to
achieve successful behavior in complex, dynamic, and sometimes
hostile environments. “Minimalistic” here should be interpreted as
a high level of efficiency in the required resources, with energy as
one of the prime resources. Because the brain consumes considerable
energy (22), it may come as no surprise that evolution has driven
insects and other animals to achieve their repertoire of behaviors
with as small a brain as possible, for which the energy consumption
reaches only a few milliwatts of power. Important in achieving this
parsimony is that insect intelligence—just like that of more complex
animals like humans—is characterized by “embodied cognition”
(23, 24). This refers to the recognition that intelligence does not de-
pend only on the brain, but is crucially shaped by the insect’s
embodiment, that is, its body and sensory apparatus. Furthermore,
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it implies that insect intelligence builds on the capability to interact
with the world, combining feedback from a diverse array of sensors
and exploiting the closed loop of sensory inputs and actions to sim-
plify the cognitive operations performed by the brain. Last, social
insects live together in colonies and are thus able to perform tasks
that go beyond the limits of their individual capabilities. Figure 1
shows three key aspects (embodiment, sensory-motor coordination,
and swarming) that contribute to the parsimony of insect intelligence.
Note that these three aspects are commonly ignored in robotics
studies, with a focus on developing software for standard robot
hardware, passive sensing [e.g., detecting cars in prerecorded video
sequences (25)], and an emphasis on single-robot intelligence. Below,
we discuss the aspects from an insect point of view and illustrate
them with examples from robotics.

Embodiment

Evolution simultaneously adapts the bodies, sensory systems, and
brains of animals to their ecological niche. In many cases, intelligent
behavior is achieved by means of the “embodiment” itself, here inter-
preted as the design of the body, including the sensor and actuator
apparatus. By doing so, cognitive load can be reduced or even eliminated
entirely. This idea is exemplified by passive dynamic walking robots
(26). In insect robotics, a decisive advance in robotic flies occurred
when researchers removed active actuation of the wing angle of attack.
By simplifying the mechanism to allow it to passively rotate, mass
was reduced, whereas the lift-producing leading-edge vortex aero-
dynamics observed in insect flight were retained (27). This realized
lift greater than weight at insect scale for the first time (28) and paved
the way for subsequent controlled flight (29). The aerodynamics of
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Fig. 1. Insect intelligence is characterized by parsimonious solutions to achieve successful behavior in com-
plex, dynamic, and sometimes hostile environments. Three key aspects to parsimony are embodiment, sensory-motor
coordination, and swarming. These are illustrated with robotic studies. (A) Antbot is a hexapod robot, which is
equipped with an ultraviolet sensor for detecting the polarization of the sky for improved navigation skills (107).
(B) Smellicopter is a tiny biohybrid drone equipped with moth antennae to sense odor and fins that passively align
it with the wind (54). (C) The honeybee-sized Robobee (29), which was successfully miniaturized by having a passive
mechanism for varying the wing angle while only the wing stroke angle is actively controlled. (D) In (779), a drone
uses the oscillations that arise during active optic flow control to estimate distances to objects in its environment.
(E) In (70), an artificial compound eye is actively controlled to remain parallel to the ground surface, allowing the
robot to deal with oncoming slopes. (F) The swarm gradient bug algorithm enables a swarm of tiny drones to explore
unknown environments and return to the base location (96). (G) Tiny Kilobots (792) used in a study on foraging with
virtual pheromone trails (93). (H) A swarm of drones flying as a flock in the presence of no-fly-zones (760).
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the flapping wings of insects can also play
arole in the exploitation of passive effects.
For instance, with the help of a flapping
wing drone, it was shown that fruit flies
passively turn into the flight direction after
rapid escape maneuvers (30). Beyond pure-
ly passive mechanisms, simple neuron-
mediated reflexes underlie many behaviors
such as flight stabilization. Such active
reflexes do depend on a coevolution of
body and sensors, though. To illustrate,
flight stabilization is also facilitated by
mechanosensory structures on the wing,
campaniform sensilla, which encode
information on wing deformation and
consequently on the flight dynamics (31).
Hence, insect wings not only are actuators
but also influence sensing and consequent
active control. The scale of insects also
fundamentally affects their body design
and cognition. For example, the efficiency
of flapping wing motion for propulsion
heavily depends on the Reynolds number
(viscosity of the air) (32), with small fly-
ing insects such as Drosophila relying on
higher-frequency flapping (33) than larger
ones, which even rely on gliding (34). These
differences are reflected in robotic designs
(29, 30, 35). Similarly, scale influences
limb tip contact forces and the potential
to adhere to vertical surfaces, influenc-
ing walking gaits exhibited by insects
(36). Furthermore, much like how ants
can carry many times their body weight,
insects’ small scale protects them from col-
lision damage. This makes occasional mis-
takes or inaccuracies in motion control
less problematic. For example, honeybees
do make crash landings (37). This has
inspired collision-resilient robot designs
(38-40), allowing for a less computa-
tionally expensive AL

The sensory apparatus of insects is
also tailored to the tasks they need to
perform. Their compound eyes have a
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low resolution compared with human vision, wide field of view, and
a high temporal bandwidth (10, 41), exceeding a 200-Hz flicker
fusion frequency in some species (42). These eyes are particularly
suited for capturing fast motion cues that are relevant for agile flight,
capturing prey (43), and avoiding predators (44). In robotics, it is
common to have cameras with a 30-Hz frame rate, limiting response
speed. Inspired by insects, lightweight artificial compound eyes with a
high frame rate and wide field of view have been produced (45-47). It is
also possible to use arrays of smaller cameras for an omnidirectional
view (48) or down-sample a standard omnidirectional camera (49) at
the cost of a heavier system. Event-based cameras are highly promising
as neuromorphic vision sensors, because they asynchronously register
per-pixel changes in illumination, resulting in a large dynamic range
and high temporal rate (50).

Insects combine vision with multiple other sensors to achieve
parsimonious motion control. They have one pair of antennae, which
are sensitive to airflow and function as olfactory organs (5I). In
translatory motion, flies linearly combine low-latency mechanosensory
feedback from their wind-sensing antennae with higher-latency visual
feedback to control their flight velocity (52). A strikingly similar super-
position exists for the gyroscopic mechanosensory halteres and vision
in rotatory motion (53). Currently, antennae have a far superior
performance for olfaction compared with artificial sensors, which
has led to biohybrid robot designs incorporating live tissue from,
e.g., moths, for odor source localization (54, 55). However, the
antennae are also sensitive to airflow (52, 56), something that is also
hard to measure onboard small robots. Promising airflow sensor
designs have been demonstrated (57-59), but they are not yet widely
available for robotic integration. Sensing airflow is important not
only for flight control but also for tasks such as odor source localiza-
tion. Flying insects like moths and fruit flies are known to find odor
sources by interleaving casting (flying orthogonally to the wind
direction to detect an odor) and surging (flying upwind when sensing
the odor) (60-62). In (54), wind sensing and processing were bypassed
by means of a physical design that passively steered the robot into
the wind. In general, the robotic equivalent to the evolutionary
co-development of both the body and brain can take the shape of an
artificial evolution (63, 64) or an extensive investigation of existing
hardware and software options (65).

Sensory-motor coordination

The brain evolved to control motion as organisms gained the ability
to move; conversely, evolution drove animals to move in such a way
as to make the task of the brain easier. Active vision is an important
example and entails moving the visual system to simplify visual
processing (66-68). Many flying insects use their neck muscles to
maintain a constant head orientation, known as gaze stabilization,
during flight maneuvers. This ensures that compound eyes capture
the translational and not the rotational flow, because only the former
carries distance information (69). Gaze stabilization also reduces
visual processing requirements, something that has been exploited
in few published robotic studies because it has traditionally required
heavier hardware (70-73). Interestingly, active vision in the form of
microsaccades allows insects to resolve objects with an acuity beyond
that expected from the coarse layout of their ommatidia (74, 75).
This has been exploited on robotic platforms (76, 77). The break-
through for this type of hyperacuity—and active vision in general—
to microrobots, though, may depend on scaling down the hardware
for performing these microsaccades (68, 73). Furthermore, motions
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of the full body can be useful to insect and robot vision. For example,
in (78), a flying robot moved actively up and down to induce clear
translational flow for identifying gaps to fly through, which was
similar to the peering behaviors observed in bumblebees attempting
to cross a gap (79). Moreover, in (80), it was shown that the oscillations
inherent to optic flow control can be used for gauging distances.
Another example of how sensory-motor coordination can sim-
plify required processing comes from insect navigation. One theory
on ant navigation postulates that they use a visual guidance in which
they move toward the most familiar view (81). From time to time,
ants rotate on the spot to find which viewing direction is most
familiar to them. They physically perform an action (rotation of the
view) that would require additional cognitive capabilities if it had to
be performed mentally. Moreover, in (82), it was observed that ants
often deviate from the straight-line path. Modeling this behavior has
led to the insight that if the magnitude of the oscillations correlates
with the uncertainty of view recognition, it leads to much more robust
navigation (83, 84). In addition, in flying animals, motion is essential
to navigation. For instance, honeybees and wasps perform elaborate
maneuvers around their nest, termed “learning flights,” which facili-
tate homing in on the nest when returning (85, 86). Although the
examples given here have focused on vision, insects also make use
of other senses, such as that of touch (87, 88). Touching offers the possi-
bility of active tactile sensing or even “interactive perception,” in which
perception is facilitated by moving objects in the environment (89).

Swarming

To transcend their individual limitations, social insects live together
in colonies. Social insects have inspired the design of computational
models (90) and have led to the field of swarm robotics (91). Swarming
allows for parsimonious solutions to robotic tasks, because these
can be achieved by robots with many fewer resources than a compa-
rable single-robot system. Moreover, performing tasks with swarms
holds the promise of robustness (e.g., failing robots do not immediately
endanger the mission), scalability (i.e., the local perception and actions
of robots allow adding more robots to, e.g., explore a larger area in
an exploration task), and flexibility (just as in insect colonies, differ-
ent proportions of these robots can be assigned to different tasks
depending on the need). Swarm robotics examples include crossing
gaps (92), shortest-path finding (93), global decision-making (94),
surveillance (95), exploration of unknown cluttered environments
(96), and gas source localization (97).

Parsimony
The three aspects of embodiment, sensory-motor coordination, and
swarming all feed into the parsimony of the solutions used by in-
sects to solve complex tasks. Let us take navigation as an example. A
well-known example of a highly skilled navigator is the desert ant
Cataglyphis. It is able to forage for hundreds of meters along mean-
dering paths and then travel back home in a straight line (98). Because
of the large body of biological work in this area, it has become clear that
the underlying mechanisms consist mostly of path integration (odometry)
and visual guidance (99, 100). Moreover, insects’ parsimonious solu-
tion to navigation relies on the exploitation of specific characteristics
of the environment. For example, when navigating outdoors, they
use the polarization of the light for better path integration (101-105).
However, there is still a debate about the exact mechanisms
involved in navigation in any particular exemplar species. The
well-known “snapshot theory” (102, 106) proposes that ants compare
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stored, coarse omnidirectional views with their current percepts, al-
lowing them to move in directions that minimize the difference. A
more recent familiarity-based theory (81) states that ants follow the
most familiar view, rotating physically to move into the best matching
direction. This removes the need to explicitly recall views. In a similar
vein, it has been asked whether a neural network can directly map
percepts to a motion direction (107). Recently, a nest-centric coordinate
scheme has been proposed, which suggests how ants can travel from
one feeding place to another without having traveled such a route
before (99). Multiple robotics studies have drawn inspiration from
these navigation schemes. Path integration has been successfully im-
plemented onboard wheeled and legged robots with remarkable accu-
racy (101, 103). Several different approaches have been proposed
for how to incorporate visual guidance (103, 108, 109). In one of the
most advanced published studies in terms of real-world experiments
(109), a robot traveled outdoor paths of ~100 m with a memory require-
ment of 3 megabytes (MB)/km. By comparison, a typical SLAM solu-
tion constructs three-dimensional metric maps, which requires hundreds
of megabytes, even for datasets consisting of a single room (2).

Parsimonious solutions used by insects exist for many other
tasks that are relevant to robotics. These include optic flow-based
visual navigation for obstacle avoidance (48, 72, 110-112), target
following (113), altitude control (114, 115), and landing (116). For
many of these tasks, the main principles are known, but the exact
mechanisms that should be implemented in robots are an area of
active research. For example, it has been found that honeybees use
optic flow divergence for landing (117, 118), but the algorithms for
successfully executing such landings are the subject of ongoing study
(119). For some tasks, such as the detection of looming objects by
locusts, the neural basis is quite well understood (120-123). Under-
standing the locust’s lobula giant movement detector neuron has led
to computationally efficient neural models, which have been tested
on mobile robots and lend themselves well to implementation with
neuromorphic vision sensors and processors (124-129). Detection
and avoidance of dynamic obstacles is one of the areas where the
low latency of event-based vision can make a difference, as has been
recently demonstrated by drones capable of avoiding thrown ob-
jects or other drones (112, 130, 131). Other tasks for which relevant
insect behaviors are known include odor source localization (60, 61)
and various forms of learning and classification (132, 133).

The emphasis on parsimony should not be misinterpreted as an
argument against cognitive capabilities. Insects and robots alike can
definitely benefit from more processing, for instance, to allow for
the interpretation of more complex visual information (134) or to
accommodate various forms of learning, such as in the mushroom
bodies (135-138). Moreover, for more advanced cognitive capabili-
ties, insect intelligence can serve as inspiration for robot Al For
instance, a model of olfactory learning of the Drosophila (139) has
recently been used for creating a computationally highly efficient
algorithm for visual place recognition (140).

It may be clear that the parsimonious nature of insect intelli-
gence is of considerable interest for autonomous robots. However,
to fully exploit this, we need to tackle a few hard challenges.

CHALLENGES ON THE ROAD TO INSECT-INSPIRED Al FOR
AUTONOMOUS ROBOTS

We have sketched the potential of insect-inspired AI for creating
autonomous, small robots with extremely limited computational
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resources. However, the advantages of insect-inspired Al have been
heralded before (5, 6, 141, 142). Here, we reflect on why insect-
inspired AI has not yet been adopted more widely. We identify two
main challenges that have been holding this approach back, but on
which accelerating progress is being made.

Designing insect-inspired Al

We have given many examples of how different aspects of insect-
inspired AI have been applied to small autonomous robots. Still, it
may be unclear to a designer how to apply “insect-inspired AI” to a
new robotic task that has not yet been treated before in the litera-
ture. In (143), three types of design methods are discussed: manual
design following the typical divide-and-conquer approach to engi-
neering, manual design following findings from biology, and auto-
matic design by machine learning.

The first approach typically follows a divide-and-conquer strategy,
separating the solution into submodules. A commonly used division
is perception, state estimation, and control modules, each of which
is then developed in isolation without exploiting sensory-motor coor-
dination. The problem with this is that it typically does not lead to a
parsimonious solution in which simple elements interact in a com-
plex manner to give rise to the desired robot behavior. Rethinking
manual design methodology may be a solution. For example, in (89),
it is proposed to split up the solution in submodules consisting of
active sensorimotor loops, forming a hierarchy of complexity.

The second approach is to draw inspiration from a biological
analog of the robotic task. The main challenge here is that insects
themselves are highly complex systems, for which it is difficult to
reveal the exact mechanisms underlying their behaviors. Consider
navigation, in which the main ingredients are clear [see (99, 144)],
but many of the details that are required for devising a full algorithm
or robotic implementation are not fully known. In addition, natural
evolution involves implicit constraints such as those for growth and
procreation, leading to, for example, courtship displays or metabolic
transitions from larval to adult life stages. Such implicit constraints
and the multiple objectives optimized by an insect’s body and be-
havior make it difficult to identify which elements may be informa-
tive for a robot design. The typical approach to drawing inspiration
from biology is to identify a virtuoso, an animal that excels in some
specific behavior (14). This may be a Cataglyphis ant (102) or honeybee
(145) in the case of navigation, or a fruit fly for maneuvering (44).
This must be combined with a design process in which knowledge
gaps are filled by the designer. This second approach benefits from
novel techniques that are accelerating the scientific endeavor of un-
derstanding insect intelligence. Advances in computing and graphics
now allow us to place free-moving animals in virtual reality (52, 146),
enabling us to precisely probe a mobile animal’s input-output map-
ping. Moreover, deep machine learning methods and tools like
focused ion beam scanning electron microscopy have recently im-
mensely accelerated the construction of obtaining full connectomes
(147). This enabled the construction of a complete map of the entire
central brain region of Drosophila, containing 25,000 neurons and
2 million synapses. Another relatively recent technique is optoge-
netics, which allows for more fine-grained, noninvasive control and
analysis of neurons inside insects’ brains (148). For instance, this
technique has revealed the neural basis for heading integration in
fruit flies, which turns out to work by means of ring attractors (149).
This finding has led to new computational models for path integra-
tion (129, 144). We expect that these novel techniques will fill in the
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knowledge gaps more quickly and at a much more detailed level than
ever before, facilitating manual insect-inspired design.

The third approach tries to circumvent the difficulties associated
with complexity by automatically designing the solution. A main
approach to achieving automatic design of bioinspired intelligence
is to use evolutionary robotics (143, 150, 151), which typically en-
tails evolving a neural network in simulation. There is a consider-
able parallel with reinforcement learning (152), although evolution
can comply with all aspects of parsimonious solutions by evolving
not only the controller (153) but also the sensors (154) and body
(63, 64). An advantage compared with the bioinformed approach
discussed previously is that evolutionary robotics can make better
use of the available technological building blocks, which may be far
behind their biological counterparts (e.g., olfaction and efficient
parallel processing in the brain) or far ahead (e.g., efficiency of elec-
tric motors compared with muscle and capability of fast serial com-
putations in silicon). A major challenge in evolutionary robotics is
to find solutions to difficult tasks while starting evolution from scratch.
As a consequence, evolution can become stuck in unsatisfying local
optima. This problem can be tackled with varying success by adapting
the selective pressure on evolution (151), growing the controller’s
size and complexity over evolution (155), scaffolded learning (156),
or novelty search (157). Moreover, simulation necessarily abstracts
away from many properties of the real world. This means that if a
successful solution is found by evolution, it still has to cross the reality
gap (158). This can be tackled by incorporating improved models of
the most relevant real-world properties, combining evolution with
online learning or development (159), randomizing factors that may
not be modeled well (158), and abstracting away from sensory
inputs and control actions in evolution so that already working
low-level perception and control modules can cover the reality gap
(97, 160-162). Last, both failures and successes of automatic design
present challenges. On the one hand, in case of failure, the causes
for this are difficult to identify. The cause may lie in the represent-
ational complexity of the solution (e.g., the size of a neural network),
the learning process (e.g., the number of individuals or the mutation
rate), or the sensory information available to the robot. Many choices
made by the designer lead to implicit constraints on the learning
process and solution, which may prevent success. On the other hand,
if automatic design succeeds, it is still necessary to analyze the solution
to understand how it works and characterize its weaknesses. Although
such artificial solutions are more accessible than a live biological
organism, the analysis of an evolved complex system can be challeng-
ing as well, potentially requiring many of the same statistical and ex-
perimental methods used in the scientific analysis of living organisms.

Figure 2 illustrates complexity at various levels, from a single
neuron to networks of neurons, brain regions, and the complexity
of interactions with other agents and the environment. When de-
signing insect-inspired Al, each level plays a role.

Full-stack autonomy solution

Mobile robots that autonomously perform real-world tasks need a
“full-stack” autonomy solution. This means that they must be able
to move, avoid collisions, and navigate to places of interest for the
task including recharging, and they need to take actions to achieve
their assigned goals. The mainstream approach in robotics to navi-
gation, SLAM (163), creates a metric map of the environment and
uses it for localization and motion planning. This resource-intensive
process is then complemented with additional specific task capabilities.

de Croon et al., Sci. Robot. 7, eabl6334 (2022) 15 June 2022

If small, resource-constrained autonomous robots are to be fully
autonomous, they will have to follow an alternative approach.

Insect-inspired Al entails one such alternative approach that avoids
detailed world modeling (141). Instead, different behaviors are tightly
interlinked in a sophisticated way to achieve complex tasks (164).
The design of such AI—with extreme resource constraints—is chal-
lenging for single tasks, but even more so for a full-stack autonomy
solution. Indeed, insect-inspired AI until now has mostly produced
studies on individual tasks such as landing (116), obstacle avoidance
(110, 111), or odor source finding (54). Moreover, these studies often
take place in simplified environments. For example, studies on the
use of optic flow often use spaces with ample texture, because optic
flow becomes harder to determine when texture is lacking. Part of
the reason for this is that engineered visual sensors are currently
outclassed by insect eyes—they have a smaller field of view and slower
update rates. Multiple successful designs for artificial compound eyes
have been proposed in the academic literature (46, 165), but the lack
of mass production and hence wide availability of such sensors is
related to the absence of the full-stack autonomy—and hence the
promise of widespread real-world application.

Most importantly, there are no scientific studies yet that demon-
strate insect-inspired navigation methods working robustly over
longer distances and time scales in large, real-world environments.
There are multiple reasons for this. First, as stated before, the exact
navigation mechanisms in different insects are still being investigat-
ed. Published theories leave out important elements that must be
implemented for robotic applications. Second, most insect-inspired
navigation methods have only been tested in simulation or in envi-
ronments of limited size or scope, like laboratory environments.
Benchmark real-world datasets that are well accepted by most of the
robotics community, like the KITTI car dataset (25), are typically
not suitable for using insect-based navigation. The sensors are dif-
ferent from those required (e.g., they use small field-of-view cameras).
However, even more importantly, insect-inspired methods vitally
depend on active interaction with the environment, which is not
possible with a passive dataset. Last, because insect-inspired naviga-
tion makes a different choice at the highest abstraction level, different
performance metrics need to be used as well. For instance, instead
of the error between estimated and real position, one should look at
the percentage of runs in which a robot successfully returns to within
a few meters of the base station. State-of-the-art studies on insect-
inspired navigation strategies, e.g., (109), are very close to having
viable strategies for large real-world environments. Interestingly, they
will likely have properties that mainstream SLAM research is still
striving to achieve (166, 167). For example, the coarse resolution
and omnidirectional vision of insects is robust against dynamic ob-
jects that may confound SLAM algorithms. Moreover, their parsi-
monious nature permits execution even on very small embedded
processors, leaving computation resources available for other pro-
cesses such as visual object recognition.

Successful navigation is the key to achieving a full-stack autonomy
of robots endowed with insect-inspired Al It will lead to more
successful applications of insect-inspired AI to complex, real-world
tasks. Of course, there are already such applications, with the most
compelling example being the Roomba robotic vacuum cleaner,
which performed a biology-inspired random walk to cover the floor
of a room (168). We hope that advances in insect-inspired navigation
will allow for more complex and spatially extended tasks, and stim-
ulate the production and availability of sensing and computing
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relevant; the algorithmic level, capturing
how the problem is solved, e.g., what
representations are used and how they
are processed; and the implementation/
physical level, being the physical reali-

‘D

Lobula

Biological

IF neuron

zation of the system. The type of proces-
sor concerns the third layer of abstraction.
Choosing a processor will determine
the types of autonomy algorithms that
can be implemented and the correspond-
ing time and energy efficiency. Figure 3
shows various types of computing hard-
ware with a coarse indication of their
energy expenditure and processing speed
(assuming parallel computing as with
neural networks). We will discuss the types
of processors shown in the figure below.

Let us start with microcontrollers.
Microcontrollers contain one or more
central processing units (CPUs), which
are general-purpose, von Neumann ar-
chitectures, executing computations one
after another in series. Microcontrollers
draw comparatively little energy, have
limited memory, and—compared with

Neuron models

O=—0 » Retina Lamina Medulla Lobula R e Bt modern-day desktop/laptop processors—
@;\@ &‘g?z‘o\ pus —‘ﬁ,l ,—'—f I’d have a slow processing speed. For in-
@ : : _u_vO-LL stance, an STM32F04 has 192 kB of RAM
‘_g O_%(,O%éo }’ : (random-access memory), has a 168-MHz
£ @\00893 pus LI neuron processor, and draws ~Q.4 W of power.
< &O ; : 1 ’\'I\']\1 """ For the sake of comparison, a state-of-
o —O Das . J_‘T‘O_u_ -—| [T theart CPU such asthe AMD Ryzen 9 fea-
Cﬁ o )_» = \L | Il tures 12 cores (cache memory of 64 MB)

: I N N

with a base clock frequency as high as
3.7 GHz, drawing 105 W of power. We

Fig. 2. Insect-inspired Al aims to solve complicated tasks with parsimonious solutions, which rely on complex
systems at multiple scales. These systems consist of many components that interact with each other to give rise to
a (desired) global behavior. Understanding and harnessing this complexity lies at the heart of the challenges faced
by the insect-inspired approach. In the figure, we show biological and artificial elements side by side, where the latter
are typically abstract versions of the former: (A) At the macroscale, the insect or robot interacts with the environment
and other agents. (B) Different brain regions/functional neural modules connect and interact to give rise to the full
behavioral repertoire. (C) A single part of the brain/neural network can perform a function, such as extracting global
optic flow fields from local optic flow measurements. (D) A single biological neuron is a complex system in itself,
which can implement sophisticated functions (793). In computational models, artificial neurons are typically the lowest
level of complexity, and by themselves often still have relatively simple dynamics, representing simple functions.
Here, an integrate-and-fire (IF) and a leaky-integrate-and-fire (LIF) neural model are shown, which lead to different

have shown multiple examples though,
in which insect-inspired Al has enabled
small robots with microcontrollers to
perform complex tasks (96, 97, 170).
The key here was making different choices
at Marr and Poggio’s first and second
abstraction levels. For example, in (96),
implementation of swarm exploration
on a microcontroller was made possible
by accepting that, in terms of navigation,

dynamic behaviors and hence a different information processing capability.

hardware specifically tailored to the autonomous navigation of
small robots.

COMPUTING HARDWARE

We set out to argue that drawing inspiration from insects is a way to
create parsimonious solutions for the AI of small autonomous ro-
bots. This raises the question what kind of processors are suitable
for a full-stack autonomy. Marr’s levels of abstraction (169) help us
to tease apart the problem. They are as follows: the computational
level, specifying which problem is solved and why this problem is

de Croon et al., Sci. Robot. 7, eabl6334 (2022) 15 June 2022

the robots will only be able to come back

to the base station (first level) and that

behaviors are represented using a finite
state machine (second level). We think that insect-inspired AI can
extend the autonomy of robots equipped with microcontrollers far
beyond what is generally thought possible. The limits of micro-
controllers lie largely in the processing of high-dimensional sensor
data such as visual data. In principle, insect vision is characterized
by low-resolution visual sensors. For instance, fruit flies have
~800 ommatidia with 8 photoreceptors per ommatidium (41, 171).
Processing in the order of thousands or a few tens of thousands of
pixels at the frame rate of a normal complementary metal-oxide
semiconductor camera is possible, see (170), as well as with insect-
inspired artificial retinas as demonstrated with the CurvACE
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Fig. 3. Computing hardware used for insect-inspired Al, illustrated with high-
ly resource-restricted, flying robots. The central graph gives a very coarse indi-
cation of the energy expenditure and processing speed of different types of
computing hardware, with processing speed including the parallel nature of pro-
cessing in architectures such as the GPU, FPGA, and neuromorphic chips. Around
the graph, examples are given in which the computing hardware is used for
achieving insect-inspired Al. (A) In (97), an STM32F4 microcontroller was used for a
fully autonomous swarm of tiny drones to explore an unknown cluttered environ-
ment and collaboratively localize a gas source. (B) In (78), the GPUs on an NVidia TX
2 were used to determine dense flow with a deep neural network. An active vision
strategy allowed for a drone to pass through gaps of different unknown shapes.
(C) Design of the MiniBee (49), which has been equipped with FPGA-based optic
flow for autonomous navigation (inset, Opteran’s FPGA-based visual navigation
kit). (D) In (788), an onboard Loihi neuromorphic chip (Kaphoho bay) was used for
controlling autonomous constant divergence optic flow landings. (E) In (789), a
Loihi chip was used for the complete perception-to-action pipeline for the attitude
control of a drone clamped to allow for rotation as the single degree of freedom.

(Curved Artificial Compound Eye) visual sensor (46). However, for
faster sensors like event-based cameras, or more elaborate processing
such as deep convolutional neural networks, the limited von Neumann
processor on a microcontroller may become a bottleneck. A similar
line of reasoning goes for more powerful CPUs, although the limits
are less severe.

This is where parallel processing—a fundamental feature of pro-
cessing in the brain—comes into the picture. Graphical processing
units (GPUs) are an alternative computing architecture that is
explicitly designed to perform parallel computations using many
parallel processors. Notably, they can readily implement traditional
(i.e., non-neuromorphic) artificial neural network inference. This

de Croon et al., Sci. Robot. 7, eabl6334 (2022) 15 June 2022

speeds up the execution of deep neural networks, making it possible
to operate in real time even on onboard embedded devices such as
the NVidia TX 2. For instance, in (78), a TX 2 was used to determine
dense optic flow, enabling a drone to detect and fly through gaps.
However, existing embedded GPUs are still relatively heavy and
consume a substantial amount of energy. The NVidia TX 2 weighs
85 g and consumes 7.5 W of power, which is unacceptable for many
of the small robots discussed in this article. The size and energy con-
sumption of GPUs has been improving at a faster rate than CPUs in
recent years [see (65) for a thorough investigation of various embedded
processors for running deep neural networks], but both are restricted
by the physical limits that limit indefinite extension of Moore’s law.
Exploiting potential sparsity in neural networks can make their
implementation on GPUs more energy efficient, e.g., (172), but other
processor architectures in which low power and high throughput have
been at the core of the design from the start promise even greater gains.

An alternative for parallel processing with very high throughput
is to use a field-programmable gate array (FPGA). In addition to their
widespread availability on the market, FPGAs offer noise robust-
ness and, most importantly, high implementation flexibility (173).
This flexibility allows, for example, for the implementation of spik-
ing neural networks (SNNs) (174) on FPGAs to obtain low latency
and energy efficiency (173, 175-177) or computing dense optic flow
(178, 179). A disadvantage of FPGAs with respect to CPUs or GPUs
is that programming them is more burdensome. Traditionally, floating-
point math operations were inefficient on FPGAs, but new designs
now incorporate built-in floating-point units. We believe the extra
effort required for FPGAs is justified if one needs to specialize be-
yond the traditional deep neural networks. A similar line of reasoning
can be followed for application-specific integrated circuits, for which
the engineering effort and especially the costs of production are
orders of magnitude higher.

Neuromorphic processors represent an important alternative
with substantial promise. These processors are aimed specifically at
implementing the parallel, sparse, and asynchronous processing of
SNNs (174) and/or exploiting other desirable characteristics of tran-
sistors. The latter includes operating in their efficient subthreshold
regime (180) or using floating-gate arrays to compute the harmonic
mean for low-power localization (181). SNNs have temporal dy-
namics that more closely model natural neurons. For instance, in
the so-called leaky-integrate-and-fire model, the neurons integrate
incoming weighted input currents in the membrane voltage, which
decays over time and produces a spike when it exceeds a threshold
(182). In real brains, spikes have likely evolved to transmit informa-
tion over longer distances (22). Each spike consumes considerable
energy, so the spike rate is minimized, which leads to sparse, energy-
efficient processing. Examples of neuromorphic processors include
Intel’s Loihi (183), IBM’s TrueNorth (184), HICANN (185), Neuro-
Grid (186), and SpiNNaker (187). There is an increasing number of
examples that show the potential of these processors both in terms
of energy expenditure and in execution speed. For instance, in (188),
an SNN composed of only 35 spiking neurons controlled a flying
robot for performing optic flow landings, with the controller running
onboard the Loihi neuromorphic processor at 265 kHz. In (189), an
on-chip SNN model of a proportional, integrative, derivative (PID)
controller was used to control a 1-DOF (degree of freedom) quadrotor
arm at 1 kHz, with an average 0.0126 mW power consumption per
time stamp for a total of 40,000 neurons. However, there remain
obstacles that must be overcome to realize neuromorphic processing’s
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full potential, both in terms of software (how to have SNNs learn
robustly, preferably online in the neuromorphic hardware) and in
terms of hardware (how to interface neuromorphic processors
with a robot’s sensors and actuators so that the energy efficiency
and execution speed is not lost).

Last, also for the choice of a processor, the scale of envisaged
robots is essential. For tiny insects, the neural elements start to hit
biophysical limits related to channel noise, leading to different neural
solutions (17, 22). For example, the tiny wasp Megaphragma caribea
(average body length of 170 pm) has many neurons without a
nucleus (190). If we intend to design robots at such tiny scales, they
may require custom processors that deal with similar physical phenomena
and that are currently beyond the horizon.

CONCLUSION

In this article, we have argued that drawing inspiration from insect
intelligence will enable reaching higher autonomy levels, even with
modest processing capabilities available on small robots and devices.
To achieve this, we argue that the right approach is not to implement
existing autonomy algorithms in novel processors. Instead, the robot
engineer will have to strive for the same kind of parsimony that is
found in insect intelligence. This will be vital for small robots with
limited resources, like tiny insect-like flying drones (29, 191), but it
will also be important for larger robots when they have to execute
many complex tasks, when their bodies are covered with tiny sensors,
and when energy efficiency is an overriding concern. Indeed, in
nature, parsimony is not reserved for insects alone; it is a governing
principle for all animals.
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