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Week 4: Visual motion and tracking




Neural networks...
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https://commons.wikimedia.org/wiki/File:Neuron.svg



The logic of neuronal calculation

A Logical Calculus of Ideas Immanent in Nervous Activity

BIOENG-456 Ramdya McCulloch & Pitts, Bulletin of Mathematical Biophysics, 1943



The perceptron, an abstraction
of neuronal calculation

Inputs  Weights Net input Activation
—_ function function

output

— A kind of linear classifier

Rosenblatt, Psychological Review, 1958



A (mathematical) description of the perceptron

Neural network Activation function

sigmoid

A kind of linear classifier

https://medium.com/@UdacityINDIA/how-to-build-your-first-neural-network-with-python-6819c7f65dbf




Shallow networks perform linear classification
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https://en.wikipedia.org/wiki/Perceptron



Inspiration by the visual system

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORACE AND ORGANIZATION
IN THE BRAIN'

F. ROSENBLATT
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Rosenblatt, Psychological Review, 1958



Neural layers transform visual information
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Herzog & Clarke, Frontiers in Computational Neuroscience, 2014




Deep networks perform nonlinear classification

Deep learning

YannTeCun'’, Yoshua Bengio® & Geoffrev ITinton™
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LeCun, Bengio, & Hinton, Nature 2015



Deep convolutional networks perform classitfication
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https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050



Using deep networks to understand the brain
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Yamins & DiCarlo, Nature Neuroscience, 2016




More realistic biophysical models of the neuron

A QUANTITATIVE DESCRIPTION OF MEMBRANE
CURRENT AND ITS APPLICATION TO CONDUCTION
AND EXCITATION IN NERVE

By A. L. HODGKIN anp A. F. HUXLEY
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BIOENG-456 Ramdya Hodgkin & Huxley, Journal of Physiology, 1952



L evels of abstraction in neural networks

Detailed models Abstracted models
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L evels of abstraction in neural networks

Detailed models Abstracted models
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Pros: Fine-grained biological insight Pros: Real-world applications

Cons: Computationally intensive Cons: Limited biological insight

BIOENG-456 Ramdya



Any questions?

A cautionary tale about networks...

BIOENG-456 Ramdya



The crustacean stomatogastric ganglion (STG)

WMo fossaphagus

STG Lab (Nadim, Golowasch, & Bucher)




The crustacean stomatogastric ganglion (STG)
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BIOENG-456 Ramdya STG Lab (Nadim, Golowasch, & Bucher)



Different networks generate similar pyloric rhythms
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See also the Universal Approximation Theorem for neural networks

BIOENG-456 Ramdya Prinz et al., Nature Neuroscience 2006



Any questions?

Fly vision...

BIOENG-456 Ramdya



The compound eye

Retina

Lamina

Lobula plate

Borst & Groschner, Annual Review of Neuro. 2023



Phototransduction in the retina and ommatidia

Montell, Trends in Neuro. 2012



Phototransduction in the retina and ommatidia

Rhodopsin| Expression pattern 5::('" :;s'::it(i:.""\)' mept;:ll:osd.:;?:i(t:m)

Rh1 R1-R6 ~-486 -566
Rh2 Ocelli ~-418 ~506
Rh3 R7 (-30%) ~331 ~468
Rh4 R7 (~70%) ~355 ~470
Rh& R8 (~30%) ~442 ~494
Rh6 R8 (~70%) ~515 ~468
Rh7 ? 2 2

Pale ommatidia
~30%

Yellow ommatidia

~70%

Montell Trends in Neuro. 2012



The optic lobe
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Borst & Groschner, Annual Review of Neuro. 2023



Lobula plate ™
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Vision in action: the optomotor response
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The HRC: an abstract visual motion detector
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Borst & Groschner, Annual Review of Neuro. 2023



Connectomics

-High-throughput electron microscopy
-Automated neural tracing using human
annotations and trained neural networks

Machine
learning



Dorkenwald et al., Nature 2024, Schlegel et al., Nature 2024

=
(O
| -
O
>
——
O
-
-+
——
O
O
-
O
4+
O
O
C
-
O
O
O
+
QL
Q_
-
O
O
<

BIOENG-456 Ramdya



Paper 1: Connectome-constrained models of
motion detection

Connectome, task, and
single-neuron dynamics constrained DMN
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Lappalainen, Nature 2024



Paper 2: One to one mapping between neuron
types and artificial neurons
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New and Views from Ramdya, Nature 2024



Any questions?

Journal Club papers

BIOENG-456 Ramdya



