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e FlyGym

e Leg tip adhesion

e Locomotor controllers

e Fly eyes and smell organ
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=PrL Background: NeuroMechFly (v1)

NeuroMechFly, a neuromechanical model of adult
Drosophila melanogaster

Victor Lobato-Rios', Shravan Tata Ramalingasetty??, Pembe Gizem Ozdil'?3, Jonathan Arreguit ©2,
Auke Jan ljspeert? and Pavan Ramdya "%

Animal behavior emerges from an interaction between neural network dynamics, musculoskeletal properties and the physi-
cal environment. Accessing and understanding the interplay between these elements requires the development of integra-
tive and morphologically realistic neuromechanical simulations. Here we present NeuroMechFly, a data-driven model of the
widely studied organism, Drosophila melanogaster. NeuroMechFly combines four independent computational modules: a
physics-based simulation environment, a biomechanical exoskeleton, muscle models and neural network controllers. To enable
use cases, we first define the minimum degrees of freedom of the leg from real three-dimensional kinematic measurements
during walking and grooming. Then, we show how, by replaying these behaviors in the simulator, one can predict otherwise
unmeasured torques and contact forces. Finally, we leverage NeuroMechFly's full neuromechanical capacity to discover neu-
ral networks and muscle parameters that drive locomotor gaits optimized for speed and stability. Thus, NeuroMechFly can
increase our understanding of how behaviors emerge from interactions between complex neuromechanical systems and their
physical surroundings.

A morphologically realist model of the adult fly.
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=PrL Background: Why NeuroMechFly v2?

Goal: to discover principles underlying the control of animal behaviors.
Method: to create neuromechanical simulation models that mimic reality
to get a better understanding of the animal behaviors.

a morphologically realistic V1 V2
neuromechanical model _
Dialogue

machine learning model
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Complex sensory objects
Vision v N Olfaction v2 updates
-
Sensory processing Qa
and action selection 4
® 2
Descending and (>} o &
ascending signals e 3 o
@0 ®
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O =3
) [V}
Motor system — = =

Original model I
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v2 updates

V2 upgrade:

e Improved morphology
Better antenna DOF
More realistic walking
Leg adhesion
Added sensors:

e Vision

e Olfaction

e Locomotor feedback
e Processing unit
e Path integration
e Head stabilization

Goal of those upgrades:
To have a model capable of doing more
complex tasks.
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=PrL
FlyGym Package

Three main changes

)

-

Complies with Gym to
Facilitate updates to
NeuroMechFly
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Gym Interface &

e Open-source library

e Various built-in environments

o anall

Za

Environment
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Embodiment

/

Three main changes

Complies with Gym
to facilitate updates
to NeuroMechFly

e Supported by most training

librairies
o Fully complies with FlyGym
package

e Controller-environment interactions
in robotics and RL

g., vision, olfac tion (preprocessed
nechanosensing) sensory features)
\ —_— R
s Action
PR — (e.g., descending drive)
(e.g.. CPGs)
Task Interface Controller

(predefined assumptions)

(input/output) (nervous system)
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E P F L Three main changes

{Eg)} MuJoco Framework H

Complies with Gym
to facilitate updates
to NeuroMechFly

Passage from
PyBullet to MuJoco

e Physical representation of the Fly
o Flexible parameter depending on
the task E—— S

e New physics dynamics implementation

e Better stability and performance
e Wider range of actuators (leg adhesion) Mg\‘.‘“

Embodiment

e Sizes adapted to obtain observable
measurements
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Custom environment

/~

2a

Environment

Y

Three main changes

Complies with Gym
to facilitate updates
to NeuroMechFly

Custom

environmental
features

Passage from
PyBulletto MuJoco

Embodiment

o
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FlyGym : Reinforcement learning %

Partially Observable Markov Decision Process (POMDP) implementation

Q\:,gqj\aﬁah
W g

(preprocessed .
sensory features) . .
S S ‘Drion--.
Action 6‘\@?‘,’ vy
(e.g., descending drive) \QG‘
®
Interface Controller :

(input/output) (nervous system) (-"l a ;)
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=Pr~L
New feature : Leg tip adhesion

e Not easy to model the physics of real adhesion
o Modeled the adhesion as an additional normal force

e Liftoff mechanism abstracted for the Drosophila
o Adhesion force off during swing phase

e \Without adhesion : 30° / With adhesion : > 90°
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=Pr~L
Adhesion efficiency

0.05x 0.05x
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=Pr-L

Walking on slopes

Without adhesion 0.1x With adhesion 0.1x
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Locomotor controllers

e Three kind of controllers :

CPG

Rule-based

Hybrid

e  Rhythmic motor output
without rhythmic input
e Faston flat terrain, but slow

Predefined rules + sensory
feedback from the env.
Slow on all all terrains

Combination of the two
previous
Fast on all terrains

on others
o ‘ f f od t ks |
® © R @ 4 i
® @ B (@ - ; |
@0 o ® :
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Locomotor controllers
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=PrL
Locomotor controllers

Trial 1 Flat terrain Gapped terrain Blocks terrain Mixed terrain

0.1x speed
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CPG
controller

Rule-based
controller

Hybrid
controller



=PrL
Fly eyes

. o
% Fly retina iy Human eyes
Similarities : _ o
e Function of vision
e Photoreceptors
e Processing of visual information
Differences : e compounded eyes made e single lens structure with a
up of ommatidia retina
e field of view of ~270° e field of view of ~180°
e color sensitivity : e color sensitivity:
Ultraviolet, blue, green red, green, blue
e |ow resolution e high resolution
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=PrL
Fly eyes simulation

@ Cameras

Goal : avoid obstacles, reach a target (L QLT MY i
Simulation :
e Compounded eyes
o Color camera to each compounded eyes

e Yellow and pale type ommatidia

18/36



=Pr~L
Fly eyes simulation

Goal : avoid obstacles, reach a target

Simulation :
e Compounded eyes
o Arranged in hexagonal pattern
o Fisheye effect
o Transformed into 721 bins on a hexagonal grid
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=PrL
Fly eyes simulation

Goal : avoid obstacles, reach a target

Simulation :
e 270° of FOV with a ~17° binocular overlap

Overtap: 17°
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Use of fly eyes in locomotion

Task: Visually track and follow a
black sphere

How:

Threshold to detect the object
Extract object azimuth

Linear transformation
descending signal transformed
into a turning bias

C Visual object tracking task

Visual ,Ra.w qu
vision vision
ObISEEY (left) (right)
{ |
Object Object
s Q’ azimuth % ¥ azimuth
Linear model
1l
Descending

turn signal
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Visual object tracking task
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Similarities :

Differences :

BIOENG-456 Ramdya

Fly smell organ

% Fly antenna iy Human nose

e Olfactory function
e Sensory neurons
e Signal processing

Antenna and maxillary e Nasal cavity

palps

Detect odor gradients e airflow through the nasal
across left and right cavity

detect specific odors e Broad scent discrimination
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Fly smell organ simulation

goal : reach attractive odor, avoid repulsive odor

& Cameras

. . Antennal odor sensors
Simulation : Maxillary palp odor sensors

e olfactory receptors in the antenna and
maxillary palps
e Virtual odor intensities sensors
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Use of fly smell organ in locomotion

Task: reach an attractive odor while
avoiding to aversive odor

d Odor-taxis task

How:
e Compare of intensities of attractive
and aversive odor
e \Weight of opposite sign for attractive
and aversive odor
e Descending signal transformed into a
turning bias

[ Antenna e | [ Antenna
Max. pailp ¢ | | ¢ Max. palp

Left | | right
Linear model with
tanh transform
Descending
turn signal
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Olfactory chemotaxis task
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=PrL Path integration

Two variables integrated per leg:

e Legproprioception| :
e Tactile signals I > Stride length per leg

The position is deduced from the stride lengths of the differents legs:

Heading integration

¥(LF-RF)
EEII_E- }} L—P Aheading
H- inear
model \
Integrate —> Position
Distance integration /
¥(LF+RF)

S(LM+RM) . Aforward
S(LH+7H)  Linear displacement

model
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=PrL Path integration
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Some estimations are way off, a real fly probably use some
additional sensors to calibrate its position.

BIOENG-456 Ramdya 28/36



=PrFL Head stabilization

Purpose: To get better visibility inputs.

Flat terrain Flat terrain Blocks terrain Blocks terrain
No head stabilization Head stabilization No head stabilization Head stabilization
I I ' I Standard devxanon

in light intensity

Needed for tasks that required visual tracking.
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=PrL Hierarchical controller

Realisation of a complex task using hierarchical controller trained with
Reinforcement Learning (RL).

0.2x
a e Hexagonal Left Right
Left Right Q " convolutional Antenna Antenna
neural network X F X i
Raw vision 1 l
= Visual features Olfactory features
2 object azimuth, size, odor intensity on
& direction, distance each side
>
@ Neck actuation N .0 g
leads to stabilized “aee el .
3 G aral network t
el et r\&! » ng deep
Descending L reinforcement learning
. steering signal
.0 n .
o« e G —
> @—eo
- T \ r 4
@xe—
= Ascending s '
mechanosensory ‘ ]
signals v/ L)
— @0 —
CPG network with sensory feed
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=PrL Complex odor plume tracking

Complex odor plume 0.03s (0.5%)
simulated using PhiFlow.

Tracking algorithm used to
control locomotion:

P Forward walking o
Last Fixed
Accumulated Fixed turn
evidence duration
1] Stopping /" Turning 9 b
Upwind turning 1 Yy
probability based on lambdo(w—>s)=0.78
P(stop within 1s)=0.54

encounter frequency

BIOENG-456 Ramdya 31/36



=Pr-L

Fly following another fly

Algorithm, with neural

network for vision used to

control the fly:

Left Right ——— Left Right

Neu

ral

Raw vision  NeWOrK Neyral activities

Object
detection

Head Descending

stabilization  turn signal
Hybrid
Neck controller

actuation
Legged
locomotion

Left eye input

Left object score
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| ’ < | 4
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=PrL Conclusions

m
Hybrid controller better than CPG or rule-based controller
@3@) Addition of sensors helps in navigation

@ Simulation of complex behavior

e Improvement of the simulation
e More representative of the reality
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=PrL Discussion

% Some parts of the model rely on undefined biological mechanisms
o Adhesion mechanism abstracted, muscoskeletal system

P

Larger model training for even more relevant results

el

& Using vision for the path integration would be a good alternative to the one cited
before

Some improvements can be done on the behaviour of fly involving control of
wings, abdomen, etc... But supported within the framework !

?gi;z Possibility to perform experiments with connectome-constrained neural
networks
o Investigate biologically-relevant behaviors
o Better physical simulations -> training for larger models
o Better analysis of the fly’s muscoskeletal system
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Thank you!

Any guestions?
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=PrL Sources @&

e Prof. Pavan Ramdya - Controlling behavior in animals and robots course -
EPFL - 2025

https://www.nature.com/articles/s41592-024-02497-y
https://www.nature.com/articles/s41592-022-01466-7
https://zenodo.ora/records/13902792
https://ieeexplore.ieee.org/document/6386109

https://static-content.springer.com/esm/art%3A10.1038%2Fs41592-024-02497 -
y/MediaObjects/41592 2024 2497 MOESM3_ ESM.pdf

https://pmc.ncbi.nim.nih.gov/articles/PMC5534335/
https://www.oscarwylee.com.au/glasses/eye/how-does-human-eye-
see?srsltid=AfmBOop0iagTolYsKGGSFuRAFtbokZ8ljLzkqg-
9mbsICi bfPLu B3xN
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