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Highlights
e A whole-transcriptome spatial atlas of the mouse brain at
single-cell resolution

e Revealed region- and subregion-enriched coding genes and

IncRNAs

e Gene-based parcellation reveals fine structural organization

of multiple brain areas

e Transcription factor regulons exhibit spatiotemporal
dynamics in developing mouse brain

Han et al., 2025, Neuron 713, 1-20

Authors

Lei Han, Zhen Liu, Zehua Jing, ...,
Zhiming Shen, Wu Wei, Yan-Gang Sun

Correspondence

xfwang@ion.ac.cn (X.W.),
lichao0015@ion.ac.cn (C.L.),
jianhuayao@tencent.com (J.Y.),
xuxun@genomics.cn (X.X.),
liulonggi@genomics.cn (L.L.),
zmshen@ion.ac.cn (Z.S.),
wuwei@Iglab.ac.cn (W.W.),
yangang.sun@ion.ac.cn (Y.-G.S.)

In brief

Han et al. used snRNA-seq and Stereo-
seq to generate a detailed mouse brain
atlas with over 4 million spatially resolved
cells and 29,655 genes. Their findings
include region- enriched cell clusters and
genes, spatiotemporal dynamics of
transcription factor regulons, and a gene-
based parcellation framework, providing
a comprehensive resource for brain
architecture.
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SUMMARY

A comprehensive atlas of genes, cell types, and their spatial distribution across a whole mammalian brain is
fundamental for understanding the function of the brain. Here, using single-nucleus RNA sequencing
(snRNA-seq) and Stereo-seq techniques, we generated a mouse brain atlas with spatial information for
308 cell clusters at single-cell resolution, involving over 4 million cells, as well as for 29,655 genes. We
have identified cell clusters exhibiting preference for cortical subregions and explored their associations
with brain-related diseases. Additionally, we pinpointed 155 genes with distinct regional expression patterns
within the brainstem and unveiled 513 long non-coding RNAs showing region-enriched expression in the
adult brain. Parcellation of brain regions based on spatial transcriptomic information revealed fine structure
for several brain areas. Furthermore, we have uncovered 411 transcription factor regulons showing distinct
spatiotemporal dynamics during neurodevelopment. Thus, we have constructed a single-cell-resolution
spatial transcriptomic atlas of the mouse brain with genome-wide coverage.

INTRODUCTION derlying behavior. Extensive efforts have been made to

construct brain atlases for the mouse, the most widely used an-
The complexity of mammalian brains, characterized by diverse  imal model. These include anatomical atlases based on tradi-
cell types and their specific distribution and connectivity, poses  tional cytoarchitectural features,’ a gene expression atlas
a significant challenge to understanding the neural circuits un-  covering ~20,000 genes,” and a single-cell transcriptome atlas
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revealing brain-cell-type diversity.® However, a comprehensive
brain atlas across the whole mouse brain with single-cell and
high spatial resolution is still lacking.

Recent advancements in spatial transcriptomics have pro-
vided an unprecedented opportunity to map gene expression
and cell types with high spatial resolution.” In situ hybridiza-
tion-based (ISH) and sequencing-based (ISS) techniques, such
as multiplexed error-robust fluorescence in situ hybridization
(MERFISH)® and STARmap,® have shown high capture efficiency
and spatial resolution but are limited to a small number of
pre-selected genes. In contrast, spatial barcoding methods like
Visium’ and Slide-seq®® offer whole-transcriptome analysis
but lack single-cell resolution. Despite various efforts to
construct mouse brain atlases using imaging'®'* and
sequencing-based'*™"” techniques, a comprehensive spatial
map of the mouse brain, with both genome-wide coverage and
single-cell resolution, is still not available.

Development of the brain is guided by genetic programs gov-
erned by a variety of specific transcription factors (TFs). Previous
studies have revealed molecular heterogeneity of the mouse
brain at the embryonic stage with single-cell RNA and spatial
transcriptomics sequencing.'®'® However, genes with time-
dependent dynamics and gradient distribution, potentially
involved in development, were not systematically examined.
Spatiotemporal profiling of gene expression would be essential
to reveal the genetic program driving brain development. Addi-
tionally, brain maturation continues postnatally, but the spatio-
temporal gene expression profiles during these stages were
not well examined. Therefore, further analysis of spatiotemporal
dynamics of genes, from the embryonic to the adult stage, is
essential for a comprehensive understanding of the mechanism
underlying brain development.

Accumulating evidences have shown that non-coding RNAs
(ncRNAs), especially long non-coding RNAs (IncRNAs), play
important roles in a wide range of biological processes of the
mammalian brain, including brain development, maturation,
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and diseases.”®?' For example, INcRNA Pnky has been shown
to be essential for brain development.?® IncRNA Evf2 can func-
tion as a DIx2 transcriptional coactivator and enhance the activity
of DIx2, which is essential for the differentiation and migration of
neurons in the brain.?® For some IncRNAs, their functional roles
are highly related to their region-enriched expression pattern in
the brain.?* Although bulk sequencing studies have character-
ized the INcRNAs in various mouse brain regions,>>>° a compre-
hensive analysis of their region-selective expression patterns
and potential regulatory roles within regulons and adjacent
gene pairs throughout the brain is still lacking.

Here, we applied Stereo-seq, a spatial transcriptomic technol-
ogy with single-cell resolution,’® combined with single-nucleus
RNA sequencing (snRNA-seq) data to construct a 3D single-
cell transcriptomic atlas that illustrated cell-type distribution
across the mouse brain (https://mouse.digital-brain.cn/spatial-
omics). Moreover, using data from different developmental
stages, we revealed the spatiotemporal dynamics of genes,
gene modules, and TF regulons. This comprehensive dataset
thereby provides a valuable resource of the spatial atlas of the
mouse brain, laying the foundation for studying development,
function, and gene regulation of the mouse brain.

RESULTS

Spatial transcriptomic analysis of the mouse brain

We employed Stereo-seq—a sequencing-based, genome-wide,
and high-resolution spatial transcriptomic technology'®—to
generate a spatial gene and cell atlas of the adult mouse brain.
Coronal sections (10-um thick) of the left hemisphere were pre-
pared at 100-um intervals (Figure 1A), producing 123 sections
(after quality control, Figure S1; STAR Methods) with expression
profiles for 29,655 genes, covering 95.5% of annotated protein-
coding and non-coding genes. The distribution maps of region-
specific genes by Stereo-seq were in line with ISH-based data®
in the Allen Brain Atlas (ABA) (Figure S2A). We defined the
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boundary of each cell based on the image of single-stranded
DNA (ssDNA) as described previously.'® A total of 4,229,623
cells were characterized in one mouse brain, with an average
of 1,267 molecular identifiers (MIDs) and 668 detected genes
per cell (Figure S2B; Table S1). Moreover, we manually
segmented the brain areas for each section based on cytoarch-
itectural pattern and brain region delineation in ABA common co-
ordinate framework (CCFv3)?’ (Figure 1A).

Given the limited gene detection per cell for precise cell-type
annotation, we performed snRNA-seq for all major brain regions
in order to obtain a comprehensive set of cell annotation
(Figure 1A; Table S1). This yielded 378,287 high-quality nuclei,
classified into 6 cell classes, 19 subclasses, and 308 clusters
via iterative clustering (Figures 1B and 1C; Table S2; STAR
Methods). Canonical marker genes®°® refined these annota-
tions (Figure S2C), generating 262 neuronal clusters and 46
non-neuronal clusters. Random forest analysis demonstrated
robust classification accuracy of cell clusters (83.1%)
(Figure S2D). In addition, we compared the cell clusters with
two previously published mouse brain datasets®*® (Figure S2E)
and found a high degree of consistency.

We next annotated spatial cells by leveraging the cell clusters
defined in the snRNA-seq dataset, utilizing Spatial-ID.?° Over 4.2
million high-quality cells were annotated (Figures S3A and S3B;
STAR Methods). Spatial distribution of example cell clusters was
illustrated in 14 coronal sections along the anterior-posterior axis
(Figure 1D). Specific cell clusters showed distinct regional
preferences, such as laminar-distributed glutamatergic neurons
in the hippocampus and cortex (Figure 1E) and noradrenergic
neurons in the locus coeruleus (Figure 1F).

Additionally, we demonstrated that Spatial-ID has high
consistency and accuracy on Stereo-seq cell-type annotation
(Figures S3C-S3F; STAR Methods). To verify reproducibility,
we collected 72 coronal sections (3.2 million cells) from a second
mouse brain (mouse #2, Figures 1A and S2B) and showed
consistent cell-type distribution and molecular signatures be-
tween animals (Figures S3G-S3I). Moreover, we integrated the
Allen whole mouse brain single-cell dataset'® with our Stereo-
seq data to evaluate the consistency of cell-type transfer across
various reference datasets (Figures S4A-S4C). These results
aligned with previous MERFISH-based annotations.'?

By integrating the 123 coronal sections dataset, we constructed
a comprehensive 3D atlas of cell-type distribution in the mouse
brain (Figure 1A; Video S1). An interactive website was developed
to facilitate exploration of specific gene and cell-type distribution
(https://mouse.digital-brain.cn/spatial-omics, Figure S5).

Neuron

Spatial distribution of diverse cell types in the brain
We quantitatively assessed the brain-wide distribution of 308 cell
clusters across 66 parcellated brain areas in the mouse brain
(Figure 2A). Most clusters, particularly neuronal clusters, ex-
hibited clear regional preference (Figures 2A and 2B; Video
S1). For cortical cells, most glutamatergic excitatory neurons ex-
hibited both regional and layer-specific enrichment (Figure S6A).
Among the glutamatergic neurons identified in snRNA-seq, 31
clusters were highly overlapped with the published dataset of
the mouse cerebral cortex”® (Figure S6B; STAR Methods) and
were categorized into 8 layer-specific cortical cell groups
(Figures 2C-2F). Their spatial distribution is aligned with marker
gene expression (Figure S6C). Furthermore, we identified gluta-
matergic neurons enriched in specific cortical areas (Figures 2G,
2H, and S6D), such as one cluster (L5/6_NP_GLU_61) in the ret-
rosplenial area (RSP) and four layer-6 clusters (L6_N_GLU_63/
65/66/69) in the infralimbic area (ILA) (Figures 2H, 2I, and SGE).
Differential gene expression analysis of ILA-enriched L6_N_
GLU clusters versus other L6_N_GLU clusters, combined
with enrichment analysis of 123 brain-disease-related gene
sets,>°? revealed high expression of depression-associated
genes in ILA-enriched clusters (Figures S6F and S6G), indicating
potential involvement of ILA layer-6 neurons in mood disorders.
For GABAergic inhibitory neurons within the cortex, 37 clus-
ters were summarized to 7 groups according to the expression
of Lamp5, Sncg, Reln, Vip, Pvalb, Sst, and Chodl genes, marking
key GABAergic neuron subtypes?®>* (Figure S6H). Among these
GABAergic neurons, Pvalb and Sst neurons were dominant in
the mouse cortex (Figures S61-S6K). Most GABAergic neurons
exhibited less layer preference compared with glutamatergic
neurons (Figure S6L). However, several clusters exhibited layer
enrichment; for example, Lamp5 neurons enriched in superficial
layers and Sst neurons in deeper layers. Regional preferences
were also identified (Figure S6M). For instance, Sst and Reln
neurons were enriched in the ILA area (Figure SEN), in line with
the previous report.®® Pvalb neurons had relatively lower den-
sities in most regions associated with lateral and medial subnet-
works, such as agranular insular posterior (Alp), but were more
abundant in the RSP (Figures S60-S6Q). Among Pvalb clusters,
three (TE_N_GABA_PVALB_115/116/118) showed this pattern.
Although non-neuronal cells were more broadly distributed
compared with neurons, some exhibited region-enriched pat-
terns (Figures 1B, 2A, and S7A-S7C; Table S3). For example,
among 7 astrocyte clusters, ASC_281 (Agt+) enriched in non-
telencephalon areas, whereas ASC_283, identified as Bergmann
glial®® due to Gdf10 expression, was specific to the cerebellum®

Figure 1. Construction of a cell-type atlas across mouse brains with high resolution

(A) Schematic of constructing the spatial transcriptome for mouse brains. Red circles mark cell boundaries in cell segmentation.

(B) Taxonomy tree showing 308 cell clusters identified based on snRNA-seq, each assigned a unique name and color. Bar plot indicates the fraction of cells
according to region sources of snRNA-seq (OB, olfactory bulb; CTX, cerebral cortex; HIP, hippocampus; CNU, cerebral nuclei; TH, thalamus; HY, hypothalamus;
MB, midbrain; P, pons; MY, medulla; CB, cerebellum. See abbreviations of regions in Table S10). Dot plot illustrates the expression of neurotransmitter-/neu-
romodulator-related genes for neurons in snRNA-seq (Slc17a7 and Sic17a6, glutamatergic; Gad7 and Sic6a1, GABAergic; Hdc, histaminergic; Slc6a3, dopa-
minergic; Avp, arginine vasopressin; Gal, galanin; Hert, hypocretin; Tph2, serotonergic; Sic6a2, noradrenergic; Ucn, urocortin; Chat, cholinergic).

(C) UMAP visualization of cell subclasses and clusters.

(D-F) Overview of cell-cluster distribution in representative coronal sections. (D) Sections were selected every 1 mm in mouse #1 (section no. and bregma
coordinates shown, unit mm). (E and F) Zoomed-in views of regions labeled by red boxes in (D). Boundaries of cortical layer 4 (E) and locus coeruleus (F) are
labeled by blue boxes and further magnified. Glutamatergic neurons colored in red and noradrenergic neurons in pink. Scale bars, 1 mm, 500 um, and 50 pm.

See also Figures S1-S5 and Tables S1, S2, and S10.
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(Figure S7D). In addition, we compared the spatial distribution of
olfactory ensheathing cells (OECs) and astrocytes in the olfac-
tory bulb subregions (Figures 2J and 2K). OECs, sharing partial
molecular signatures with astrocytes (Figures S7E and S7F),
localized in the outer layers of the olfactory bulb.®”-*® We demon-
strated that two OEC clusters (OEC_275/276) were primarily
localized in the accessory olfactory bulb (AOB) and main olfac-
tory bulb (MOB). Meanwhile, an astrocyte cluster, ASC_279,
was enriched in the MOB (Figure 2J). In the MOB and surround-
ing areas, ASC_279 was enriched in the glomerular layer,
whereas OEC_276 was situated in the olfactory nerve layer.
OEC_275, by contrast, was positioned at the boundary between
these two layers (Figure 2K). Molecular profiles of these clusters
exhibited differences, with Kctd 12 highly expressed in OEC_275,
Clca3a1 in OEC_276, and Islr in ASC_279 (Figure S7G). Further
analysis revealed that ASC_279 exhibited stronger co-localiza-
tion with two neuronal clusters (OB_N_GABA_174 and OB_
N_GLU_177, Figure S7H and S7I), whereas OEC_275/276 did
not, indicating closer interaction with OB neurons compared
with OECs.

To investigate relationships between cell types and neurolog-
ical diseases, we performed enrichment analysis across cell
subclasses and clusters using marker genes and gene sets
related to 123 brain diseases®®>? (Figures S8A and S8B). In
particular, we focused on Parkinson’s disease, which is charac-
terized by the progressive loss of dopaminergic neurons in the
substantia nigra (SN), leading to dopamine reduction in the
brain.>**° Qur analysis revealed differences in proportions of
two dopaminergic clusters (DIME_N_DOP_224/225) in the SN
(Figure S8C). Moreover, these two clusters exhibited varying
levels of enrichment within the Parkinson’s disease-related
gene set, with DIME_N_DOP_225 exhibiting higher expression
of Parkinson’s disease-related genes (Figure S8D). We found
that DIME_N_DOP_225 was primarily localized in the SN,
whereas DIME_N_DOP_224 was more diffusely distributed
(Figures S8E and S8F). These distribution preferences may be
linked to distinct brain functions and neurological diseases,
providing a valuable resource for advancing our understanding
of brain organization and guiding the development of targeted
therapeutic strategies.

Distribution of the neuronal subtypes and region-
enriched genes in the brainstem

The brainstem is vital for various physiological functions.
Combining snRNA-seq and Stereo-seq data, we identified 23

41,42

Neuron

neuronal cell clusters and found regional preferences for several
cell types (Figure 3A). For example, RH_N_GABA_257,
RH_N_GLU_210, RH_N_GLU_240, and RH_N_GLU_252 were
restricted in the nucleus of the trapezoid body (NTB), the para-
brachial nucleus (PB), the principal sensory nucleus of the tri-
geminal (PSV), and the cochlear nucleus (CN), respectively (Fig-
ure S9A). Interestingly, NTB and CN were auditory nuclei, and the
corresponding cell clusters, RH_N_GABA_257 and RH_N_GLU_
252, were both positive for parvalbumin (Figure S9B). In contrast,
non-neuronal cells did not show such regional distribution in the
brainstem (Figure 2A).

Motor and neuromodulatory neurons were enriched in the
brainstem. Consistently, cholinergic (RH_N_CHO_233), norepi-
nephrinergic (RH_N_NOR_231), and serotonergic (RH_N_SER_
229) neurons were enriched in the motor nuclei, the locus ceru-
leus (LC), and the raphe nuclei, respectively (Figures 3A and 3B;
Video S2). Understanding whether diverse motor nuclei in the
brainstem possess distinct molecular signatures has been chal-
lenging due to their small size, diffuse boundaries, and the lack of
transcriptomic data uncontaminated by surrounding regions.
Using Stereo-seq data, we revealed high-level heterogeneity in
the motor nuclei of the trigeminal (V), facial motor nucleus (VII),
hypoglossal nucleus (XIl), and dorsal motor nucleus of the vagus
nerve (DMX) (Figures 3C and S9C). For example, genes such as
Nrgn, Ttr, Gal, and Dag1 were enriched in specific motor nuclei
(Figure 3D). Gene Ontology (GO) analysis also revealed func-
tional differences across these nuclei (Figure S9D). Additionally,
serotonergic neurons in different raphe nuclei also exhibited
selective gene expression patterns (Figures 3E and 3F), high-
lighting gene expression diversity for cholinergic and seroto-
nergic neurons with distinct spatial enrichment.

Region-enriched genes are critical for the physiological
function of the brainstem. We further identified 155 genes
(STAR Methods) highly expressed in 22 brainstem nuclei
(Figures 3G and S9E). For example, Pth2 and Sst were enriched
in medial paralemniscal nucleus (MPL), as previously reported.*®
These genes mainly encode enzymes, receptor-related proteins,
and neuropeptides (Figure S9F; Table S4). Notably, Dbh, which
synthesizes norepinephrine, was highly expressed in the LC,
whereas Ddc and Tph2, involved in serotonin synthesis, were en-
riched in the RAmb. Enzyme-related genes such as Plpp4,
Dpysl3, and Ache were concentrated in the DMX. Several neuro-
peptides (Nmb, Nps, Pth2, RIn3, and Ucn) exhibited regional
enrichment in the brainstem (Video S3). In addition, some genes
exhibited subregional enrichment, such as Barhl1 in the dorsal

Figure 2. Brain-wide distribution of cell clusters in the mouse brain

(A) Heatmap showing the distribution (Z score-scaled cell ratios) of 308 cell clusters across 66 brain areas.

(B) Spatial distribution of 8 representative cell clusters in the 3D mouse brain.

(C) Heatmap showing the scaled (Z score) densities of glutamatergic neurons across isocortical layers.

(D-F) Glutamatergic neuron distribution on coronal section T73, colored by cell clusters. Scale bar, 500 pm. (D) Merged view. (E) Zoomed-in view of the rectangle
region in (D), with depth distribution. (F) Distribution of 8 glutamatergic groups.

(G) Density of 8 glutamatergic groups across cortical areas organized into 3 subnetworks.** Error bars were estimated across all cortical sections. Data are
represented as mean + SD.

(H) Heatmap of the scaled (Z score) densities of glutamatergic neurons across cortical areas.

() Distribution of L5/6_NP_GLU_61 and L6_N_GLU_65 on flatmap (left) and coronal sections (right) of T85 and T43. Scale bar, 1 mm.

(J and K) Distribution and marker gene expression of OECs and astrocytes (OEC_275, OEC_276, and ASC_279) individually. Scale bar, 500 um. (J) Separated
views. (K) Merged view of rectangle regions from (J).

See also Figures S6-S8, Table S3, and Video S1.
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CN and Hhip in the ventral CN (Figure S9G). Together, our anal-
ysis provided a map for the 23 neuronal cell clusters and re-
vealed many region- or subregion-enriched genes in the
brainstem.

Transcriptional-profile-based brain region parcellation
and spatial distribution of gene modules

Traditional brain parcellation relied on cytoarchitecture and func-
tion, overlooking transcriptional properties. With the brain-wide
spatial transcriptomic map, we examined whether brain region
parcellation could be optimized. Specifically, we performed
BayesSpace’* clustering on the bin100 data (100 x 100 DNB
spots, dimension size: 50 um x 50 pm; STAR Methods) derived
from 123 brain sections of mouse #1 brain (Figure 4A). We found
many bin100 clusters exhibited brain-region-selective distribu-
tion (Figure S10A). Accordingly, gene-based brain region parcel-
lation was performed based on region-selective clusters. We
finally yielded 148 brain regions (Figure S11; STAR Methods),
showing a consistency with ABA CCFv3 in 14 representative
brain sections (Figures 4B and S10B). This was exemplified in
section T74, showing that regions defined by transcriptomic
data, like the cortex, hippocampus, thalamus, and caudate puta-
men (CP) in the striatum, exhibited high overlap with that of ABA
CCFv3 (Figures 4C—-4E).

Moreover, our gene-based brain region parcellation revealed
that 8 brain regions could further be divided into finer subregions.
For example, glomerular layer (MOBgI), granule layer (MOBgr) in
MOB, and CP could be further separated into lateral and medial
area, whereas the nucleus accumbens (ACB) and lateral hypotha-
lamic area (LHA) possessed dorsal and ventral subregions. CA3
pyramidal layer (CA3sp) contained two subregions that are prox-
imal or distal to dentate gyrus (DG). Besides, inferior colliculus
(IC) had five layers arranged along its long axis; pontine central
gray (PCG) can be divided into 2 segmentations (Figures 4F and
S12A-S12H). We found that cortical subregions could be classi-
fied by spatial clustering of each single cortical layer; for example,
we distinguished the primary cortical region from the associative
region in layer 2/3. We also identified 6 subregions in the associa-
tive cortex (Ald, Alv, AssoD, ORBI, ORBm, and ORBvVI) and 2 sub-
layers in the primary cortex (L2 and L3) (Figure S12I). These were
further confirmed by the data showing that subregions expressed
distinct molecular markers. Marker genes for each brain region
were detailed in Table S5. The reproducibility of parcellation was
assessed between two mice. Co-clustering revealed consistent
spatial patterns in bin100 clusters (Figure S10C), with highly corre-
lated gene expression profiles across sections (Figure S10D).
These results showed that brain region parcellation could be
achieved based on spatial transcriptomic features.

Neuron

To explore how co-expressed genes in different brain regions
contribute to their functions, we calculated gene modules,
groups of genes with similar spatial patterns, in 123 sections
from mouse #1 using Hotspot, a spatially varying gene identifica-
tion method,*® based on the bin100 data. A total of 2,632 region-
selective gene modules were identified (Table S5; STAR
Methods). For example, there were 50 modules detected in the
T74 section (Figure 4G), 34 of which exhibited regional selectivity
(Table S5). The distribution of 12 modules was shown as exam-
ples (Figure 4H). Specifically, gene module 22 (G22), G18, G5,
G10, G38, and G14 were enriched in different layers of the cor-
tex. G26 was enriched in the piriform cortex (PIR). Notably, G9
and G11 were enriched in the ammon’s horn (CA) and the DG
regions of the hippocampus, respectively. G25, with Pvalb ex-
hibiting the highest autocorrelation coefficient, was found in
the reticular nucleus (RT) of thalamus, consistent with the known
aggregation of mass Pvalb GABAergic neurons in RT.“5*” The
selective identity of gene modules for different brain regions or
subregions was also confirmed by the distribution patterns of
their representative genes (Figures 41 and S10E). GO analysis re-
vealed that genes within these modules were relevant to the
functions of their corresponding brain regions; for example,
genes in G2 (fiber tracts) are associated with axon ensheathment
and genes in G6 (hypothalamus) are associated with hormone
secretion (Figure S10F). Additionally, gene module analysis
also identified small nuclei not defined in CCFv3, like the MPL
(Figure 4J). The stability of gene module analysis was verified
by high correlation of spatial gene modules between two adja-
cent brain sections (Figures S10G-S10J).

Additionally, we examined gene module distribution in 3-
dimensional space, focusing on the thalamus across 42 sec-
tions. Using Hotspot,*> We found 9 gene modules in 3D within
the thalamus (Figure 4K). G1 was restricted to the medial and
lateral habenula nuclei (MH and LH), whereas others were found
across multiple sub-areas (Figures 4L and 4M). Module scores
and gene expression patterns indicated a subregional prefer-
ence of each module, suggesting a different transcriptomic pro-
file between the medial and lateral thalamus (Figure 4M).

Spatiotemporal profile of gene expression in the
developing brain

The formation of brain regions is governed by sets of TFs and
genes with distinct spatiotemporal profiles.”*™° Our analysis
above showed that some gene modules exhibited regional
selectivity, so we asked whether this is also the case during
development. Accordingly, we collected spatial whole-tran-
scriptome data of developing mouse brain with 7 sagittal sec-
tions from embryonic to adult stage (clustered and annotated

Figure 3. Distribution of neuronal cell clusters and genes in the brainstem

(A) Heatmap showing the densities of different cell types in the brainstem nuclei.

(B) Spatial distribution of region-selective cell clusters (red) and marker genes (blue). Scale bar, 1 mm.

(C) Heatmap showing the expression of genes enriched in 4 motor nuclei.

(D) Expression of 4 representative genes in RH_N_CHO_233 cells in the 4 motor nuclei. Scale bar, 200 pm.

(E) Heatmap showing the selective expression of genes in 3 raphe nuclei.

(F) Expression of 3 representative genes in RH_N_SER_229 cells in the 3 raphe nuclei. Scale bar, 200 pm.
(G) Heatmap showing the 155 genes with regional preference in the brainstem nuclei.

See also Figures S9, Table S4, and Videos S2 and S3.
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similarly to coronal sections) (Figures 5A and S13A), including
published data on embryonic day 12.5 (E12.5), E14.5, and
E16.5'% and post-natal day 7 (P7)°" mice and newly generated
data for P1, P14, and P77 mice.

Among the region-selective gene modules mentioned in the
above section, we found 762 out of all 1,368 mouse TFs ex-
pressed in the 7 sagittal sections,*® indicating distinct gene regu-
lation networks (i.e., TF regulons) across different brain areas.
Using SCENIC,** we identified 573 TF regulons with regional
enrichment across 13 major brain regions of the adult stage (Fig-
ure S13B) and a total of 998 TF regulons for the 7 developmental
stages. Furthermore, we applied Hotspot*°® on each section, re-
sulting in a total of 150 clusters, each of which contains a group
of spatially co-localized TF regulons (Figure 5B; Table S6). GO
enrichment analysis found that regulons within each cluster
were related to distinct biological processes (Figure 5B), and
144 out of 150 clusters were found localized in major brain
regions (Figure 5C), suggesting that these spatial co-localized
regulons could work together during brain region development.

Next, we asked how the activities, as defined by an expres-
sion-based metric from SCENIC,>? of these region-selective TF
regulons change during development. In the cortex, 68 TF regu-
lons exhibited higher activity during embryonic stages, whereas
76 exhibited higher activity in post-natal stages (Figure 5D). In
the striatum, we found that 52 TF regulons were more abundant
in early periods whereas 56 were abundant in later periods (Fig-
ure 5D). We also found a similar pattern for 77 and 65 TF regulons
in the thalamus and cerebellum, respectively (Figure 5D). For
example, TFAP2C (names all in capital letters stand for TF regu-
lons) was found to be abundant in the embryonic cortex and
developing olfactory area (Figure 5E), where the core gene
Tfap2c was considered a key TF determining cortex radial glia
fate in a recent study.> In the striatum, PAX9 was enriched in
embryonic age, whereas FOXO1 was gradually enriched during
post-natal development (Figure 5E), consistent with previous re-
ports in the developing mouse striatum.>®> As for individual
genes, 33 genes were found to maintain a region-selectivity in
the cortex, striatum, or thalamus across all 7 stages, whereas
385 genes showed brain-regional selectivity only at a certain
stage (Figure S13C). The comprehensive dynamics of region-se-
lective regulons and genes was summarized in Table S6.

Neuron

The cortex was organized as both laminar and columnar
structures during development, which is determined by tran-
scriptional programs.®® We examined transcriptional regulation
across the dorsal-ventral axis or rostral-caudal axis during
development using Spateo.” In analysis of the dorsal-ventral
axis, we found 206 regulons showing laminar-related distribution
(Table S6). For example, ATF4 gradually shifted from the
superficial layer to the middle layer (Figure 5F). TBR1 shifted
from the superficial layer to the deep layer, in line with the prior
maturation of layer-6 cortical neurons.”®°° NR2E1 shifted from
the deep layer to the superficial layer (Figure 5F), which aligns
well with the important function of Nr2e7 in neural stem cell
proliferation®®" and its crucial role for the intactness of the
supragranular layer.®®> As for the rostral-caudal axis, we found
22 TFs exhibiting spatial increment or decrement gradient
(Figure S13D; Table S6). Lhx2 showed a similar increment along
the rostral-caudal axis as Nfix in embryonic stages (E12.5, E14.5,
and E16.5), but the pattern was weakened in post-natal
stages (P1, P7, P14, and P77) (Figure 5G). This seems in line
with previous reports showing the gradient distribution of Lhx2
at E15.5 stage and its crucial role in barrel column formation, %54
a process mostly in embryonic stages.®® We also found 134 non-
TF genes exhibiting rostral-caudal gradients (Figures 5G and
S13D; Table S6). These gradient distributions of TFs and genes
could be involved in defining the cortical organization patterns.

Next, we examined the kinetics of several neural developmental
events using a gene set enrichment scoring method (STAR
Methods). Our analysis showed that three major neurodevelop-
mental event-associated gene sets exhibited the dynamic change
across 9 brain regions and 7 stages (Figures S13E-S13G). Specif-
ically, genes involved in gliogenesis and synapse maturation
showed higher enrichment in post-natal stages, whereas genes
associated with neuroblast proliferation were enriched in embry-
onic stages. The genes involved in gliogenesis started to show
enrichment around birth and quickly reached peak level at P14.
Interestingly, we found higher levels of gliogenesis-related gene
enrichment in the fiber tracts and hindbrain as compared with
others, consistent with the recent report in human brain gliogene-
sis.°® In addition, genes involved in synapse maturation were
gradually enriched at the very beginning of embryonic stages
and reached steady state after birth (Figure S13G).

Figure 4. Spatial gene profiles of adult mouse brain

(A—C) Brain region parcellation using Stereo-seq bin100 clustering. (A) Overview of 123 annotated sections from mouse #1 brain (left) and 3D illustration of 14
representative sections (right). (B) Visualization of 14 representative sections (section no. and bregma coordinates shown, unit mm). Scale bar, 1 mm. (C)
Separated views of regions in T74 section.

(D and E) Quantification of Jaccard similarity between molecularly defined brain regions and ABA CCFv3. (D) For large regions (CTX, TH, HIP, and CP). (E) For
subregions within CTX and HIP.

(F) Subregions of 4 representative brain regions (MOBgr, ACB, CA3sp, and IC). The dotted box shows a 3D illustration (upper) and feature gene expression (lower)
of lateral and medial subregion of MOBgr. Black lines indicate CCFv3 boundaries. Scale bar, 500 pm.

(G) Heatmap showing the genes with significant spatial autocorrelation grouped into different gene modules in T74 section, with 20 spatially selective gene
modules highlighted.

(H and I) Gene modules with regional preference. Scale bar, 2 mm. (H) Module score distribution. (I) Expression of representative genes in modules.

(J) Gene module score distribution in the MPL and expression of the representative Pth2 gene. Scale bar, 1 mm.

(K) Heatmap showing the genes with significant spatial autocorrelation grouped into different gene modules in the whole thalamus.

(L) Visualization of 9 gene modules associated with thalamic subregions in 3D (upper). Module G1 highlighted (bottom).

(M) Gene module selectivity in the 3D thalamus is presented with enrichment scores in subregions (left) and a heatmap of representative gene expressions (right),
with thalamic subregions ordered along the medial-lateral axis, indicated by the vertical arrow.

See also Figures S10-S12, Tables S5 and S11, and Videos S2 and S3.
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Spatiotemporal profile of IncRNA in the brain

In the mammalian genome, less than 3% of the genome is tran-
scribed into protein-coding transcripts, whereas the majority are
ncRNAs, with some exceeding 200 bp, termed as IncRNAs).®”
Although previous studies have characterized some IncRNAs
in the mouse brain,®”®® a comprehensive analysis of their
spatial distribution was lacking. Among 9,580 known mouse
IncRNAs, we detected 5,834 IncRNAs in our adult mouse brain
Stereo-seq dataset, with 513 IncRNAs showing regional enrich-
ment (Figure 6A; Table S7; STAR Methods). For examples,
Gm12688, Gm33651, 6330420H09Rik, Gm20649, Hotairm1,
and Gm14033 exhibited preferential expression in olfactory
areas, striatum, hippocampus, hypothalamus, medulla, and cer-
ebellum, respectively (Figures 6B and 6C; Video S4). Moreover,
37 IncRNAs showed layer-enriched distribution in the cortex
(Figure 6D), with Gm26870, A830009L08Rik, 1700047F07Rik,
Gm11730, and Gm28928 enriched in L1, L2/3, L4, L5, and L6,
respectively (Figure 6E).

Some IncRNAs are known to be crucial for brain develop-
ment.®*~"" To identify those potentially involved in neurodevel-
opment, we performed Hotspot analysis on Stereo-seq data
from E12.5 to P77, revealing 184 gene modules, 160 of which
showed brain region preference (Table S8), with P14 data
presented as an example (Figures S14A and S14B). We then
identified 216 IncRNAs with spatiotemporal dynamics (60 for
cortex, 73 for striatum, 30 for thalamus, and 95 for cerebellum)
across development stages (Figures S14C and S14D). For
example, A930024E05Rik was highly abundant in the embryonic
cortex,”” whereas AC129186.1 peaked in the post-natal period
(Figures 6F and 6G). Several region-enriched IncRNAs, such as
Gm11266 (cortex),”® D430036J16Rik (striatum),” Gm2694 (cere-
bellum),”*"® Gm15577 (cerebellum),”® were also reported in pre-
vious studies. However, most IncRNA expression patterns
remain unknown. Interestingly, some cerebellum-enriched
IncRNAs, such as Gm2694 and Lhx1os, show expression pat-
terns that coincide with cerebellar development starting
from E16.5 (Figure S14D). Gm2694 has been shown to regulate
synaptic stability in the cerebellum, indicating its potential
role in cerebellar development.”*’> These findings suggest
that IncRNAs exhibiting spatiotemporal expression patterns
may play important roles in brain morphogenesis during
development.

Genes within the same modules are often functionally
related.”” To predict the potential roles of IncRNAs in develop-
ment, we performed GO functional enrichment analysis on

Neuron

brain-region-selective gene modules. Early-stage modules
(E12.5-E16.5) were primarily associated with neuronal develop-
ment (Figures 6H, 61, S14E, and S14F), suggesting that IncRNAs
in these modules may be involved in brain development. At later
stages (P1-P77), modules became enriched with genes related
to brain-region-specific functions. For example, in the striatum,
post-natal modules (including 36 IncRNAs) were linked to the
dopamine receptor signaling pathway (Figures 6H and 6l),
whereas in the cortex, modules (including 15 IncRNAs) were
associated with synapse maturation (Figure S14E). In the cere-
bellum, post-natal modules (including 46 IncRNAs) were linked
to the GO term of parallel fiber to Purkinje cell synapse (Fig-
ure S14F). These findings suggest that IncRNAs may regulate
brain-region-specific functions during later stages. Overall,
IncRNAs with spatiotemporal expression patterns likely
contribute to both early embryonic neural development and later
neural function, though further experimental studies are needed
to confirm their roles.

Recent studies indicate that INcRNA transcription is linked to
nearby gene transcription, sharing promoter regions.”®*° Diver-
gent IncRNAs transcribe from the same promoter as adjacent
mRNAs but on opposite strands, whereas convergent IncRNAs
transcribe toward adjacent mRNAs on opposite strands, often
overlapping.?’ Although expression patterns of these IncRNA-
mRNA pairs have been studied in cells and tissues,’®%? their
spatial brain expression remains largely unknown. To investigate
this, we categorized IncRNA-mRNA pairs into divergent
(2,508 pairs) and convergent (4,480 pairs) groups based on the
genomic distance between their transcription start sites (STAR
Methods). In our spatial transcriptomic analysis of the adult
mouse brain, we identified 3,049 IncRNA-mRNA gene pairs,
with 1,019 divergent and 2,030 convergent pairs (Table S9).
We discovered that divergent pairs had a significantly higher
expression correlation than convergent pairs across different
brain regions (Figure 6J). Notably, 18 convergent pairs exhibited
antagonistic expression patterns, such as the Airn-Mas1
pair, which showed negative correlation in various regions
(Figures 6K and 6L). Similarly, the Gm45441-Grin2d pair dis-
played opposing expression levels (Figures S14G and S14H).
Further analysis revealed that 103 convergent gene pairs had
distinct antagonistic expression in different cell types. For
instance, Gm13944 was more highly expressed than Zfp385b
in Purkinje cells but less in granule cells (Figures 6M and S14I).
Stereo-seq data confirmed these spatial distribution differences,
with Gm13944 highly expressed in the Purkinje cell layer and

Figure 5. Spatial transcriptional profile of developmental mouse brain

(A) Clusters generated by unsupervised spatial constrained clustering (SCC) of sections across E12.5-P77. Scale bar, 1 mm.

(B) Heatmap showing TF regulons with high spatial autocorrelation grouped into clusters (e.g., C3 and C6), and correlated to distinct GO biological processes.
(C) Spatial distribution of 6 region-selective TF regulon clusters in P14 sagittal brain section as examples. Scale bar, 1 mm.

(D) Heatmap illustrating the TF regulon activities in the developing cortex, striatum, thalamus, and cerebellum. Regulon activity was calculated using AUCell-

SCENIC.*?

(E) Visualization of regulon activities of 8 TF regulons in the developing cortex, striatum, thalamus, and cerebellum. Scale bar, 1 mm.
(F) Top: sketch of the orthogonal visualization for cortical laminar-columnar structure. Bottom: heatmap showing the spatial enrichment of 4 example TF regulons

along the dorsal-ventral axis in the developmental cortex.

(G) Visualization of dynamic changes of genes with rostral-caudal gradient in developing cortices. The gradient distribution of each gene at each stage is
demonstrated using an auxiliary scatterplot, with black dots indicating the mean expression on each relative rostral-caudal position, and a red line showing the

linear regression of these points. Scale bar, 1 mm.
See also Figures S13 and Table S6.
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Zfp385b in the granule cell layer of the cerebellum (Figures 6N
and 60). Among these 103 gene pairs, 18 gene pairs also ex-
hibited antagonistic expression trends in different brain regions,
as mentioned above (Figure S14J). Our findings provide valuable
insights into the spatial expression patterns of IncRNA-mRNA
pairs in the mouse brain, highlighting their potential regulatory
functions.

DISCUSSION

The mammalian brain possesses a remarkably intricate organi-
zation. In this study, we constructed a single-cell-resolution
spatial transcriptomic atlas of the mouse brain with genome-
wide coverage of most genes in the genome, including IncRNAs.
By leveraging the spatial profile of the whole transcriptome, we
precisely delineated brain regions with the spatial clustering
method across the whole brain, including several novel
subregions. Our atlas provided a spatiotemporal map of gene
expression from embryonic to adult stages, revealing numerous
TF regulons and IncRNAs with distinct spatiotemporal dynamics.
These findings lay a foundation for understanding the complex
interactions among diverse cell types and the neural mechanism
underlying animal behavior.

Brain-wide distribution of diverse cell types
Our study extends the understanding of the spatial organization
of diverse cell types in the mouse brain, revealing their distinct
laminar and regional distribution patterns that align with brain
function and disease relevance. For instance, glutamatergic
neurons exhibited laminar distribution in the cortex, while certain
clusters were enriched in specific cortical regions. In the ILA, the
area related in mood and affective disorder,®® we identified
neuron clusters enriched with depression-related expression
profiles, suggesting a potential role in mood regulation. A recent
study of the macaque cortex highlighted variations in cellular
configurations correlated with the hierarchical structure of the vi-
sual system.®* This supports the idea that the enrichment of cell
types in cortical regions plays a critical role in both brain function
and diseases.

In the brainstem, we observed nucleus-enriched clusters,
such as glycinergic interneurons in the NTB as documented®®

Neuron

and glutamatergic neurons in CN. Notably, both clusters were
Pvalb-positive. Pvalb interneurons are widely distributed in the
auditory system, are well-tuned for sound frequency,®® and
enhance temporal coding in the auditory pathway.?” The distinct
distribution of glutamatergic and GABAergic Pvalb neurons
across auditory nuclei suggests their specialized roles in audi-
tory information processing. Together, these findings under-
score the importance of our transcriptomic atlas for annotating
cell types and elucidating their roles in brain function and
pathology.

Brain-region-enriched modules and gene expression
Although mRNA distribution in the brain has been examined by
ISH,>®® these data were collected in different animals, which
often confounds analysis of gene expression patterns across
the whole brain. With the 123 coronal brain sections from a single
mouse brain, our atlas provided the opportunity for integrated
analysis, especially in a 3D manner. We comprehensively identi-
fied brain region-selective genes, especially within brain regions
such as the thalamus and brainstem nucleus.

Besides, whole-transcriptome coverage has enabled us to
profile a large number of less-studied IncRNAs. Our findings
extended the existing knowledge regarding brain-regional or
subregional enrichment of numerous IncRNAs, suggesting that
these INcRNAs may be crucial for the formation of brain regions.
For instance, the antagonistic expression of convergent gene
pairs such as Airn and Mas1 suggests potential functional
interference. Furthermore, we identified IncRNAs with spatio-
temporal dynamics during brain development. Some of them
have been studied previously. For example, A930024E05Rik,
highly expressed in the developing cortex, is essential for cortical
projection neuron differentiation and migration,”” whereas
Gm2694, associated with cerebellar development, influences
synapse density and motor function.”*”® The identification of
IncRNAs with distinct spatiotemporal dynamics paved the way
for further analysis of their functional roles.

Moreover, spatial transcriptomic data enabled the identifica-
tion of molecular differences in neurons across small nuclei,
such as cholinergic neurons in distinct motor nuclei of the brain-
stem, which is difficult to achieve with single-cell sequencing.
For instance, hypoglossal nuclei genes were linked to diverse

Figure 6. Spatial profile of IncRNA in mouse brain
(A) Heatmap of region-enriched IncRNAs in 14 brain regions.

(B and C) Whole-brain distribution (upper) and spatial expression (lower) of 6 IncRNAs in brain sections (section no. and bregma coordinates shown, unit mm).

Scale bar, 500 pm.

(D) Expression heatmap of 37 cortical-layer-enriched IncRNAs. Examples in (E) marked in red.

(E) Spatial distribution of 5 IncRNAs in coronal section T75. Scale bar, 500 pm.

(F) Dynamic expression changes of IncRNAs in developing cortex.

(G) Spatiotemporal distribution of cortical-enriched INcRNAs across development stages. Scale bar, 1 mm.

(H) Distribution of striatum-selective modules and their IncRNA expression across development stages. Scale bar, 1 mm.
(I) GO enrichment pathways of striatum-selective modules across development stages.

(J) Pearson correlation distribution (right) of convergent and divergent gene pairs (cartoon shown on left).

(K) Expression levels of Airn-Mas1 convergent gene pair in different brain regions.

(L) Spatial distribution of Airn-Mas1 pair in 16 sections. Scale bar, 2 mm.

(M) Expression of Gm13944-Zfp385b pair in cerebellar cell clusters of granule cells (CB_GRC_GLU_261) and Purkinje cell (CB_PKC_GABA_262).
(N) Distribution of Gm13944-Zfp385b convergent gene pairs in cell types of Purkinje (red) and granule (green) cells in section T114.
(O) Expression of Gm13944 (red) and Zfp385b (green) in Purkinje (PU) and granule cell layer (GR), respectively. Scale bar, 2 mm.

See also Figures S14, Tables S7, S8, and S9, and Video S4.
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physiological processes, including heart contraction and im-
mune response, aligning with studies implicating this region in
perinatal lung inflammation® and sudden unexplained perinatal
death.’® The identification of region-selective genes would facil-
itate our understanding of the function of these small nuclei.

Parcellation of brain areas based on

transcriptomic profile

Traditionally, the boundaries of brain regions have been defined
based on cytoarchitecture and function.”°"%> Our analysis
defined the boundaries of 148 mouse brain areas based on
spatial transcriptomic properties, largely consistent with ABA
CCFv3.?” This supports the transcriptomic basis of brain parcel-
lation, consistent with a recent study.'? Given that our transcrip-
tomic data have high spatial resolution, our analysis allowed for a
more detailed division of certain brain regions, such as the CP
further divided into CPlI and CPm, and ACB into ACBd and
ACBYVv, identifying subdivisions not present in the ABA CCFv3.
However, the functional relevance of these finer parcellations re-
mains to be determined. Transcriptome-based parcellation is
likely to enable studies of other less-studied species, where
common parcellation frameworks of brains or other organs are
not available.

Spatiotemporal analysis of transcriptome for the
developing mouse brain

Our atlas also included a comprehensive spatiotemporal map of
gene expression from embryonic to adult stage, exceeding ex-
isting works that only covered limited genes or stages. This
has enabled the identification of 411 TFs with drastic spatiotem-
poral dynamics. For example, TFAP2C is enriched in the cortex
during early development and involved in regulating cell fate of
cortical radial glia.®* These TFs regulons likely play roles in brain
development, providing a valuable resource for neurodevelop-
mental research.

Further analysis showed that some of the TF regulons
exhibited delicate spatiotemporal patterns within specific brain
regions. In the developing cortex, we showed that 206 TF regu-
lons exhibited laminar enrichment along the dorsal-ventral axis,
and 156 genes showed gradient distribution on the rostral-
caudal axis. For example, Lhx2 displayed a rostral-caudal
gradient, consistent with a previous study.®® This gradient distri-
bution pattern was thought to be important for the formation of
sub-structures.®® Consistently, it has been shown that Lhx2 is
involved in barrel cortex formation.®® These TF regulons or genes
showing gradient distribution are likely crucial in shaping cortical
structure. Our study significantly extended previous findings®®
and revealed hundreds of genes exhibiting rostral-caudal axis
gradient patterns across developmental stages, with their func-
tional roles yet to be experimentally explored.

In summary, our study has constructed a 3D single-cell-reso-
lution spatial transcriptome atlas for the mouse brain, mapping
the spatial distribution of genes and cell clusters. This revealed
region-selective cell clusters and genes, including IncRNAs,
and demonstrated precise brain area definitions based on tran-
scriptomic analysis. Moreover, we identified numerous TF regu-
lons with spatial and temporal selectivity. The construction of a
mouse brain atlas with single-cell resolution provides the basis
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for further exploring the mechanisms underlying physiological
processes and development of the mouse brain.

Limitations

There are several limitations in this study. First, the limited capture
efficiency of gene transcripts in spatial transcriptomics could
resultin lower detection of low-expressed genes, a common issue
for in situ-based spatial transcriptomics methods.” Consequently,
we could have missed some genes with low-expression levels in
our spatial transcriptomic analysis. In fact, we identified 668 genes
for one cell on average, which was insufficient for precise cell
annotation. Therefore, we adopted Spatial-ID, an integrating
transfer learning and spatial embedding strategy,”® to perform
precise cell-type annotation for spatial transcriptomic datasets
based on our snRNA-seq data. Second, sparse brain sectioning
and sampling points limited the resolution and depth of devel-
oping brain analysis. Third, coronal sections at 100-um intervals
in Stereo-seq may have missed small nuclei and disrupted brain
region continuity. Therefore, the sampling of the brain with smaller
spatial intervals, or even profiling all sections across the whole
brain, would be needed for a more precise 3D whole-brain sin-
gle-cell transcriptomic atlas in the future.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for the resources and reagents may be
directed to and will be fulfilled by the lead contact, Yan-Gang Sun (yangang.
sun@ion.ac.cn).

Materials availability
All materials used for Stereo-seq and snRNA-seq are commercially available.

Data and code availability

The processed data are ready for exploration and may be accessed online
(https://doi.org/10.12412/BSDC.1699433096.20001). All raw data produced
in this study have been deposited to the CNGB Nucleotide Sequence Archive
(accession code CNGB: CNP0003837). Additional information required to re-
analyze the data reported in this paper is available from the lead contact upon
request.
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Biotechnology Co., Ltd.
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CTGAGAGGC
Stereo-seq-library-F: /5phos/CTGCT Sangon N/A
GACGTACTGAGAGG*C*A
Stereo-seq-library-R: GAGACGTTCT Sangon N/A
CGACTCAGCAGA
Stereo-seq-library-splint-oligo: GTACGT Sangon N/A
CAGCAGGAGACGTTCTCG
Stereo-seq-read1: CTGCTGACGTAC Sangon N/A
TGAGAGGCATGGCGACCTTATCAG
Stereo-seq-MDA-primer:TCTGCTGA Sangon N/A
GTCGAGAACGTC
Stereo-seqg-read2: GCCATGTCGTTCTG Sangon N/A

TGAGCCAAGGAGTT

Software and algorithms

R v4.1 and greater
Seurat v4.3.0 and greater

R Foundation

Hao et al.*

https://cran.r-project.org
https://satijalab.org/seurat

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SeuratDisk v0.0.0.9020 Satija Lab https://github.com/mojaveazure/
seurat-disk

Spatial-ID Shen et al.?° https://github.com/
TencentAlLabHealthcare/spatiallD

randomForest v4.7-1.1 Liaw and Wiener®® https://cran.r-project.org/web/packages/
randomForest/index.html

harmony v0.1 Korsunsky et al.”® https://github.com/eddelbuettel/harmony

scrattch.hicat v1.0.0 Allen Institute https://github.com/Alleninstitute/
scrattch.hicat

tidyverse v1.3.2 Wickham et al.®” https://cran.r-project.org/web/packages/
tidyverse/index.html

ggplot2 v3.4.1 Wickham®® https://cran.r-project.org/web/packages/

ggplot2/index.html

python v3.8 and greater
PyTorch v1.13.1

PyTorch Geometric v2.1.0
numpy v1.23.3

pandas v1.5.0

scanpy v1.9.1

Spateo v1.1.0

Spaco v0.2.2
SCENIC v1.1.2
Hotspot v0.9.0
BayesSpace v1.5.1

clusterprofiler v3.2

matplotlib v3.8.3
anndata v0.8.0
loompy v3.0

Python Software Foundation
Paszke et al.”®

Fey and Lenssen'®
Harris et al.'®"
McKinney '

Wolf et al.'®®

Qiu et al.”’

Jing et al.'®*

Aibar et al.>?
DeTomaso and Yosef*”

Zhao et al.**

Yuetal.'®

Hunter'%®

Virshup et al."%”

Linnarsson Lab

https://www.python.org
https://pytorch.org
https://pytorch-geometric.readthedocs.io
https://numpy.org
https://pandas.pydata.org
https://scanpy.readthedocs.io

https://github.com/aristoteleo/spateo-
release

https://pypi.org/project/spaco-release/
https://scenic.aertslab.org/
https://yoseflab.github.io/Hotspot/

https://github.com/edward130603/
BayesSpace

https://bioconductor.org/packages/
release/bioc/html/clusterProfiler.html

https://matplotlib.org/
https://anndata.readthedocs.io/
https://github.com/linnarsson-lab/loompy

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals

Animal protocol was approved (NA-005-2022) by the Biomedical Research Ethics Committee of CAS Center for Excellence in Brain
Science and Intelligence Technology, Chinese Academy of Sciences. Animal care complied with the guideline of this committee.
Mouse brains were collected from P1, P14 and 11-week-old C57BL/6J male mice. Left hemispheres were collected from these
male mice for experiments.

METHOD DETAILS

Brain tissue collection for Stereo-seq

Male mice (C57BL/6J) were used for the experiments. Left hemispheres of male mice (P1, P14, 11 weeks) were collected. Animals
were deeply anesthetized with 3% isoflurane and quickly perfused with 4°C bubbled (with a mixture of 95% O, and 5% CO,) artificial
cerebrospinal fluid (ACSF, containing (in mM) NaCl 126, KCI 2.5, NaH,PO,4 1.25, MgCl, 2, CaCl, 2, NaHCO3 26, and glucose 10, 300-
305 mOsm). After the dissection of the brain, the whole left hemisphere was obtained using the mouse brain sections (RWD, #68708).
To prevent the formation of ice crystals during the tissue freezing, ACSF on the surface of brain blocks were dried with sterile gauze
and brain blocks were transferred into OCT (4583#, Sakura) for 3 times to adequately displace the remaining ACSF. Subsequently,
brain blocks were transferred to a self-made metal mold filled with OCT and quickly frozen with dry ice. After the freezing, brain blocks
were stored in -80°C before the slicing. To minimize the RNA degradation, all solutions we used were prepared with diethyl
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pyrocarbonate (DEPC) (B501005-0005, Sangon Biotech) treated sterilized water (DEPC-H,0), and all instruments were washed with
DEPC-H,0 and RNase Zap (AM9780, Invitrogen). And time spent for the whole tissue collection process was limited to 10 min.

Tissue cryosection, section flattening and RNA quality control

Cryosection was performed to obtain 10-um sections for Stereo-seq at 100-um interval in coronal coordinate. The sections were
carefully placed on pre-cooled Stereo-seq chips (-20°C) with a finger gently pressed under the chip to gradually raise section tem-
perature on Stereo-seq chip, which helps to reduce bubbles and wrinkles. RNA quality was examined, and only samples with RNA
integrity number (RIN) value greater than or equal to 9 were used for analysis.

Stereo-seq experiment procedure

The tissue section on the Stereo-seq chip (1 cm x 1 cm) was then incubated at 37°C for 3 min and subsequently fixed in methanol
(Sigma, 34860; precooled for 20 min at -20°C; 1 ml methanol was added in multi-orifice for each section) and incubated at -20°C for
30 min. Methanol was then dried out in a hood. Tissue section on the chip was then stained with ssDNA reagent (Invitrogen, Q10212)
for 5 min and subsequently washed with 0.1x SSC buffer (Ambion, AM9770; containing 0.05 U/ul RNase inhibitor). Section images
were captured using Zeiss Axio Scan Z1 microscope (at EGFP and DAPI wavelength, 10-ms exposure). Tissue sections were then
permeated by incubating in 0.1% pepsin (Sigma, P7000, pepsin was prewarmed at 37°C for 3 min) at 37°C for 12 min (6 min for ol-
factory bulb) in 0.01 M HCI buffer (pH = 2) and then washed with 0.1x SSC buffer (containing 0.05 U/ul RNase inhibitor) to remove
pepsin. In this step, RNAs were released from the permeated tissue and captured by the Stereo-seq chip. RNAs were then reverse
transcribed for 1 hour at 42°C. After reverse transcription, tissue sections were washed with 0.1x SSC buffer and digested with tissue
removal buffer (10 mM Tris-HCI, 25 mM EDTA, 100 mM NaCl, 0.5% SDS) at 37°C for 30 min, and then the chips were washed twice
with 0.1x SSC buffer. The cDNA-containing chips were then subjected to Exonuclease | (NEB, M0293L) treatment for 3 hours at 55°C.
The released cDNAs were collected and the chips were washed once with NF-water. The cDNAs were purified using 0.8x VAHTS™
DNA Clean Beads and then amplified with Hot Start DNA Polymerase (QIAGEN). The PCR reaction protocol was: first incubation at
95°C for 5min, 15 cycles at 98°C for 20 s, 58°C for 20 s, 72°C for 3 min and a final incubation at 72°C for 5 min. The PCR products were
then purified using 0.6x VAHTS™ DNA Clean Beads and were quantified by Qubit dsDNA HS Assay kit (Invitrogen, Q32854).

Stereo-seq library construction and sequencing

20 ng of cDNA products were fragmented using in-house Tn5 transposase at 55°C for 10 min, after which the reaction was stopped
by the addition of 0.02% SDS. The fragmentation products were added with KAPA HiFi Hotstart Ready Mix (Roche, KK2602), 0.3 uM
Stereo-seqg-Library-F primer and 0.3 uM Stereo-seq-Library-R, and the samples were then transferred to a thermal cycler and for
amplification using the following protocol: 1 cycle at 95°C for 5 min, 13 cycles at 98°C for 20 s, 58°C for 20 s, and 72°C for 30 s,
and 1 cycle at 72°C for 5 min. The PCR products were then purified using VAHTS™ DNA Clean Beads (0.6x and 0.15x). Finally,
the library was sequenced on MGl DNBSEQ™ T10 sequencer with sequencing length of 35 bp for read 1 and 100 bp for read 2.

Processing of Stereo-seq raw data

The stereo-seq libraries were sequenced by MGI DNBSEQ™ T10 sequencer, and the fastq files generated were then processed with
the SAW pipeline (https://github.com/BGIResearch/SAW). For read 1, coordination identity (CID) sequences were mapped to the de-
signed coordinates of the in situ captured chip, allowing 1 base mismatch. Unique molecular identifiers (UMI) having either N bases or
more than 2 bases with quality score less than 10 were filtered out. The associated CIDs and UMIs extracted from read 1 were ap-
pended to the read header of relative read 2. Then STAR'°® was used to align retained read 2 to reference genome (mm10), and map-
ped reads with MAPQ >10 were kept. UMIs with the same CID and the same gene locus were collapsed, where one mismatch was
allowed for sequencing and PCR errors. Finally, this information was used to generate an expression profile matrix containing
coordinates.

Quality control of Stereo-seq sections

For brain section quality, we manually checked the boundary of each brain section generated by Stereo-seq data, there were 7 sec-
tions removed due to abnormal capture of transcripts as compared with their adjacent sections, which may be caused by incomplete
attachment of brain tissue to the chips. For the rest of 200 sections, we then identified and filtered out low-quality brain sections with
less than 1000 genes based on the distribution of average gene numbers of sections on bin100. Accordingly, 5 low quality sections
were excluded. Totally, 12 brain sections were excluded, the rest of 195 sections (123 sections for mouse #1, 72 sections for
mouse #2) were used for analysis.

To assess batch effects, we divided the 123 brain sections from Mouse #1 into 12 groups, based on the time intervals correspond-
ing to the appearance and disappearance of major brain regions. Data from each group of sections were integrated and subjected to
unsupervised clustering. Using PCA and UMAP for dimensionality reduction, we observed that the clusters within each group were
evenly distributed across the brain sections, indicating no significant batch effects (Figure S1). Moreover, the spatial distribution of
each cluster across the sections showed a high degree of consistency in spatial localization, as exemplified by the T37-T47 group
(Figure S1).
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Cell segmentation

We harmonize the nucleic acid staining image and CID-containing expression matrix from the same section to perform spatial cell
segmentation. Specifically, we utilized StereoCell (https://github.com/BGIResearch/StereoCell) ' to perform a three-step cell seg-
mentation procedure. Firstly, staining images were registered with their corresponding expression matrices. Secondly, cell morpho-
logical segmentation was done based on nuclei-stained images. We employed median filtering to smooth the noise that may present
in input staining images. Then, a modified U-Net based deep learning model''® was used to identify cell morphology from the image.
Cells were filtered by their area, while shape and boundary was revised using opening operation (erode and dilate). Thirdly, after the
basic nuclei mask was identified, a molecule labeling step is employed to label spatially detected UMlIs to cells. The UMI that are
contained within each nucleus are assigned directly to each cell. Then, to retrieve the UMIs in cytoplasm, a Gaussian mixture model
was used to estimate the probability of each remaining UMI belonging to a given cell based on the initial nuclei segmentation, and
label the UMIs with high confidence to the corresponding cells. Finally, we aggregated the UMIs that belong to the same cell, for each
gene, and generated a cell-gene matrix for downstream analysis.

Gene-based brain region parcellation

Firstly, the expression profile matrix of both the coronal and sagittal mouse brain was divided into non-overlapping bins covering an
area of 100 x100 DNB (i.e., Bin100 spots). The UMIs were aggregated per gene within each bin. The resulting bins were further pro-
cessed by Seurat.®® To be specific, we performed quality control on the Bin100 spots of each brain section, filtering out bins with
gene counts less than 200 and mitochondrial proportions higher than 5%.

Then, we used the SCTransform function in the Seurat package to normalize the expression matrix of each Seurat object for each
brain section separately. For the continuous sections of the whole mouse brain, we grouped the brain section data based on the in-
terval from the appearance to the disappearance of major brain regions in the brain section (e.g. the 123 brain sections of mouse #1
were divided into 12 compartments). We then merged the Seurat objects of brain sections in each group separately. We then used the
RunPCA function to perform dimensionality reduction on the merged Seurat objects and performed unsupervised spatial clustering
with the spatialCluster function of BayesSpace (parameters:platform="ST", init. nethod="mclust", model="t", gamma=2,nrep=1000,
burn.in=100). Resulting clusters were annotated based on their transcriptomic marker genes identified by the FindAlIMarker function
of Seurat using default parameters. For each compartment, we first annotated each cluster with broad brain regions, such as olfac-
tory area, cortex, thalamus, hypothalamus, hippocampal region, midbrain, cerebellum, and hindbrain. We then grouped brain sec-
tions with the same annotation together and repeated spatial clustering procedure and annotated the second round of cluster results
into fine brain regions. We repeated the spatial clustering and annotation process to generate high granularity of brain region
parcellation.

Annotations were further verified and compared with ABA (http://mouse.brain-map.org/). Color palette for spatial visualization of
clustering and annotation results was optimized using Spaco. %"

Image registration and anatomy-based parcellation

The expression matrix of each section was used to generate total RNA images. The ssDNA and DAPI channel images scanned by
ZEISS Z1 were spliced to extract the check lines, which were then registered with the corresponding check lines on the total RNA
image so that the total RNA image, ssDNA image and DAPI channel image were aligned in the same coordinate system. Next, we
identified the tilt angle and position corresponding to each section on the Allen 3D standard brain atlas. Marker points were then
selected to perform cortical registration between the total RNA data and the standard brain atlas. Homemade CellPlot software
was used to obtain parcellation of all cortical regions and subregions.

3D reconstruction of coronal sections

2D sections registration: The reconstructed brain sections are registered into the ABA CCFVS3. Initially, we use 3D slicer software to
manually add corresponding landmark points between the fixed and moving images based on the morphological characteristics of
specific brain regions. During this process, we monitored in real-time the overlay effect of the fixed image and the moving image,
adjusting the position of the landmark points to align the moving image with the fixed image as closely as possible. After registration,
we obtained the transformation matrix of the brain sections. Subsequently, this transformation matrix was applied to the recon-
structed cellular and genetic data in the brain, achieving the unified transformation of the data into the CCFv3 framework.

Sample preparation for single-nucleus sequencing

Mouse was anesthetic with the mixture of Loratadine Tablets (50 mg/kg) and Xylazine Hydrochloride (0.1 mg/kg), and perfused with
ice-cold artificial cerebral spinal fluid (ACSF) containing (in mM) NaCl 126, KCI 2.5, NaH,PO,4 1.25, MgCl, 2, CaCl, 2, NaHCO3; 26, and
glucose 10 (300-305 mOsm). The mouse brain was quickly dissected and transferred to the dish (diameter: 6 cm) that contained
bubbled ice-cold ACSF. Then, the brain was divided into two parts along the coronal axis, the dividing site dependent on the tissue
that we need to correct. After that, the part that we needed was attached to the platform of the cutting system (Leica VT1200S) and
the platform was attached to the cutting chamber which was filled with bubbled ice-cold ACSF. Coronal slices (500 um) were pre-
pared at the speed of 0.2 mm/s with blade vibration amplitude of 0.8 mm. After the section, brain slices were immediately transferred
to the dissection chamber (containing bubbled ice-cold ACSF). Then, target brain areas were carefully dissected according to the
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allen-atlas and collected to responding tubes that stored on the dry-ice. After the collection of all brain areas of the mouse, tubes were
put into the liquid nitrogen for 3 min and then transferred into the dry-ice. The duration should be less than 10 min from the time point
of perfusion to that of put tubes into liquid nitrogen. After the daily collection of all tissues, the boxes that contain dry-ice and tubes
were stored in the -80°C refrigerator before being sent out for sequencing.

Single-nucleus suspension preparation

Similar to previously described,’'? frozen brain tissues were rapidly transferred to a 1-ml Dounce homogenizer (TIANDZ) and imme-
diately homogenized in a 1-ml homogenization buffer. After filtered with a cell strainer into a 1.5-ml tube (Eppendorf), solution in the
tube was subsequently centrifuged at 500 g for 5 min at 4°C to pellet the nuclei. Then, the pelleted nuclei were diluted in a resuspen-
sion buffer at 1000 nuclei/ul for library preparation.

Single-nucleus library preparation and sequencing

Single-nucleus RNA sequencing libraries were prepared using DNBelab C Series High-throughput Single-Cell RNA Library Prepara-
tion Kit (MGI, #940-000047-00). In brief, single-nucleus suspensions were processed as follows: droplet generation, emulsion
breakage, beads collection, reverse transcription and cDNA amplification to generate barcode libraries. Indexed libraries were pre-
pared according to the manufacturer’s protocol (MGI, 1000021082). Qubit ssDNA Assay Kit (Thermo Fisher Scientific, Q10212) was
used to quantify the constructed libraries. The library was sequenced on DNBSEQ™ T1 or DNBSEQ™ T7 sequencer with following
read length: 41-bp length for read 1, 100-bp read length for read 2 and 10-bp read length for sample index.

Single-nucleus raw data processing

Raw sequencing reads were processed with filtering, demultiplexing barcode processing and 3’ UMI counting using the DNBelabC
Series HT scRNA analysis Software Suite (v1.0.0) set with default parameters (https://github.com/MGl-tech-bioinformatics/
DNBelab_C_Series_HT_scRNA-analysis-software/tree/version1.0). PISA software (https://github.com/shiquan/PISA) was applied
to parse raw reads into FASTQ format according to library structure and cell barcode information. Processed reads were then aligned
to GRCm38.p3 (mm10) mouse genome with STAR (v2.7.4a) and sorted by sambamba (v0.7.0). Due to the large amount of unspliced
pre-mRNA in mouse brain cell nucleus, a custom ‘pre-mRNA’ reference was created for alignment of count reads to exons as well as
to introns. Accordingly, each gene’s transcript in snRNA-seq was counted by exon and intron reads together. Finally, a nucleus-gene
metric was generated, which was then adjusted by SoupX (v1.5.21) to reduce ambient RNA noise.

Single-nucleus data filtering

In all single-nucleus sequencing libraries, we removed libraries with median gene count < 800 and selected the remaining 136 li-
braries as high-quality libraries. Nuclei were further filtered based on criteria including median gene count > 800, mitochondrial
gene content < 5%, and aratio of UMI counts to gene counts > 1.2. The expression data were then subjected to SCTransform normal-
ization in the Seurat package (v4.3.0). We performed unsupervised clustering on the normalized data using the FindNeighbors and
FindClusters functions (parameters: dims = 1:50). Based on the marker genes of each group, the clustering results were divided into
six major cell classes: Neurons, Astrocytes, Oligodendrocytes, Microglia, Ventricular cells, and Vascular cells. Nuclei that could not be
clearly classified into these six major types were classified as Uncertain.

When dividing nuclei into major classes, it was found that some nuclei existed at the boundaries between classes and were clas-
sified as the uncertain class without clear marker genes. Therefore, we trained a random forest model to predict the major nuclei
classes in order to remove the uncertain nuclei. First, we downsampled each nuclei class and extracted 5,000 nuclei (up to 80%
of the type) as the training set. The FindAlIMarkers function in the Seurat package was used to identify marker genes for each class
in the training set, and further filtered genes with corrected p values (p_val_adj) < 0.01 and average log, fold change (avg_log-FC) > 1
as feature genes for the random forest model. Using the SCTransform normalized values as gene-expression data, the randomForest
function in the randomForest package (v4.7.1.1) was used to build the model based on the training set (parameter: ntree = 500). Then,
the predict function was used to apply the trained model to all single-nucleus data. The model evaluated the probability of the major
classes for each nucleus, and we assigned each nucleus to the class with the highest probability. Nuclei with highest probability < 0.9
were discarded. After the iterative clustering and annotation that introduced below, clusters with unclear marker expression were
removed. 378,287 nuclei were kept after all filtering processes and used in further analysis.

Single-nucleus iterative clustering and classification
The single nucleus data was first normalized using SCTransform and reduced the dimension using RunPCA. We used the modified
RunHarmony function in the harmony package (v0.1.0) to integrate data from different batches. We modified the kmeans clustering
algorithm used in the package by adding a new parameter kmeans.algorithm, which replaces the default Hartigan-Wong algorithm
with the Lloyd algorithm. We also added two parameters, kmeans.iter.max and kmeans.nstart, to make it applicable to larger data-
sets (parameters: assay.use ="SCT", reduction = "pca", dims.use = 1:50, theta = 2, max.iter.harmony = 10, max.iter.cluster = 20,
kmeans.algorithm = "Lloyd", kmeans.iter.max = 1000, kmeans.nstart = 20, epsilon.cluster = -Inf, epsilon.harmony = -Inf).

To further subdivide cell types, we followed the iterative clustering method for single-cell sequencing data in the scrattch.hicat
package (https://github.com/Alleninstitute/scrattch.hicat), while using the batch correction method in harmony to correct the batch
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effects in different batches during each iteration. This allowed us to reduce batch effects while clustering cell clusters in as much
detail as possible. The specific steps are shown as follows:

(1) First, we defined a clustering function, OnestepCluster, which takes the single cell data in Seurat object format and performs
SCTransform normalization, RunPCA dimension reduction, and RunHarmony batch correction. The clustering results are
checked using the MergeCluster function in step (2) to merge the clusters without distinguishable gene expression differences.

(2) The MergeCluster function calculates the Pearson correlation coefficient between any two clusters. Clusters with fewer than
20 cells will be merged directly with the other cluster with the highest Pearson correlation coefficient, and then the Pearson
correlation coefficient is recalculated for all clusters. Next, we calculated the gene expression differences between the cluster
and the other top 3 clusters with the highest Pearson correlation coefficient. The FindMarkers function is used to calculate the
differentially expressed genes G between any two clusters. To shorten the computation time, each cluster is downsampled to
500 cells for calculation. The differential gene score S is calculated based on the following formula:

S = min(— 10919 (Paq), 20)
G

Among them, differentially expressed gene G requires corrected p values < 0.01 and average fold change > 1, with at least 50% of
cells expressing the gene in the highly expressed cluster, and the expression proportion of the gene in the lowly expressed cluster is
more than 50% lower than the highly expressed clusters. If the number of differentially expressed genes G is less than 5 or the dif-
ferential gene score S is less than 200, the two clusters will be merged. All calculations will be repeated until the differential gene score
S between any two clusters larger than 200.

() We defined the clustering recursive function IterCluster, which combines the OnestepCluster and MergeCluster in step (1-2). If
all clusters are merged in the result, the recursion will be terminated because it cannot be further split. If there are more than
one clusters in the result, the clusters with more than 50 cells are selected and the IterCluster function is performed on this
cluster again. The process continues until all clusters cannot be further splitted, and all clustering results are summarized
and returned.

At the beginning, we used the results of the six major nuclei classes as the start point. For each major class, the lterCluster recursive
function is executed, and eventually, all clusters splitting results are returned. We annotated the clusters based on the marker genes,
and removed some groups with unclear marker genes. In the end, we obtained 308 clusters covering 378,287 high quality nuclei.

Single-nucleus cluster dendrogram construction

Dendrogram of 308 nuclei clusters was constructed based on the marker gene expression. First, the FindAlIMarkers function in
Seurat software package was used to identify marker genes for all cell types. Only genes with adjusted p values (p_val_adj) < 0.05
and avg_log,FC > 0 were kept. For each nuclei cluster, the top 20 genes with the largest avg_log,FC were selected. Marker genes
with expression in less than 20% of nuclei in the corresponding cluster were filtered out. Next, the mouse whole-brain snRNA-seq
data were divided into two groups: neuronal and non-neuronal nuclei. For each group, the AverageExpression function was used to
calculate the average expression values of marker genes for each nuclei cluster. The pvclust function in the pvclust package (v2.2.0)
was used to construct a classification dendrogram, based on the Spearman correlation distances between clusters. Finally, the
merge function was used to combine two dendrograms together.

Independence test of nuclei clusters

We tested the independence of each cluster in the iterative clustering results to ensure there are sufficient differences between nuclei
clusters. We used the randomForest function in the randomForest package to build a random forest model for all 308 clusters. We
first used the FindAlIMarkers function in the Seurat package to find the marker genes for each cluster, Only the genes with an adjusted
p value (p_val_adj) < 0.05 and an avg_log,FC > 0. For each nuclei cluster, we selected the top 50 genes with the highest avg_log,FC
and used them as the feature genes for the random forest model. Then, the single-nucleus data was downsampled, and 200 nuclei
were selected for each nuclei cluster. Using the SCTransform-normalized values as expression data, we built the random forest
model using the randomForest function (parameters: ntree = 1000). The confusion matrix was calculated using the out-of-bag
(OOB) data of the model, Prediction accuracy of the confusion matrix data was used as the standard for evaluating independence
clusters.

Single-nucleus data co-clustering with published dataset

We used two public scRNA-seq datasets as references. One of which is the mouse whole nervous system scRNA-seq dataset,® we
removed cell types from the spinal cord and peripheral nervous system since these cells were not included in our snRNA-seq dataset.
For the other public dataset,”® which only contains single-cell data from the cortex and hippocampus structures, we extracted cell
types belonging to these two regions from our dataset and discarded clusters with cell counts < 20 for comparison purposes.
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We first downsampled 200 cells for each cell type in each dataset separately. Using the SCTransform function in the Seurat pack-
age (v4.3.0), we normalized each dataset (parameters: variable.features.n = 5000, method = "gimGamPoi") and reduced the data
using the RunPCA and RunUMAP functions (parameters: dims = 1:50). We used the FindAlIMarkers function to find marker genes
for each cell type and only kept genes with a corrected p value (p_val_adj) < 0.05 and an avg_log,FC > 0. We then summarized
the top 50 genes with the highest avg_log,FC for each cell type as the marker gene set for that dataset. Using the
FindIntegrationAnchors and IntegrateData functions, we integrated our dataset with any one of the publicly available datasets, using
the intersection of marker gene sets as integration anchors. We then reduced the integrated data again using RunPCA and RunUMAP
(parameters: dims = 1:100), and performed clustering using FindNeighbors (parameters: reduction = "pca", dims = 1:100) and
FindClusters (parameters: resolution = 3, n.start = 10, algorithm = 1).

For the integrated clustering results, we calculated the proportion R of a cell type x in our dataset that clusters with a cell type y in
other public dataset using the following formula:

C
R = > min(Ry,Ry)
i

where C represents all clusters generated after re-clustering the integrated dataset, i represents any cluster in C, Rix represents the
proportion of cell type x in cluster i among all cell types of x, and Riy represents the proportion of cell type y in cluster i among all cell
types of y.

Stereo-seq cell type transfer

Due to the intricate diversity of neuron types throughout the entire brain and the wide-ranging spatial transcriptomic regions, we par-
titioned both the snRNA-seq data and Stereo-seq data into six distinct, mutually independent regions (cerebral cortex, cerebral
nuclei, interbrain, midbrain, hindbrain, cerebellum). When transferring cell types to a specific region within the Stereo-seq data,
we selected the snRNA-seq neuron clusters from the corresponding region as the reference set. Clusters comprising less than 20
nuclei were excluded. Considering that non-neuronal cells exhibit relatively lower regional selectivity in their distribution across
the entire brain, we utilized all non-neuronal cells from the complete mouse brain snRNA-seq dataset as the reference set. Each re-
gion in Stereo-seq data was transferred using the corresponding neuronal and all non-neuronal cell clusters. In addition, the Stereo-
seq data also included fiber tracks and ventricular regions, which are not primary structural regions of the mouse brain and predom-
inantly comprise non-neuronal cells. Consequently, for these regions, we exclusively employed non-neuronal cells as the reference
set for cell type prediction. We defined the cells with more than 100 genes and the percentage of mitochondrial genes less than 15%.
Prior to cell type transfer, each cell cluster in the snRNA-seq data was downsampled to 1000 nuclei. We computed the marker genes
for each cluster, selecting the top 300 genes (sorted by fold changes, excluding genes associated with mitochondria or ribosomes),
which were subsequently utilized in the subsequent training phase.

We used Spatial-ID, a novel cell type mapping algorithm,?® to annotate single cells in Stereo-seq data with cell types classified by
snRNA-seq analysis. To remove uncertainty annotation caused by bubble artifacts in Stereo-seq data, cells in Stereo-seq data with
detected genes less than 100 and percentage of mitochondrial genes larger than 15% were removed in the transfer process (Fig-
ure S3). This filtering process resulted in the exclusion of 20,019 cells. The remaining 4,209,604 cells were assigned as high-quality
cells and used for cell type annotation. The annotation procedure mainly consisted of two stages. In the first stage, we trained a four-
layer deep neural network (DNN) with the snRNA-seq data. The DNN model included two hidden layers of 2048 and 1024 nodes and
was trained by a Cross Entropy loss with learning rate = 3x10™, weight decay = 1x10°®. The trained DNN predicted the initial prob-
abilities of defined cell types for single cells on the Stereo-seq data. In the second stage, we applied a graph convolution network
(GCN) including two autoencoders and a classifier to integrate gene expression, spatial neighborhood information and cell type in-
struction generated in the previous stage to refine the probabilities. Spatial neighborhood information of the Stereo-seq data was
encapsulated into an adjacency matrix of cells with normalized Euclidean distances as values for non-zero elements. The GCN model
took the gene expression matrix, the distance-weighted adjacency matrix and the initial probabilities as inputs and produced the final
probabilities after 200 epochs of training with learning rate = 1x1072, weight decay = 1x10™. The two autoencoders of the GCN
model were trained via a self-supervised learning strategy with reconstruction losses and the classifier was trained by a Cross
Entropy loss. Spatial-ID used in this study was implemented with PyTorch (v1.13.1) and PyTorch Geometric (v2.1.0) packages in
Python (v3.8.10).

Evaluation of cell type transfer consistency and accuracy

To evaluate the consistency of Stereo-seq data and the impact of different quality control criteria on cell type annotation, we applied a
series of cell quality cutoffs (ranging from 100 to 400 MID counts per cell). Stereo-seq data were processed separately for each cutoff
to annotate cell types. Consistency rates were calculated for each comparison between different cutoffs. The results showed that
Spatial-ID transfer of cell clusters maintained over 80% consistency across filtering thresholds, demonstrating the robustness of
cell cluster transfer (Figures S3C and S3D). To assess the accuracy of Spatial-ID, we calculated the scaled Pearson correlation of
gene expression between cell types annotated in Stereo-seq sections and snRNA-seq data. For cell clusters, the Pearson correlation
was scaled within each cell subclass (Figures S3E and S3F).
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Analysis of cell type distribution across brain regions
We calculated the density distribution of cell clusters across brain regions using Stereo-seq sections. Density was derived by dividing
the count of a specific cell cluster within each region by the region’s area. The regions’ areas were computed by tracing lines using
total RNA and registered ssDNA images of the coronal sections.

Cell ratio of a cell cluster is derived by dividing the count of the cell cluster within each region by the total cell count of the region.
The "relative max cell ratio" (used in Figure S7A) was defined as follows:

Relative max cell ratio = Rmost — Rsec

Rmost
where R0t represents the cell ratio of the cluster in the most populous area; Rge represents the cell ratio of the cluster in the second
most populous area.

Regulon analysis

The regulon activity analysis of transcript factors was performed using standard pySCENIC pipeline.''® Transcriptomic profiles of
previously divided bins (bin100) were used as input. The GENIE3 algorithm''* was used to reconstruct the co-expressed gene
network for each transcript factor. This network was then analyzed and filtered according to cisTarget database (https://
resources.aertslab.org/cistarget/), resulting in regulons consisting of each TF and its potential targets. The activity of a regulon within
each bin was calculated by AUCell using default parameters and threshold, and then mapped to physical space for visualization. We
aggregated potential target genes sharing the same TF across different developmental time points by using the union function.
Aggregated regulons were subjected to AUCell again to re-calculate comparable activity scores across each developmental stage.
The regulon activity of each anatomic region was defined as the mean activity of all bins belonging to the region.

Identification of spatial gene modules

Spatially co-expressed genes and co-activated regulons are identified and grouped into modules using Hotspot.*® Top 5000 highly
variable genes or all identified regulons were used as input. Gene expression in each bin100 was scaled by size factor and log trans-
formed. Then the spatial autocorrelation score was calculated using compute_autocorrelations function. Significantly auto-corre-
lated genes or regulons with p value less than 0.05 were kept and further grouped into modules using the create_modules function
with min_gene_threshold = 10 and fdr_threshold = 0.05 (for the regulon: min_gene_threshold =5, C > 0.15 and fdr_threshold = 0.05,
for genes in developmental sections: min_gene_threshold = 20 and fdr_threshold = 0.05). Identified gene or regulon clusters were
annotated to related anatomic brain regions according to their spatial localization and contents of genes or TFs.

We identified gene modules with spatial selectivity through gene module enrichment analysis of 123 brain sections from mouse #1.
To identify gene modules with regional selectivity among these modules, we calculated the enrichment scores of gene modules in
bin100 spots from different brain regions of each brain section. For a given gene module in a particular brain section, we calculated
the significance of the difference in gene module enrichment scores for bin100 spots across brain regions. If the enrichment score of a
gene module in a specific brain region was significantly higher than that in other brain regions (p_val_adj < 0.01), we considered
this gene module to be region-specific for that brain region. Due to the fact that computer-based methods cannot accurately anno-
tate gene modules that cover multiple brain regions, we combined computational and manual methods to determine the brain region
selectivity of each gene module and annotate the gene modules.

Gene ontology analysis and enrichment scoring

Gene ontology (GO) analysis was performed on identified modules using clusterProfiler.'°® Gene members of each gene module
were used as input. For TF regulon clusters, corresponding TFs and top 10 target genes of each regulon member were used. GO
enrichment score and significance for biological process (BP), Molecular Function (MF) and Cellular Component (CC) were calculated
with the compareCluster function using the org.Mm.eg.db database with default parameters. BP, MF, CC with Benjamini-Hochber-
adjusted p values less than 0.05 were considered to be enriched in corresponding modules. For manually chosen developmental
related process, we extracted the gene sets from Mouse Genome Informatics website (http://www.informatics.jax.org/vocab/
gene_ontology), and calculated enrichment scores for these gene set within each bin100, using the AddModuleScore function in
Seurat® package. The results were then visualized in groups by brain sections, using the ggplot2 package.

Spatial expression pattern analysis

To quantify and analyze the spatial distribution of transcriptomic features, cortex region of each developmental mouse brain section
was digitized and divided into conformal layers or columns along the dorsal-ventral and rostral-caudal axis using the Spateo package
digitization pipeline.®” Concretely, for each brain section, cortex-corresponding clusters were subjected to the extract_cluster_con-
tours function, and converted into a closed contour line indicating the boundary of cortex region. We arbitrarily divided and labeled
the boundary of cortex into 4 segments, indicating the dorsal, ventral, rostral and caudal side of cortex, respectively, which were
further used by digitize function to generate relative dorsal-ventral and rostral-caudal coordinates for each bin100 within cortex.
We then performed differential analysis on gene expression or regulon activities distribution along the dorsal-ventral axis to identify
laminar peak shifting in the developmental process as described in Figure 5F. Generalized linear models are applied on expression
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distribution of the rostral-caudal axis to detect significant gradient patterns, using the gim_degs function in Dynamo package''® with
default parameters. Genes with Benjamini-Hochberg-adjusted p values greater than 0.05 or expressed in less than 25 percent of bins
in cortex were filtered out. Then, min-max normalized expressions of each significant gradient gene were further fitted using sklearn.
linear_model. LinearRegression''® to get a normalized gradient coefficient and a coefficient of determination, where genes with co-
efficient of determination greater than 0.05 were shown in Figures 5G and S13D.

Identification of region-enriched genes

For identification of region-enriched genes, the gene density of each region was calculated as nCounts/region size, then the fold
change was calculated as the highest region density/median density of all regions. Region-enriched genes were defined as fold
change > 1.5 and density > 25 per mm?Z. Finally, some genes were added or deleted based on manual screening by checking expres-
sion images of individual genes obtained by spatial transcriptomic experiment. Layer enriched genes were calculated similarly
except the cortex was manually divided into layer 1-6.

Identification of convergent and divergent gene pairs

The IncRNAs we used here were derived from the gene annotation of Ensembl V93.""” Long non-coding RNA (IncRNA) is defined as a
non-coding gene/transcript larger than 200bp in length according to the definition from Ensembl (https://www.ensembl.org/info/
genome/genebuild/biotypes.html). We divided IncRNA-mRNA gene pairs into divergent and convergent groups based on the
distance between the transcription start sites of IncRNA and mRNA on the genome. In a gene pair, IncRNA and mRNA are close
or overlap and need to be on different DNA strands. When the transcription start site (TSS) distance between IncRNA and mRNA
is greater than -1000 nt and less than 10000 nt, we define it as a divergent gene pair (TSS distance = TSS in plus strand — TSS in
minus strand). When the TSS distance between IncRNA and mRNA is less than -1000 nt and IncRNA overlaps with mRNA, we define
it as a convergent gene pair.

Calculation of IncRNA-mRNA gene pairs

To calculate the correlation of IncRNA-mRNA expression in different brain regions of mice, we combined the gene expression levels
in the same brain region, and then calculated the CPM value of each gene in each section. Then filter out low expression values
(IncRNA + mRNA >1), and calculate the IncRNA-mRNA Pearson correlation coefficient.

To calculate the differential expression of IncRNA-mRNA in different cell types, we calculated the average expression of each gene
in different cell types. Then calculated the fold change and adjusted P-values (p_val_adj) of IncRNA and mRNA in the two cell types
(FC = logz (IncRNA/mRNA)). When the adjusted P-values (p_val_adj) were less than 0.01, the absolute values of fold changes (FCs)
were greater than 1, and the signs of FCs in the two cell types were opposite, we consider that IncRNA and mRNA were antagonistic
expressed in these two cell types.

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methods were used to predetermine sample sizes, but the sample sizes here are similar to those reported in previous
publications. No randomization was used during data collection as there was a single experimental condition for all acquired data.
Data collection and analyses were not performed blind to the conditions of the experiments as all experiments followed the same
experimental condition. Statistical details of experiments and analyses can be found in the figure legends and main text above.

ADDITIONAL RESOURCES

An interactive website for visualizing gene expression patterns and cell type distributions in the mouse brain (https://mouse.digital-
brain.cn/spatial-omics).
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