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Controlling Behavior in Animals and Robots

Week 2: Embodiment and motor control




Animal agility is unmatched in robotics
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Where does behavior come from?

A view from studying -

neurons in a dish / N

Chiel & Beer, TINS, 1997
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Where does behavior come from?

A full view of

the brain, body, and /! N

environment

Envirocnment

Chiel & Beer, TINS, 1997



The controller, embodiment, and environment
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Pfeifer et al., Science, 2007



Maris Robots: an example of embodiment at work
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Pfeifer & Bongard, “How the Body Shapes the Way We Think”, pgs 72-75



Maris Robots: an example of embodiment at work
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Another example of embodiment
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Another example of embodiment

-

Liao Laboratory
University of Florida
Iiaolab.com
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Passive propulsion in vortex waves

BIOENG-456 Ramdya Beal et al., J. Fluid Mech, 2006



Efficient Bipedal Robots Based on
Passive-Dynamic Walkers

BIOENG-456 Ramdya Collins et al., Science, 2005



Efficient Bipedal Robots Based on
Passive-Dynamic Walkers

Passive Walker

www.space-eight.com
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Any questions?

What about the controller...
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A simplitied schema ot biological motor control
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@ Reflexes: proprioception, loading,
contact sensing, and forces
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Brain
High-level controller

Inverse models and
action selection

Descending
commands

Y
Central pattern

generators and
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Spinal cord/VNC
Low-level controller

Descending drive
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Motor system (spinal/ventral nerve cord)

Descending
commands

Y
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generators and
other circuits ®

Spinal cord/VNC
Low-level controller
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Central pattern

Sensory feedback from limbs

+—= Passive biomechanics/

generators and
other circuits ®

f

Spinal cord/VNC
Low-level controller

musculoskeletal system

@ Reflexes: proprioception, loading,
contact sensing, and forces
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Musculoskeletal biomechanics

Central pattern {—= Passive biomechanics/ —é——= Environment — Kinematics
generators and musculoskeletal system
other circuits ®

f

Spinal cord/VNC
Low-level controller

@ Reflexes: proprioception, loading,
contact sensing, and forces
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These elements have been used in robotics
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Any questions?

The mechanics of limb motor control
in the fly...
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Flies use their legs for complex behaviors

-

Gap crossing - Triphan et al. 2016 Male aggression - Hoopfer & Anderson

"Drosophibot” Goldsmith et al.,.
Bioinspir. Biomim. 2020




The Drosophila leg
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The legs are covered with diverse mechanosensors
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Example mechanosensor:

Campaniform sensillae
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Dinges et al. J Comp Neurol 2020
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Any questions?

Insect locomotor gaits...
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Early account of insect leg coordination

JOURNAL OF EXPERIMENTAL BIOLOGY, 29, 2 PLATE 12

N\

5. Several gaits have been observed, the most common order of protraction
being R, L2, R3, L1, R2, .3, R1, etc,, but these grade into one another if the
ratio p/r is altered and the two rules obeyed. A system of rigidly alternating tripods
would result if the ratio p/r was unity, but this is never quite realized as there is
always a delay, sometimes extremely short, between the protraction of the three
legs of a triangle. At very slow speeds the rhythm R3, Rz, R1, L3, L2, L1, Rj,
etc., may be present.

30
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A continuum of interleg coordination
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Climbing with leg adhesion favors the tripod gait
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Bipod gaits are fastest in a robot without adhesion

Ramdya, Thandiackal et al. Nature Communications, 2017



Any questions?

How do we study
motor control in Drosophila...
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Stacked hourglass deep network for pose estimation

Newell et al. CVPR, 2016

Fig. 3. An illustration of a single “houwrgloss™ module, Esch box in the ligure corre
spoids to a residual module as seen in Figure 4. The number of features i= consistent
across the whole Lhourglass.

1HHI® 0

Fig. 4. Lef: Residual Moedule [14) that we use throughout our network, TRight: Tus-
tration of the intermediate supervision process. 'Lhe network splits and produaces a set
of heatmaps (outlined o blue) where a Joss can be apphed, A 1x1 convolution remaps

the heatmaps Lo mateh the number of chaonnels of Cthe sntermesdnte Teatures. These are 35
— adile] ogecher along wich the features from the preceding honrglass.




DeepFly3D: Deep network-based 3D pose estimation
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DeepFly3D: Deep network-based 3D pose estimation

2D pose Prob.map Raw image
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DeepFly3D: Deep network-based 3D pose estimation
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LittPose3D: litting 2D pose to 3D pose

Triangulation
(3 cams. per keypoint)

Camera 2 LiftPose3D
(1 cam. per keypcint)

8

= B

Cameras A (2D) ¢

adapted from Martinez et al. ICCV 2017

Gosztolai, Glnel et al. Nature Methods 2021




LittPose3D: obtaining 3D poses for obscured,

or partially triangulated keypoints

BIOENG-456 Ramdya Gosztolai, Glnel et al. Nature Methods 2021



More pose estimation tools

¢ Multi-animal pasa lracking
lcantification

SLEAP

MaTek Current Opinion in
” e '.f'a‘)| "
¢ L Neurobiology —
Volume 73, Apri 2022. 02522

IV

Léé\)ing flatland: Advances in 3D
behavioral measurement

Jesie D NMarshall' ¢ = @, Tianging Li’ @, Joshua H. Wu ?,

Timothy W Dunr? 0 =

DeeplLabCut

Mathis et al. Nature Neuro. 2018
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Any questions?

What can we decipher underlying
locomotor algorithms in Drosophila?
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Prominent algorithms for interleg coordination
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(Centralized)
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Recording motor circuits in restrained animals
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Recording motor circuits in behaving animals

Indirect fight muscle Optical

Gut access for
Ventral nerve cord microscopy
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Recording motor circuits in behaving animals

' Culucle removed 3. Flnght muscles parted 4.

?Qﬁ e, ,._

1. Prior to dissection
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Recording motor circuits in behaving animals

Depth: 1 microns )
| Ascending and

¥ . descending neuron
axons

Front leg
controllers

~

Middle leg
4—
R controllers

Functional responses (GCaMPés)
Anatomical marker (tdTomato)
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Chen, Hermans et al., Nature Communications, 2018
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Recording motor circuits across a lifetime

Dissection arm Thoracic implant Thoracic window

C

50
.

Cover with window

Open cuticle Displace organs Insert implant Release implant
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Opening the cuticle

T

-
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. N

10x real-time

BIOENG-456 Ramdya



Inserting and positioning an Ostemer implant

40x real-time
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Replacing cuticle with a numbered SU-8 window

20x real-time
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Dismounting after implantation

BIOENG-456 Ramdya



i
5
4

)

53
BIOENG-456 Ramdya Hermans, Kaynak et al., Nature Communications 2022



Repeatedly imaging the motor system of one fly

1 dpi Front leg

controller

10 dp

L

Functional responses (GCaMPés)
Anatomical marker (tdTomato)
dpi = days post implantation
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Hermans, Kaynak et al., Nature Communications 2022
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tor system (VNC) connectome
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A male Drosophila motor system (VNC) connectome
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A repeated graph for each leg

Standard Leg Premotor Circuit

searial sets of leg restricted neurons
coloured by neurotransmitter
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Cheong et al. bioRxiv 2023




A graph for gait coordination between legs

Leg coordination summary with grouped types
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An approach for linking networks to behavior

Experimental recordings

Imitation learning

Neural network model

Motor Sensory
drives lzedback

Neuromechanical model
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Ceonneciivity
motifs /

Conneclomes
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Sibo Wang



Any questions?

Today's papers:
How can we use simu

ations
to investigate Drosophila locomotion
and sensorimotor neuroscience?
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