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General Introduction - From Vision to Action

. Animals' behaviours rely on transforming sensory input into motor actions.

. To understand this, we use Deep Neural Networks (DNNs) to mimic real
animal brains.

. Main goal of the study: Create a one-to-one mapping between artificial
neurons in a model and actual neurons in a fruit fly’s brain, accurately
predicting how each neuron contributes to behaviour.
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Background — Why Drosophila?

. Fruit flies have a simpler nervous system but still sophisticated behaviors like
courtship, singing.

. Easy to genetically modify (can “knock out” (silence) specific neurons)

. Short life cycle and well-studied anatomy make them ideal for
experimentation.
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Background — Visual Projection Neurons
(LC Neurons)

« LCneurons (Lobula Columnar neurons) transmit visual signals from the
eyes to the central brain.

 They link the visual processing region (optic lobe) to deeper brain areas.

« Previously, scientists thought each LC neuron type specialized in detecting
certain visual features.

« They play a crucial role in behaviors like courtship.

* There are approximately 200 different LC neuron types, each originally
believed to uniquely respond to specific visual signals.

* These neurons form a crucial information bottleneck comprising around 200
distinct cell types.

LC projection neurons
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Background — Courtship Behaviour

. Male flies chase and sing (using wing vibrations) to attract a female.

. Visual cues important for this behavior include the size, position, and angle
of the female.

Orientation Following Wing Vibration

SLEAP.ai
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Knockout Training — A Novel Approach

Authors’ new idea: Knockout Training

1. This method combines experimental neuron silencing in flies with deep
neural networks (DNNSs).

2. Goal: To create artificial neural networks that mimic real neurons and their
influence on behavior.

Enabled Disable

Which LC neuron
drives the behavior?
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Silencing
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How Knockout Training Works

« Experimentally silence specific neurons in flies and observe resulting
changes in behavior.

« Train a deep neural network (DNN) to predict fly behavior.

« During network training, artificially "knock out" (silence) artificial neurons that
match the experimentally silenced neurons in the flies.

« Continuously adjust the network until the effects of artificial neuron silencing
closely match those of real neuron silencing.

Training sample 1 2 3 4

X
LC neuron inactivation X

N L
Record behavior Q¥ %. Q/ Q

RS
,,\‘

Silence model LC units ><
(set to 0) and train X
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Knockout Training — Why is it More Effective? *

« Previous methods compared neural recordings with DNN activity but couldn't
clearly establish the causal roles of individual neurons in behaviors.

« Knockout Training directly links specific neurons in the model to those in the
real animal by:
. Observing real behavioral changes when neurons are genetically silenced.
. Mimicking these silences in the neural network during training.

Advantages of Knockout Training:

« Clearly establishes causal roles: it predicts the exact role a neuron plays in
behavior.

 Does not require direct neural activity measurements, only behavioral data.
This is especially beneficial for studying complex behaviors or when neural
recordings are difficult to obtain.

» Predicts behaviours accurately, even when multiple neurons are silenced
simultaneously (which is hard experimentally).

» Predicts behavioral outcomes accurately, even when multiple neurons are
simultaneously silenced (a scenario that's experimentally challenging).
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Deep Network Model of Vision
&

« How does the fly behave according to its visual input ? »

Fly visual system : optic lobe — LC projection neurons — central brain

a LC projection neurons O
(bottleneck) glonj%rulus
Optic b’ Central
Fly brain lobe brain
Visual input Behlav.iour
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KT ‘ _ P(song)
™ \ 1-to-1 mapping x
2. N (e
% = X
1-to-1 network y/d Model

Vision LC units  Decision
network (bottleneck) network

1-to-1 DNN : vision network — model LC units — decision network
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1-to-1 Deep Neural Network

Bottleneck layer :
same number of units as the number of manipulated LC neuron types
- 23 LC types, chosen by their influence on behaviour

Goal : identify a 1-to-1 mapping between model LC units and real LC neurons

Methods :
b

- behavioural data from altered male, Training sample 1 2 3 4
by blocking synaptic transmission in L6 reuron inactiation C » X
each of 23 different LC types \l, |

o ) ) o Record behavior f@ & ). P
- knockout training : identify activity | l%" A
and contribution to behaviour of each Siencemodal L urits.

(set to 0) and train X X

silenced LC neuron type
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Experiment 1 — Courtship behaviour

€ Natural behaviour:

fly courtship Goal : data for DNN training

Setup :
« 1 male + 1 female in a behavioral chamber

Experiment :
&; i « Courtship behaviour with silenced LC type male
Recording :

« Movements + song production
* Reconstruction of visual input of the male (SLEAP)

f Reconstruct visual input:

&

g LCtype LC4 LC6 LC9 LC10a LC10ad LC10bc LC10d LC11 LC12
= number 17 19 18 13 15 16 16 14 14
1 of pairs

LCtype LC13 LC15 LC16 LC17 LC18 LC20 LC21 LC22 LC24

number 17 16 19 14 14 16 15 22 18
of pairs

LC type LC25 LC26 LC31 LPLC1 LPLC2 control total

number 16 18 24 16 17 75 459
of pairs 12/23
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Results 1 — Behaviour
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Experiment 2 — LC neurons
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Goals :
« Compare real with artificial LC response
« Improve DNN by giving partial access to

neural data
Setup :

« 1 male, head-fixed, viewing image sequences

vary female size

Experiments :
1. Show moving spot
2. Show fictive female (reconstruction)

Recording :
* LC dynamics with 2-photon calcium imaging

* Responses of 5 LC neuron types 14/23
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Results 2 — LC neurons

Metric for evaluation : noise-corrected R? (accounts for noise across repetitions)

Comparing real and model neural activity :
* No access to neural data : R2~0.35
« Linear mapping : R?2~0.65

Q.
o

0.8 - —
0.6

0.4

AF/F,
o
o
| I
AFIF,
o
o
o (o]
[
S
J
Y
L
o
(o]
Noise-corrected R?
»
4

5 0.2 i
2s 2s ’ P Q&Q So S
— —_— O R S & &
Real data 1-to-1 network \)&(@,@ d.@’ﬁo \é\o«b\o :\(\\@\(\\
\%O\J:o
f Fictive female stimuli Moving spot Loom Linear size

o LC17 (data)

§ 0.2-
[0} 01
2 57 LC17 (1-to-1 network)
g3 q '\ " ’\ ﬂ
[
Q
fodt 04

10s
LC15 (data)
u® 0.251 ( )
5
0- —

[} 517
@ _ LC15 (1-to-1 network)
o8
g  od . A

15/23
BIOENG-456 Ramdya



=P

Visual feature encoding of the model LC units

Visual stimulus
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Visual feature encoding of the model LC units

Decomposing response variance:
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Visual feature encoding of the model LC units
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Linking Model LC Units to Behaviour
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Distributed connections of the LC population

Visual stimulus
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Based on the FLyWire connectome, LC neurons exhibit shared connectivity,
with 60.2% of inputs and 55.6% of outputs linking multiple LC types.
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Key Novelties of the Paper

Knockout training:
A new method linking DNN units to real fly neurons

Population coding:
LC neurons act together, not independently

Predicting unseen responses:
The DNN model generalizes beyond training data
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Limitations & Future Directions

Inference gap:
The model can't infer LC tuning if silencing has no effect.

Context control:
Unclear how LC neurons trigger the right behaviour at the right time.

DNN realism:
Model lacks biological accuracy in replicating neural circuits.

Improve control:
Use VR for identical experiences in control and LC-silenced males.

Combine data:
Train models with neural and behavioral data for better LC predictions.

Expand behaviours:
Test knockout training on escape and flight behaviours.
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Conclusion

“Our work shows that constraining models
with causal perturbations of neurons during complex
behaviour is an
important ingredient in revealing the relationships
between stimulus,
neurons and behaviour.”
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