FINITE-DIFFERENCE METHODS

Consider this problem: Determine the location of a car at 10:30, 11:00, and
12:00 given that the car left Salina, Kansas, at 10:00, traveling west on
Interstate-70 at a constant 50 mph. The solution of this problem is governed
by an ordinary differential equation
dx
v i 50 mph (4.1)
We are told a rate and an initial condition and, consequently, such problems
are called initial-value problems. The solution is trivial because the rate is
constant; a simple integration of (4.1) yields an algebraic equation that can be
solved for the distance from Salina for any time subsequent to 10:00. This
problem is analogous to the hard-sphere simulation problem described in the
last chapter. In a hard-sphere simulation we need solve only algebraic
equations because, between collisions, the spheres follow straight-line trajec-
tories at constant velocities.

But what if either problem were more realistic? In the case of the car, we
know, ignoring the use of cruise control, that the car’s speed will not be
constant: it will vary in response to local traffic, topography of the road, and
inattentiveness of the driver. In this more realistic situation not only does the
car’s speed change with time, but we do not even have an analytic form for
how the speed changes. Perhaps we have a table of speedometer readings at
points during the journey. How do we solve this problem? How do we
determine the car’s position on 1-70 at various points in time? Now we must
solve the differential equation and do so numerically—the analytic form for
the rate is unknown.

FINITE-DIFFERENCE METHODS 149

This problem is analogous to a molecular dynamics simulation of molecules
whose potential energy varies continuously with distance (“soft bodies).
Because each molecule is simultaneously interacting with many other
molecules, soft-body trajectories are not straight lines nor are the velocities
constant between collisions. In fact the idea of a collision is not as precise uy
in the hard-body case. Collisions between soft bodies are not instantaneous;
rather, they are strong repulsive interactions that occur over a finite duration.
As with the realistic car situation, soft-body simulations require a numerical
method for solving differential equations.

The classic tools for attacking initial-value problems are finite-difference
methods.” These methods replace differentials, such as dx and dt, with finite
differences Ax and Ar; they replace differential equations with finite-dif-
ference equations; and over a small but finite time A, they assume the rate
(or some known function of the rate) is constant. Then to solve the car
problem, we proceed in the following stepwise fashion: From the known
initial position of the car x(¢,), we use the assumed constant rate (o
approximate the position x(¢,+ A¢) after the lapse of the small interval At,
From this approximate position, with a revised value for the rate (say, from
our table of speedometer readings), we step forward another increment (o
estimate the position at x(z,+2Ar). After many such steps we have an
approximation to the car’s path x(¢). This strategy we also use in soft-body
molecular dynamics.

As indicated in Figure 1.5, molecular dynamics divides into two great
tasks: generate the trajectory in phase space and analyze that trajectory for
the properties of interest. Each task incurs uncertainties that detract from
the reliability of the results. In generating soft-body trajectories, uncertainties
arise from the finite-difference method used (truncation error) and from the
way it is implemented (round-off error). Therefore, we must be concerned
not merely with finite-difference methods per se, but with the broader
problem of how those methods can undermine the reliability of simulation
results. We begin by introducing a prototypical finite-difference algorithm
(Section 4.1) and use that algorithm to define truncation and round-ofl errors
(Section 4.2). The terms truncation and round-off refer to sources of errors;
however, we must consider not only what causes errors but also how errors
propagate—whether they grow as the simulation proceeds. This is the issue
of algorithmic stability (Section 4.3). For simple finite-difference algorithms
applied to linear differential equations, we can readily perform a stability
analysis, but for the nonlinear differential equations used in moleculnr
dynamics (Section 4.4) such an analysis is less direct. Moreover, in soft-body
simulations we may find that uncertainties in computed trajectories ure

'w, Thomson, Lecture VI, p. 61: “The problem that I put before you here is given in that work
[Lagrange's Mécanique Analytique] under the title of vibrations of a linear system of bodies,
Lagrange applies what he calls the algorithm of finite differences to the solutions,”

150 FINITE-DIFFERENCE METHODS

compounded by subtle interplay among errors, instabilities, and nonergodic-
ity (Section 4.5).

4.1 A PROTOTYPE: EULER’S METHOD

Several finite-difference methods originate from truncated Taylor expansions

and the simplest is Euler’s method, which is a Taylor expansion truncated
after the first-order term

x(t+At)=x(t)+ x(t) At (4.2)
From the known (or estimated) value of x at ¢, this method estimates x at
t+ At by extrapolating from x(¢) the straight line that has slope dx/dt,
evaluated at 7. As a concrete example, consider Euler’s method applied to
the ODHO of Figure 2.2. To estimate the oscillator’s position x and velocity
v, Euler’s method uses
x(t+At)=x(t)+x(t)At (4.3)
v(t+At)=v(t)+0(t) At (4.4)
Now, according to (2.26), the ODHO has
x(t)=uv(t) (4.5)
, 3 Y 3
cﬁvnaﬁvulﬂiauic x(t) (4.6)

where o is the frequency of the oscillation. Therefore, by using these
expressions in (4.3) and (4.4), Euler’s method for the ODHO becomes

x(t+At)=x(t)+v(t)At (4.7)
v(t+At)=v(t)— o’x(t) At (4.8)

For specified values of the mass m, spring constant v, and initial condi-
tions x(¢,) and v(zy), iterative application of (4.7) and (4.8) generates an
approximation to the trajectory {x(¢),0(s)}. This calculated trajectory will
have errors associated with it; moreover, those errors may accumulate as the
iterative calculation proceeds. These issues are discussed in the next two
sections.

42 ERRORS 151

4.2 ERRORS

A finite-difference method incurs two types of errors: truncation error and
round-off error. Truncation error refers to the accuracy with which a finite
difference method approximates the true solution to a differential equation,
When a finite-difference equation is written in a Taylor series form, trunca
tion error is measured by the first nonzero term that has been omitted from
the series. The Taylor series is

@ 3
a?+>:anV+EE+w’|& Y o S50

———— — ')
dr 2 dri? 3 a A

(4.9)

and comparing this with (4.2) identifies the truncation error (te) in Fuler's
method as

1 d%x(t
auMI&MIVEN (4.10)

A method whose truncation error varies as (A¢)"* ! is said to be an nth-order
method; hence, Euler’s is first order. We typically use a system of units such
that Az <1; therefore, for a given time-step size, high-order methods have
smaller truncation errors than low-order methods. Truncation error is inher-
ent in the algorithm; its value is the same regardless of how the actual
calculations are performed, whether on a computer, on a calculator, or by
pencil and paper.

In contrast, round-off error encompasses all errors that result from the
implementation of the finite-difference algorithm. For example, round-ofl
error is affected by the number of significant figures kept at each stage of the
calculation, by the order in which the calculations are actually performed,
and by any approximations used in evaluating square roots, exponentinly,
and so on.

Both round-off and truncation errors can be subdivided into global and
local errors. Local error is that incurred during one step (A1) of the
algorithm, while global error is local error accumulated over the entire
calculation. It is local truncation error, such as (4.10), that is used to define
the order of a method. But instead of local errors, we should be more
concerned with global errors, and in general, global error varies by one factor
of At less than local error. To see this, consider an nth-order algorithm that
has local truncation error

Ite = kx "+ D Apn+] (4.11)

152 FINITE-DIFFERENCE METHODS

where k is a constant and x*" means the (n + 1)th derivative of x. Over M
integration steps, each of size At, the global truncation error is

M M
gle=k Y x DAt = kALY x(n+D (4.12)

i=1 i=1

In general the derivatives under the sum will vary in value from one step to
the next, but we can apply a mean-value theorem: there will be an average
value of the M-derivatives such that the M-term sum can be replaced by M
times the average,

gte =k At"*1 Mx*D (4.13)

Here the overbar indicates the average. Now the number of steps M is
related to the total duration ¢ of the calculation by M =t /At; hence,

F— .
mau»?;_im D kA ¢x D (4.14)

thus, gte varies as (At)", although Ite varies as (A¢)"** V. QED. If, instead of
gte, we evaluate the average gte per step, {gte), then we have a global error
that behaves with At in the same way as the local truncation error,

gte _—
AWﬂOV"ﬂ."an:+_RA=+C AAHMV

The results (4.14) and (4.15) apply to one-step methods, which are those that
use information only from the current step to estimate x at the next step. In
contrast, multistep methods use estimates for x at previous steps, as well as
the current step, to estimate x at the next step; in those cases, gte is a more
complicated function of the step size.

Global truncation error and global round-off error (gre) both depend on
the size of the integration step A, so having chosen an algorithm, we must
determine the magnitude of At that produces acceptably small global errors.
Unfortunately, gte and gre are affected differently by changes in the step size.
Global truncation error decreases with decreasing At, as indicated above. In
contrast, gre depends on the number of calculations: increasing the number
of calculations increases the opportunities for round-off and produces higher
gre. Thus at some point, decreasing At for the same duration 7 = £, = ;i
does not produce more accurate results, as shown in Figure 4.1. Usually the
value of At having the smallest total error is too small to be useful—too
much computer time would be required for a simulation. Some value of At
larger than that for minimum total error is used; its value is determined
empirically in test calculations.

A3 ALGORITHMIC STABILITY 153

truncation error
dominates

Total global error

Integration step size At

FIGURE 4.1 Schematic of how truncation and round-off errors contribute to the
total global error generated by a finite-difference algorithm. At large step sizes the
global error is dominated by truncation errors in the algorithm; however, for small
step sizes global error is dominated by round-off. For each step size, the behavior
shown applies for global error accumulated over a fixed duration of calculation, not
for a fixed number of integration steps.

The principal defenses against round-off errors are to write efficient,
nonredundant code and to use high-precision arithmetic: double precision
rather than single. The principal defense against truncation error is to reduce
the step size. However, if A¢r must be made unacceptably small, the only
recourse is to change finite-difference algorithms.

4.3 ALGORITHMIC STABILITY

In addition to the magnitudes of errors involved in using finite-difference
methods, we must also be concerned with how the algorithm propagates
those errors. This is the issue of algorithmic stability—a concept that Iy
distinct from the idea of trajectory stability discussed in Sections 2.4 and 2.5,
If an algorithm amplifies errors from one step to the next, then the algorithm
is unstable, and ultimately the calculation will abort in a numerical overflow,
Conversely, if the algorithm does not amplify errors from one step to the
next, then the method v stable, Most algorithms used in molecular dynamics

154 FINITE-DIFFERENCE METHODS
are conditionally stable: they are stable for small steps Ar but become
unstable at some critical value of the step size.

Algorithmic stability depends both on the nature of the algorithm and on
the differential equations being solved. For linear ordinary differential equa-
tions, stability analysis can be performed analytically. Consider, again, Euler’s
method applied to the ODHO (4.7) and (4.8). Let x(¢) and v(#) represent the
true solutions to the ODHO problem at time ¢. Let x'(¢) and v'(¢) represent

erroneous solutions containing both truncation and round-off errors. Let e,
be the total local error in position and e, be that in velocity,

e (t)=x"(t)—x(t) (4.16)
e, (t)=0v'(t)—v(t) (4.17)

Writing Euler’s method for the true values and again for the erroneous
values and then subtracting the two sets of equations, we obtain, for the
ODHO,

e (t+At)=e,(t)+e,(t) At (4.18)
e, (t+ A1) =e,(t)— we, (1) At (4.19)

which relate the errors at time ¢ + At to those at time ¢. These two equations
can be written in vector form as

e(t+At)=Ae(t) (4.20)

where e = (e, e,)" is the column vector of errors and A is the stability matrix

_ 5
>|—|e~5 1 _ (4.21)

Now, if A has any eigenvalue A that lies outside the unit circle (A% > 1) on
the complex plane, then A amplifies errors and the algorithm is unstable. The
eigenvalues satisfy the characteristic equation

|[A—=All=0 (4.22)
where | is the identity matrix. For A given by (4.21) this equation is

(1-A)2+ w?(A1)*=0 (4.23)

40 ALGORITHMIC STAMLITY 188

which has solutions
A=14 AtV - w? (4.24)

Thus, for any time step At, |A|>1 and Euler’s method is unstable when
applied to the ODHO problem. Note that the stability of the algorithm i
independent of the conditions x(0) and v(0) that start the calculations,

To illustrate a conditionally stable algorithm, we modify Euler's method
for the ODHO. First write a forward Taylor series, truncated at first order, to
estimate the velocity v(t + At),

v(t+At) = (1) + (1) At (4.25)

and then write a backward Taylor series, also truncated at first order, to
estimate the position

x(t)=x(t+At)—x(t+At) At (4.20)

The modified Euler method is then
x(t+At)=x(t)+[v(t)+0(t)At] At (4.27)
v(t+At)=v(t)+0(t)At (4.28)

For the ODHO the time derivatives are given by (4.5) and (4.6), so the
algorithm becomes

x(t+ Ar) = [1-w?(Ar)’| x(1) + 0(1) At (4.29)
v(t+At)=0v(t)— w’x(1)At (4.30)
The stability matrix for this method is

(1- w*(A1)?) At
- w?At 1

A= (4.31)

Solving the characteristic equation shows that the step size A must satisly
|2- w¥(a1)? + 0 AW (Ar) -] <2 (4.32)

That is, we must have —2 <wAt <2 for this modified Euler method (o
provide stable solutions to the ODHO problem,

It is important to realize that stable solutions are not necessarily accurate
solutions, This point iy illustrated in Figure 4.2, which shows ODHO phase-

156 FINITE-DIFFERENCE METHODS

At =199 Total energy = 1.98 + 1.98 At = 1.50 Total energy = 2,29+ 1.47

3 3
2 7 2r\.......JJ
/2 P
e o \
1 \.M.s\\ T 4 4 /A
> <z w. \.-
£ o oy 2 ol o
.IO. o Q)
7 — o
[rd [f
> P > § g
5% 20 af / o
v
7’ { -
oL o
-2 4 2 f -
5 = ¢ . T % & =8 ,-2 -0 e a2 8
position position

At =0.99 Total energy = 2.67 + 0.88 At =020 Total energy = 3.63 £ 0.07

3 3
cereme s.\t\ xxxxxxxxio
2F et - 2 I “
- % '\,
- ; ¢ s
1 i 'l H
. o '
g . gl i
& ° 8 of: /
=] [1)
0 if . Y Y 74
.... \ e
= T 2 r.a. i e
OOII Ulll.llll.lnnl-\\
i " " i ; :
3 -2 -1 0 1 2 3 33 .2 0 1 2 3
position position

FIGURE 4.2 Stable solutions are not necessarily accurate. Shown here are phase-
plane trajectories for the ODHO calculated from the modified Euler algorithm (4.29)
and (4.30) using four values of the time-step At. Each trajectory shows 200 steps
starting from x(0) = v(0) = 2, with m =y =1 (arbitrary units). Thus in each case the
true solution to the ODHO is a circle with total energy equal to 4. Each of the four
values of At is below the stability limit Az =2, but the accuracy becomes acceptable
only when Az <0.02.

plane trajectories calculated from the modified Euler method (4.29) and
(4.30). The figure shows how the shape of the trajectory is affected by the size
of the integration time step At. Calculations attempted with Atz only
marginally greater than the stability limit (At = 2) quickly led to numerical
overflows. The values of the mass, spring constant, and initial conditions were
set such that the true solution to the ODHO describes a circle in the phase

A4 ALGORITHMS FOR MOLECULAR DYNAMICS 187

plane, corresponding to u total energy £ = 4 arbitrary units. The calculationy
show that although the algorithm is stable for Az < 2, the total energy is not
properly conserved at its initial value of £ = 4 until the time step is reduced
to At <0.02, which is a value 100 times smaller than the stability limit.

The lesson from these simple examples is that a finite-difference algorithm
applied to a particular set of differential equations yields a stability matrix
that may produce inherently stable, unstable, or conditionally stable behay-
ior. Our first response to an unstable algorithm is to decrease the step size;
however, if stability can be achieved only by using an intolerably small Af,
then we must either change algorithms or find another problem (i.c., change
the differential equations).

Molecular dynamics involves nonlinear ordinary differential equations, so
the analytic stability analysis described above cannot be used, Instead, we
may do an approximate analysis by linearizing the differential equations or
we may attack the stability problem using the methods of Lyapunov [1]. Both
strategies are cumbersome when applied to the equations of motion used in
molecular dynamics, and what we do instead is a numerical analysis using
trial values for At. That is, through a series of short test runs, we identify the
critical step At at which the algorithm becomes unstable and then choose i
smaller operational value that establishes conservation of energy.

4.4 ALGORITHMS FOR MOLECULAR DYNAMICS

Of the large number of finite-difference methods that can be devised, the
most commonly used are the Runge-Kutta (RK) methods [2]. These methods
have the structure of Euler’s method (in fact, Euler’s is the first-order RK
algorithm)

x(t+At)=x(t)+ xAt (4.33)

The various RK methods differ from one another in how the slope & is
estimated. Each RK algorithm estimates the slope at points along the interval
At and then computes a weighted average to get a single value to be used in
(4.33). For low-order RK algorithms, the number of slope evaluations during
one step equals the order of the method. Thus the popular fourth-order RK
algorithm (see Exercise 4.11) makes four estimates of the slope for each step
forward in the solution procedure.

Runge-Kutta methods generally have good stability characteristics; never-
theless, they have been little used in molecular dynamics because, for large
numbers of molecules, the RK algorithms are too slow. In molecular dynam-
ics the evaluation of intermolecular forces is by far the most time-consuming
calculation, Therefore, since a fourth-order RK algorithm would require four
force evaluations per atom per step, such an algorithm would execute almost

158 FINITE-DIFFERENCE METHODS

four times slower than a method that needs only one force evaluation per
atom per step. Runge-Kutta methods have been used in simulations of
systems involving a very few degrees of freedom [3].

The RK methods suggest that the order of a method can often be
increased by using positions and velocities from several points in time rather
than from just the current time. We would like to use such information, but
we want to avoid the expense of evaluating intermolecular forces more than
once per atom per step. These conflicting goals can be met in two general
ways: (a) use positions and velocities from previously calculated steps, the
principal example of this approach being Verlet’s algorithm, or (b) estimate
positions and velocities for future steps. The latter are the predictor—correc-
tor algorithms.

4.4.1 Verlet’s Algorithm

The simplest finite-difference method that has been widely used in molecular
dynamics is a third-order Stérmer algorithm, first used by Verlet [4] and
known to simulators as Verlet’s method. The algorithm is a combination of
two Taylor expansions, combined as follows. First write the Taylor series for
position from time ¢ forward to ¢ + A¢:

ke +§A3 " Lad*x(t) et 1 d3x(t) FHE) s o p o
— N —
x(t+At)=x(1t) o “+N R TP 2+ 0(At?)
(4.34)
Then write the Taylor series from ¢ backward to ¢t — At:
&2: 1 d?x(t) 1 d*x(t)
t—At)=x(t)— —= At + — ——— At? 4
() =x(t) e t "N ——= A3+ 0(At?)
(4.35)

Adding these two expansions eliminates all odd-order terms, leaving

d2x(t)

x(t+At)=2x(t)—x(t —At)+ ——— i

A2+ O(AtY) (4.36)

This is Verlet’s algorithm for positions. It has a local truncation error that
varies as (Ar)* and hence is third order, even though it contains no third-order
derivatives. Nor does (4.36) for positions involve any function of the veloci-
ties; the acceleration in (4.36) is, of course, obtained from the intermolecular
forces and Newton’s second law. To estimate velocities, practitioners have

A4 ALGORITHMS FOR MOLECULAR DYNAMICS 15

contrived various schemes, one being an estimate for the velocity at the
half-step:

x(t+At)=x(1)

1 ~ 437
v(t+73At) = ()
Verlet himself used the first-order central difference estimator
x(t+ At)—x(t— At
v(t) = ()~ x() (4.38)

AN

Verlet’s algorithm is a two-step method because it estimates x(r + Ar)
from the current position x(¢) and the previous position x(1 — Ar). There-
fore it is not self-starting: initial positions x(0) and velocities 0(0) are not
sufficient to begin a calculation, and something special must be done at ¢ = 0
(say, a backward Euler method) to get x(—At).

The Verlet algorithm offers the virtues of simplicity and good stability for
moderately large time steps. In its original form it treated molecular veloei-
ties as less important than positions—a view in conflict with the attitude that
the phase-space trajectory depends equally on positions and velocities, Mod-
ern formulations [5-7] of the method often overcome this asymmetric view,

4.4.2 General Predictor—Corrector Algorithms

Predictor—corrector methods are composed of three steps: prediction, evalu-
ation, and correction. In particular, from the current position x(1) and
velocity v(t) the steps are as follows:

1. Predict the position x(¢ + At) and velocity v(r + At) at the end of the
next step.
2. Evaluate the forces at ¢ + At using the predicted position,

3. Correct the predictions using some combination of the predicted and
previous values of position and velocity.

As a simple example, consider the following predictor—corrector based on
Euler’s method and applied to the ODHO:

1. Predict x(t + At) and v(t + At) using Euler’s method (4.7) and (4.8):
x(t+ A= x(t)+o(t) At

vt 4+ Aty =o(t)~ w'x(1) At

160 FINITE-DIFFERENCE METHODS

2. Evaluate the force at t + At:

Z“H_Ev lWﬂlENiIEV (4.39)

3. Correct the predictions. Here we choose the same form as Euler’s
method but compute the slopes at the end of the step rather than at
the beginning:

x(t+At)=x(t)+v(t+At)At (4.40)
v(t+At)=v(t)— o’x(t + At) At (4.41)

The force evaluation implicit in (4.8) would actually be done in the previous
step (+ — At) and stored for use in the current step, so this algorithm meets
the goals of requiring only one force evaluation per step while providing an
algorithm of higher order than Euler’s method.

Predictor—corrector methods offer great flexibility in that many choices
are possible for both the prediction and correction steps. They may be either
one-step, in which case they are self-starting, or multistep methods, in which
case something special must be done to start the calculation. With judicious
combinations of predictor and corrector they offer good stability because the
corrector step amounts to a feedback mechanism that can dampen instabili-
ties that might be introduced by the predictor.

Any given predictor—corrector algorithm can be made more elaborate and
of higher order by repeating the evaluation and correction steps. Let P be
prediction, £ be evaluation, and C be correction. Then the procedure
described above can be represented as PEC. If the corrected positions
and velocities are used as second predictions, we obtain the algorithm
PEC(EC)= P(EC)?. Obviously, the E and C steps can be repeated as many
times as desired, P(EC)". This strategy, while simple to implement, is rarely
done in molecular dynamics because each E-step requires force calculations;
a P(EC)" simulation will execute nearly n times slower than the PEC
simulation.

4.43 Gear’s Predictor-Corrector Algorithms

Predictor—corrector algorithms were first introduced into molecular dynamics
by Rahman [8]. Those commonly used in molecular dynamics are often taken
from the collection of methods devised by Gear [9]. The one used in the
programs in Appendices I and L consists of the following steps.

Predict molecular positions r; at time ¢+ At using a fifth-order Taylor
series based on positions and their derivatives at time ¢. Thus, the derivatives
i, £, v ™), and rf are needed at each step; these are also predicted at

A4 ALGORITHMS FOR MOLECULAR DYNAMICS 161

time ¢+ At by applying Taylor expansions at ¢:

:C+>::...CT..;;>.¢;:AEV +_.\:._.3?”~_V

+13A:A>: +_.3A:A>: (4.42)
?:
F(t+ At) =i,(t)+¥(1) At +r{P(1) ——
1333: 15333 (4.43)
F(t+At) =¥ Cv+1___5v>_+..::A;AE_V +_.‘:fvm‘vm_v (4.44)
(Ar)*

r@(¢ + At) =rf(¢) +rM(t) At +x{(t) —7 T (4.45)
r™(t+ At) =r™(t) +r{V(t) At (4.406)
rV(t + At) =r(t) (4.47)

Evaluate the intermolecular force F, on each molecule at time ¢ At
using the predicted positions. For continuous potential energy functions
u(r;;) that act between atoms i and j, the force on each molecule is given by

1hedi M aw:A\Qv C A&.&zv

J#i :

where £,; is the unit vector in the r;-direction. Evaluation of forces is time
consuming because the sum in (4. Amv must be performed for each molecule /
in the system. However, there are several ways to save time; one I8 that
Newton’s third law (2.6) can be applied,

F(r,) = I—.,A-.:v (4.49)

to decrease the amount of computation by a factor of 2. Other time-saving
devices are discussed in Section 5.1,

Correct the predicted positions and their derivatives using the discrepancy
A¥, between the predicted acceleration and that given by the evaluated force
F,. With the forces at ¢ + Ar obtained from (4.48), Newton's second law (2,1)

162 FINITE-DIFFERENCE METHODS

can be used to determine the accelerations ¥t + Atr). The difference be-
tween the predicted accelerations and evaluated accelerations is then formed,

A, =[i#,(1 + Ar) —EF (¢ + Ar)] (4.50)

In Gear’s algorithms for second-order differential equations, this difference
term is used to correct all predicted positions and their derivatives; thus,

r,=r’+a,AR2 (4.51)
i, At =P At + a; AR2 (4.52)
i(A1) iP(Ar)’
_Aw.v = M.v +a,AR2 (4.53)
-...EcAbGu —...:::ADDQ
e T (4.54)
ri(An* r™P(Ar)*
e AR (4.55)
r(At)’ rP(Ar)’
ST hesdR2 (4.56)
where
AF, (A1)
AR2=——— (4.57)

TABLE 4.1 Values of «; Parameters in Gear’s Predictor—Corrector Algorithm® for
Second-Order Differential Equations Using Predictors of Order g

a; q=3 q=4 q=>5
1 19 bl
@ 6 120 16
5 3 251
ay 6 r 360
a, 1 1 1
1 1 u
Qas 3 2 18
LG 1
ay = 12 6
1
as —= T 60

“From ref. 9, except that for ¢ =5, a, = 3/16 seems to be somewhat better than Gear's original
value.

44 ALGORITHMS FOR MOLECULAR DYNAMICS 163

The parameters «, promote numerical stability of the algorithm, The
depend on the order of the differential equations to be solved and on the
order of the Taylor series predictor. Gear determined their values by apply-
ing each algorithm to linear differential equations and analyzing the resulting
stability matrices. For a g-order predictor, the values of the «, were chosen
to make the local truncation error of O(At9*"); then the method will be
stable for second-order differential equations with global truncation error of
O(At7*'=2) = O(At?™"). Values of the a, for third-, fourth-, and fifth-order
predictors are given in Table 4.1.

4.4.4 Energy Conservation

Finite-difference algorithms used in molecular dynamics are often judged by
their ability to conserve energy, and in this section we illustrate such tests, ‘To
compare the Verlet and Gear algorithms, we computed the dynamics of o
single collision between two otherwise isolated Lennard-Jones atoms with the
motion restricted to one dimension. Initially the atoms were separated by o
distance of 2.60 and each atom was given an initial approach velocity
v* = v(m /€)"/? = 1. The equations of motion were then integrated through
the collision until the atoms were again separated by 2.6¢. To accumulate o
global error, we compared the total energy at each step with its value at the
first step,

M
ge=1/ ¥ [E*(0)— E*(kAn)]* (4.58)
k=1

where E* = E /¢. This sum was accumulated as a function of step size Af,
and since in each case the initial and final positions of the atoms were the
same, the total duration (M At) of each run was the same.

We show in Figure 4.3 how global error in the Gear algorithm changes
with step size in both single- and double-precision arithmetic, Here we use
the time step in dimensionless form: At* = At /o(m /€)'/?, where ¢ und o
are potential parameters and m is the atomic mass. For values of «, o, and
m characteristic of argon, At* = 0.005 corresponds to about 0.011 psec, In
Figure 4.3, for time steps larger than A¢* = 0.005, the single- and double-
precision results coincide. However, for time steps smaller than 0001,
single-precision round-off error dominates truncation error; so as the time
step is decreased below 0,001 in the single-precision calculation, the global
error in energy increases. This computed behavior confirms the general trend
shown schematically in Figure 4.1, In contrast, the double-precision error
continues to decrease as Ar* is decreased below 0,001,

