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SUMMARY
A comprehensive atlas of genes, cell types, and their spatial distribution across a whole mammalian brain is
fundamental for understanding the function of the brain. Here, using single-nucleus RNA sequencing
(snRNA-seq) and Stereo-seq techniques, we generated a mouse brain atlas with spatial information for
308 cell clusters at single-cell resolution, involving over 4 million cells, as well as for 29,655 genes. We
have identified cell clusters exhibiting preference for cortical subregions and explored their associations
with brain-related diseases. Additionally, we pinpointed 155 genes with distinct regional expression patterns
within the brainstem and unveiled 513 long non-coding RNAs showing region-enriched expression in the
adult brain. Parcellation of brain regions based on spatial transcriptomic information revealed fine structure
for several brain areas. Furthermore, we have uncovered 411 transcription factor regulons showing distinct
spatiotemporal dynamics during neurodevelopment. Thus, we have constructed a single-cell-resolution
spatial transcriptomic atlas of the mouse brain with genome-wide coverage.
INTRODUCTION

The complexity of mammalian brains, characterized by diverse

cell types and their specific distribution and connectivity, poses

a significant challenge to understanding the neural circuits un-
All rights are reserved, including those
derlying behavior. Extensive efforts have been made to

construct brain atlases for the mouse, the most widely used an-

imal model. These include anatomical atlases based on tradi-

tional cytoarchitectural features,1 a gene expression atlas

covering �20,000 genes,2 and a single-cell transcriptome atlas
Neuron 113, 1–20, July 9, 2025 ª 2025 Elsevier Inc. 1
for text and data mining, AI training, and similar technologies.



Mei Li,7 Xinyan Zhang,5 Wang Ting,9 Zhenhua Chen,9 Jiao Fang,5 Shuting Li,5 Yujia Jiang,1 Xing Tan,5 Guolong Zuo,5

Yue Xie,7 Huanhuan Li,5 Quyuan Tao,1,4 Yan Li,5 Jianfeng Liu,5 Yuyang Liu,1,4 Mingkun Hao,2,5 Jingjing Wang,9

Huiying Wen,1,11 Jiabing Liu,5 Yizhen Yan,7 Hui Zhang,5 Yifan Sheng,2,5 Shui Yu,5 Xiaoyan Liao,7 Xuyin Jiang,5

Guangling Wang,5 Huanlin Liu,7 Congcong Wang,2,5 Ning Feng,7 Xin Liu,5 Kailong Ma,7 Xiangjie Xu,5 Tianyue Han,7

Huateng Cao,5 Huiwen Zheng,1,4 Yadong Chen,12 Haorong Lu,13 Zixian Yu,5 Jinsong Zhang,12 BoWang,13 ZhifengWang,7

Qing Xie,7 Shanshan Pan,12 Chuanyu Liu,7,14,15 Chan Xu,12 Luman Cui,7 Yuxiang Li,7,16 Shiping Liu,1,7 Sha Liao,7,17,18

Ao Chen,7,17,18,19 Qing-Feng Wu,9 Jian Wang,7,13 Zhiyong Liu,5,20 Yidi Sun,5 Jan Mulder,21,22 Huanming Yang,7

Xiaofei Wang,5,* Chao Li,5,* Jianhua Yao,6,* Xun Xu,7,15,23,* Longqi Liu,1,7,15,* Zhiming Shen,5,20,* Wu Wei,2,3,* and
Yan-Gang Sun5,25,*
15Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
16BGI Research, Wuhan 430074, China
17BGI Research, Chongqing 401329, China
18JFL-BGI STOmics Center, Jinfeng Laboratory, Chongqing 401329, China
19Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
20Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
21Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 17121, Sweden
22Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
23Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
24These authors contributed equally
25Lead contact
*Correspondence: xfwang@ion.ac.cn (X.W.), lichao0015@ion.ac.cn (C.L.), jianhuayao@tencent.com (J.Y.), xuxun@genomics.cn (X.X.),

liulongqi@genomics.cn (L.L.), zmshen@ion.ac.cn (Z.S.), wuwei@lglab.ac.cn (W.W.), yangang.sun@ion.ac.cn (Y.-G.S.)

https://doi.org/10.1016/j.neuron.2025.02.015

ll
Article

Please cite this article in press as: Han et al., Single-cell spatial transcriptomic atlas of the whole mouse brain, Neuron (2025), https://doi.org/10.1016/
j.neuron.2025.02.015
revealing brain-cell-type diversity.3 However, a comprehensive

brain atlas across the whole mouse brain with single-cell and

high spatial resolution is still lacking.

Recent advancements in spatial transcriptomics have pro-

vided an unprecedented opportunity to map gene expression

and cell types with high spatial resolution.4 In situ hybridiza-

tion-based (ISH) and sequencing-based (ISS) techniques, such

as multiplexed error-robust fluorescence in situ hybridization

(MERFISH)5 and STARmap,6 have shown high capture efficiency

and spatial resolution but are limited to a small number of

pre-selected genes. In contrast, spatial barcoding methods like

Visium7 and Slide-seq8,9 offer whole-transcriptome analysis

but lack single-cell resolution. Despite various efforts to

construct mouse brain atlases using imaging10–14 and

sequencing-based15–17 techniques, a comprehensive spatial

map of the mouse brain, with both genome-wide coverage and

single-cell resolution, is still not available.

Development of the brain is guided by genetic programs gov-

erned by a variety of specific transcription factors (TFs). Previous

studies have revealed molecular heterogeneity of the mouse

brain at the embryonic stage with single-cell RNA and spatial

transcriptomics sequencing.18,19 However, genes with time-

dependent dynamics and gradient distribution, potentially

involved in development, were not systematically examined.

Spatiotemporal profiling of gene expression would be essential

to reveal the genetic program driving brain development. Addi-

tionally, brain maturation continues postnatally, but the spatio-

temporal gene expression profiles during these stages were

not well examined. Therefore, further analysis of spatiotemporal

dynamics of genes, from the embryonic to the adult stage, is

essential for a comprehensive understanding of the mechanism

underlying brain development.

Accumulating evidences have shown that non-coding RNAs

(ncRNAs), especially long non-coding RNAs (lncRNAs), play

important roles in a wide range of biological processes of the

mammalian brain, including brain development, maturation,
2 Neuron 113, 1–20, July 9, 2025
and diseases.20,21 For example, lncRNA Pnky has been shown

to be essential for brain development.22 lncRNA Evf2 can func-

tion as aDlx2 transcriptional coactivator and enhance the activity

of Dlx2, which is essential for the differentiation and migration of

neurons in the brain.23 For some lncRNAs, their functional roles

are highly related to their region-enriched expression pattern in

the brain.24 Although bulk sequencing studies have character-

ized the lncRNAs in various mouse brain regions,25,26 a compre-

hensive analysis of their region-selective expression patterns

and potential regulatory roles within regulons and adjacent

gene pairs throughout the brain is still lacking.

Here, we applied Stereo-seq, a spatial transcriptomic technol-

ogy with single-cell resolution,19 combined with single-nucleus

RNA sequencing (snRNA-seq) data to construct a 3D single-

cell transcriptomic atlas that illustrated cell-type distribution

across the mouse brain (https://mouse.digital-brain.cn/spatial-

omics). Moreover, using data from different developmental

stages, we revealed the spatiotemporal dynamics of genes,

gene modules, and TF regulons. This comprehensive dataset

thereby provides a valuable resource of the spatial atlas of the

mouse brain, laying the foundation for studying development,

function, and gene regulation of the mouse brain.

RESULTS

Spatial transcriptomic analysis of the mouse brain
We employed Stereo-seq—a sequencing-based, genome-wide,

and high-resolution spatial transcriptomic technology19—to

generate a spatial gene and cell atlas of the adult mouse brain.

Coronal sections (10-mm thick) of the left hemisphere were pre-

pared at 100-mm intervals (Figure 1A), producing 123 sections

(after quality control, Figure S1; STAR Methods) with expression

profiles for 29,655 genes, covering 95.5% of annotated protein-

coding and non-coding genes. The distribution maps of region-

specific genes by Stereo-seq were in line with ISH-based data2

in the Allen Brain Atlas (ABA) (Figure S2A). We defined the
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boundary of each cell based on the image of single-stranded

DNA (ssDNA) as described previously.19 A total of 4,229,623

cells were characterized in one mouse brain, with an average

of 1,267 molecular identifiers (MIDs) and 668 detected genes

per cell (Figure S2B; Table S1). Moreover, we manually

segmented the brain areas for each section based on cytoarch-

itectural pattern and brain region delineation in ABA common co-

ordinate framework (CCFv3)27 (Figure 1A).

Given the limited gene detection per cell for precise cell-type

annotation, we performed snRNA-seq for all major brain regions

in order to obtain a comprehensive set of cell annotation

(Figure 1A; Table S1). This yielded 378,287 high-quality nuclei,

classified into 6 cell classes, 19 subclasses, and 308 clusters

via iterative clustering (Figures 1B and 1C; Table S2; STAR

Methods). Canonical marker genes3,5,28 refined these annota-

tions (Figure S2C), generating 262 neuronal clusters and 46

non-neuronal clusters. Random forest analysis demonstrated

robust classification accuracy of cell clusters (83.1%)

(Figure S2D). In addition, we compared the cell clusters with

two previously published mouse brain datasets3,28 (Figure S2E)

and found a high degree of consistency.

We next annotated spatial cells by leveraging the cell clusters

defined in the snRNA-seq dataset, utilizing Spatial-ID.29 Over 4.2

million high-quality cells were annotated (Figures S3A and S3B;

STARMethods). Spatial distribution of example cell clusters was

illustrated in 14 coronal sections along the anterior-posterior axis

(Figure 1D). Specific cell clusters showed distinct regional

preferences, such as laminar-distributed glutamatergic neurons

in the hippocampus and cortex (Figure 1E) and noradrenergic

neurons in the locus coeruleus (Figure 1F).

Additionally, we demonstrated that Spatial-ID has high

consistency and accuracy on Stereo-seq cell-type annotation

(Figures S3C–S3F; STAR Methods). To verify reproducibility,

we collected 72 coronal sections (3.2 million cells) from a second

mouse brain (mouse #2, Figures 1A and S2B) and showed

consistent cell-type distribution and molecular signatures be-

tween animals (Figures S3G–S3I). Moreover, we integrated the

Allen whole mouse brain single-cell dataset13 with our Stereo-

seq data to evaluate the consistency of cell-type transfer across

various reference datasets (Figures S4A–S4C). These results

aligned with previous MERFISH-based annotations.12

By integrating the 123 coronal sections dataset,we constructed

a comprehensive 3D atlas of cell-type distribution in the mouse

brain (Figure 1A; Video S1). An interactive website was developed

to facilitate exploration of specific gene and cell-type distribution

(https://mouse.digital-brain.cn/spatial-omics, Figure S5).
Figure 1. Construction of a cell-type atlas across mouse brains with h

(A) Schematic of constructing the spatial transcriptome for mouse brains. Red c

(B) Taxonomy tree showing 308 cell clusters identified based on snRNA-seq, ea

according to region sources of snRNA-seq (OB, olfactory bulb; CTX, cerebral cort

MB, midbrain; P, pons; MY, medulla; CB, cerebellum. See abbreviations of regio

romodulator-related genes for neurons in snRNA-seq (Slc17a7 and Slc17a6, glu

minergic; Avp, arginine vasopressin; Gal, galanin; Hcrt, hypocretin; Tph2, seroto

(C) UMAP visualization of cell subclasses and clusters.

(D–F) Overview of cell-cluster distribution in representative coronal sections. (D

coordinates shown, unit mm). (E and F) Zoomed-in views of regions labeled by

labeled by blue boxes and further magnified. Glutamatergic neurons colored in r

See also Figures S1–S5 and Tables S1, S2, and S10.
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Spatial distribution of diverse cell types in the brain
Wequantitatively assessed the brain-wide distribution of 308 cell

clusters across 66 parcellated brain areas in the mouse brain

(Figure 2A). Most clusters, particularly neuronal clusters, ex-

hibited clear regional preference (Figures 2A and 2B; Video

S1). For cortical cells, most glutamatergic excitatory neurons ex-

hibited both regional and layer-specific enrichment (Figure S6A).

Among the glutamatergic neurons identified in snRNA-seq, 31

clusters were highly overlapped with the published dataset of

the mouse cerebral cortex28 (Figure S6B; STAR Methods) and

were categorized into 8 layer-specific cortical cell groups

(Figures 2C–2F). Their spatial distribution is aligned with marker

gene expression (Figure S6C). Furthermore, we identified gluta-

matergic neurons enriched in specific cortical areas (Figures 2G,

2H, and S6D), such as one cluster (L5/6_NP_GLU_61) in the ret-

rosplenial area (RSP) and four layer-6 clusters (L6_N_GLU_63/

65/66/69) in the infralimbic area (ILA) (Figures 2H, 2I, and S6E).

Differential gene expression analysis of ILA-enriched L6_N_

GLU clusters versus other L6_N_GLU clusters, combined

with enrichment analysis of 123 brain-disease-related gene

sets,30–32 revealed high expression of depression-associated

genes in ILA-enriched clusters (Figures S6F and S6G), indicating

potential involvement of ILA layer-6 neurons in mood disorders.

For GABAergic inhibitory neurons within the cortex, 37 clus-

ters were summarized to 7 groups according to the expression

of Lamp5, Sncg,Reln, Vip, Pvalb, Sst, andChodl genes, marking

key GABAergic neuron subtypes28,34 (Figure S6H). Among these

GABAergic neurons, Pvalb and Sst neurons were dominant in

the mouse cortex (Figures S6I–S6K). Most GABAergic neurons

exhibited less layer preference compared with glutamatergic

neurons (Figure S6L). However, several clusters exhibited layer

enrichment; for example, Lamp5 neurons enriched in superficial

layers and Sst neurons in deeper layers. Regional preferences

were also identified (Figure S6M). For instance, Sst and Reln

neurons were enriched in the ILA area (Figure S6N), in line with

the previous report.35 Pvalb neurons had relatively lower den-

sities in most regions associated with lateral and medial subnet-

works, such as agranular insular posterior (AIp), but were more

abundant in the RSP (Figures S6O–S6Q). Among Pvalb clusters,

three (TE_N_GABA_PVALB_115/116/118) showed this pattern.

Although non-neuronal cells were more broadly distributed

compared with neurons, some exhibited region-enriched pat-

terns (Figures 1B, 2A, and S7A–S7C; Table S3). For example,

among 7 astrocyte clusters, ASC_281 (Agt+) enriched in non-

telencephalon areas, whereas ASC_283, identified as Bergmann

glial36 due to Gdf10 expression, was specific to the cerebellum3
igh resolution

ircles mark cell boundaries in cell segmentation.

ch assigned a unique name and color. Bar plot indicates the fraction of cells

ex; HIP, hippocampus; CNU, cerebral nuclei; TH, thalamus; HY, hypothalamus;

ns in Table S10). Dot plot illustrates the expression of neurotransmitter-/neu-

tamatergic; Gad1 and Slc6a1, GABAergic; Hdc, histaminergic; Slc6a3, dopa-

nergic; Slc6a2, noradrenergic; Ucn, urocortin; Chat, cholinergic).

) Sections were selected every 1 mm in mouse #1 (section no. and bregma

red boxes in (D). Boundaries of cortical layer 4 (E) and locus coeruleus (F) are

ed and noradrenergic neurons in pink. Scale bars, 1 mm, 500 mm, and 50 mm.

https://mouse.digital-brain.cn/spatial-omics
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(Figure S7D). In addition, we compared the spatial distribution of

olfactory ensheathing cells (OECs) and astrocytes in the olfac-

tory bulb subregions (Figures 2J and 2K). OECs, sharing partial

molecular signatures with astrocytes (Figures S7E and S7F),

localized in the outer layers of the olfactory bulb.37,38We demon-

strated that two OEC clusters (OEC_275/276) were primarily

localized in the accessory olfactory bulb (AOB) and main olfac-

tory bulb (MOB). Meanwhile, an astrocyte cluster, ASC_279,

was enriched in the MOB (Figure 2J). In the MOB and surround-

ing areas, ASC_279 was enriched in the glomerular layer,

whereas OEC_276 was situated in the olfactory nerve layer.

OEC_275, by contrast, was positioned at the boundary between

these two layers (Figure 2K). Molecular profiles of these clusters

exhibited differences, withKctd12 highly expressed inOEC_275,

Clca3a1 in OEC_276, and Islr in ASC_279 (Figure S7G). Further

analysis revealed that ASC_279 exhibited stronger co-localiza-

tion with two neuronal clusters (OB_N_GABA_174 and OB_

N_GLU_177, Figure S7H and S7I), whereas OEC_275/276 did

not, indicating closer interaction with OB neurons compared

with OECs.

To investigate relationships between cell types and neurolog-

ical diseases, we performed enrichment analysis across cell

subclasses and clusters using marker genes and gene sets

related to 123 brain diseases30–32 (Figures S8A and S8B). In

particular, we focused on Parkinson’s disease, which is charac-

terized by the progressive loss of dopaminergic neurons in the

substantia nigra (SN), leading to dopamine reduction in the

brain.39,40 Our analysis revealed differences in proportions of

two dopaminergic clusters (DIME_N_DOP_224/225) in the SN

(Figure S8C). Moreover, these two clusters exhibited varying

levels of enrichment within the Parkinson’s disease-related

gene set, with DIME_N_DOP_225 exhibiting higher expression

of Parkinson’s disease-related genes (Figure S8D). We found

that DIME_N_DOP_225 was primarily localized in the SN,

whereas DIME_N_DOP_224 was more diffusely distributed

(Figures S8E and S8F). These distribution preferences may be

linked to distinct brain functions and neurological diseases,

providing a valuable resource for advancing our understanding

of brain organization and guiding the development of targeted

therapeutic strategies.

Distribution of the neuronal subtypes and region-
enriched genes in the brainstem
The brainstem is vital for various physiological functions.41,42

Combining snRNA-seq and Stereo-seq data, we identified 23
Figure 2. Brain-wide distribution of cell clusters in the mouse brain

(A) Heatmap showing the distribution (Z score-scaled cell ratios) of 308 cell clus

(B) Spatial distribution of 8 representative cell clusters in the 3D mouse brain.

(C) Heatmap showing the scaled (Z score) densities of glutamatergic neurons ac

(D–F) Glutamatergic neuron distribution on coronal section T73, colored by cell clu

region in (D), with depth distribution. (F) Distribution of 8 glutamatergic groups.

(G) Density of 8 glutamatergic groups across cortical areas organized into 3 su

represented as mean ± SD.

(H) Heatmap of the scaled (Z score) densities of glutamatergic neurons across c

(I) Distribution of L5/6_NP_GLU_61 and L6_N_GLU_65 on flatmap (left) and coro

(J and K) Distribution and marker gene expression of OECs and astrocytes (OEC

views. (K) Merged view of rectangle regions from (J).

See also Figures S6–S8, Table S3, and Video S1.
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neuronal cell clusters and found regional preferences for several

cell types (Figure 3A). For example, RH_N_GABA_257,

RH_N_GLU_210, RH_N_GLU_240, and RH_N_GLU_252 were

restricted in the nucleus of the trapezoid body (NTB), the para-

brachial nucleus (PB), the principal sensory nucleus of the tri-

geminal (PSV), and the cochlear nucleus (CN), respectively (Fig-

ure S9A). Interestingly, NTB andCNwere auditory nuclei, and the

corresponding cell clusters, RH_N_GABA_257 and RH_N_GLU_

252, were both positive for parvalbumin (Figure S9B). In contrast,

non-neuronal cells did not show such regional distribution in the

brainstem (Figure 2A).

Motor and neuromodulatory neurons were enriched in the

brainstem. Consistently, cholinergic (RH_N_CHO_233), norepi-

nephrinergic (RH_N_NOR_231), and serotonergic (RH_N_SER_

229) neurons were enriched in the motor nuclei, the locus ceru-

leus (LC), and the raphe nuclei, respectively (Figures 3A and 3B;

Video S2). Understanding whether diverse motor nuclei in the

brainstem possess distinct molecular signatures has been chal-

lenging due to their small size, diffuse boundaries, and the lack of

transcriptomic data uncontaminated by surrounding regions.

Using Stereo-seq data, we revealed high-level heterogeneity in

the motor nuclei of the trigeminal (V), facial motor nucleus (VII),

hypoglossal nucleus (XII), and dorsal motor nucleus of the vagus

nerve (DMX) (Figures 3C and S9C). For example, genes such as

Nrgn, Ttr, Gal, and Dag1 were enriched in specific motor nuclei

(Figure 3D). Gene Ontology (GO) analysis also revealed func-

tional differences across these nuclei (Figure S9D). Additionally,

serotonergic neurons in different raphe nuclei also exhibited

selective gene expression patterns (Figures 3E and 3F), high-

lighting gene expression diversity for cholinergic and seroto-

nergic neurons with distinct spatial enrichment.

Region-enriched genes are critical for the physiological

function of the brainstem. We further identified 155 genes

(STAR Methods) highly expressed in 22 brainstem nuclei

(Figures 3G and S9E). For example, Pth2 and Sst were enriched

in medial paralemniscal nucleus (MPL), as previously reported.43

These genesmainly encode enzymes, receptor-related proteins,

and neuropeptides (Figure S9F; Table S4). Notably, Dbh, which

synthesizes norepinephrine, was highly expressed in the LC,

whereasDdc and Tph2, involved in serotonin synthesis, were en-

riched in the RAmb. Enzyme-related genes such as Plpp4,

Dpysl3, and Achewere concentrated in the DMX. Several neuro-

peptides (Nmb, Nps, Pth2, Rln3, and Ucn) exhibited regional

enrichment in the brainstem (Video S3). In addition, some genes

exhibited subregional enrichment, such as Barhl1 in the dorsal
ters across 66 brain areas.

ross isocortical layers.

sters. Scale bar, 500 mm. (D) Merged view. (E) Zoomed-in view of the rectangle

bnetworks.33 Error bars were estimated across all cortical sections. Data are

ortical areas.

nal sections (right) of T85 and T43. Scale bar, 1 mm.

_275, OEC_276, and ASC_279) individually. Scale bar, 500 mm. (J) Separated
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CN and Hhip in the ventral CN (Figure S9G). Together, our anal-

ysis provided a map for the 23 neuronal cell clusters and re-

vealed many region- or subregion-enriched genes in the

brainstem.

Transcriptional-profile-based brain region parcellation
and spatial distribution of gene modules
Traditional brain parcellation relied on cytoarchitecture and func-

tion, overlooking transcriptional properties. With the brain-wide

spatial transcriptomic map, we examined whether brain region

parcellation could be optimized. Specifically, we performed

BayesSpace44 clustering on the bin100 data (100 3 100 DNB

spots, dimension size: 50 mm 3 50 mm; STAR Methods) derived

from 123 brain sections of mouse #1 brain (Figure 4A). We found

many bin100 clusters exhibited brain-region-selective distribu-

tion (Figure S10A). Accordingly, gene-based brain region parcel-

lation was performed based on region-selective clusters. We

finally yielded 148 brain regions (Figure S11; STAR Methods),

showing a consistency with ABA CCFv3 in 14 representative

brain sections (Figures 4B and S10B). This was exemplified in

section T74, showing that regions defined by transcriptomic

data, like the cortex, hippocampus, thalamus, and caudate puta-

men (CP) in the striatum, exhibited high overlap with that of ABA

CCFv3 (Figures 4C–4E).

Moreover, our gene-based brain region parcellation revealed

that 8 brain regions could further be divided into finer subregions.

For example, glomerular layer (MOBgl), granule layer (MOBgr) in

MOB, and CP could be further separated into lateral and medial

area, whereas the nucleus accumbens (ACB) and lateral hypotha-

lamic area (LHA) possessed dorsal and ventral subregions. CA3

pyramidal layer (CA3sp) contained two subregions that are prox-

imal or distal to dentate gyrus (DG). Besides, inferior colliculus

(IC) had five layers arranged along its long axis; pontine central

gray (PCG) can be divided into 2 segmentations (Figures 4F and

S12A–S12H). We found that cortical subregions could be classi-

fied by spatial clustering of each single cortical layer; for example,

we distinguished the primary cortical region from the associative

region in layer 2/3. We also identified 6 subregions in the associa-

tive cortex (AId, AIv, AssoD, ORBl, ORBm, and ORBvl) and 2 sub-

layers in the primary cortex (L2 and L3) (Figure S12I). These were

further confirmed by the data showing that subregions expressed

distinct molecular markers. Marker genes for each brain region

were detailed in Table S5. The reproducibility of parcellation was

assessed between two mice. Co-clustering revealed consistent

spatial patterns in bin100 clusters (Figure S10C), with highly corre-

lated gene expression profiles across sections (Figure S10D).

These results showed that brain region parcellation could be

achieved based on spatial transcriptomic features.
Figure 3. Distribution of neuronal cell clusters and genes in the brains

(A) Heatmap showing the densities of different cell types in the brainstem nuclei.

(B) Spatial distribution of region-selective cell clusters (red) and marker genes (b

(C) Heatmap showing the expression of genes enriched in 4 motor nuclei.

(D) Expression of 4 representative genes in RH_N_CHO_233 cells in the 4 motor

(E) Heatmap showing the selective expression of genes in 3 raphe nuclei.

(F) Expression of 3 representative genes in RH_N_SER_229 cells in the 3 raphe n

(G) Heatmap showing the 155 genes with regional preference in the brainstem n

See also Figures S9, Table S4, and Videos S2 and S3.
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To explore how co-expressed genes in different brain regions

contribute to their functions, we calculated gene modules,

groups of genes with similar spatial patterns, in 123 sections

frommouse #1 using Hotspot, a spatially varying gene identifica-

tion method,45 based on the bin100 data. A total of 2,632 region-

selective gene modules were identified (Table S5; STAR

Methods). For example, there were 50 modules detected in the

T74 section (Figure 4G), 34 of which exhibited regional selectivity

(Table S5). The distribution of 12 modules was shown as exam-

ples (Figure 4H). Specifically, gene module 22 (G22), G18, G5,

G10, G38, and G14 were enriched in different layers of the cor-

tex. G26 was enriched in the piriform cortex (PIR). Notably, G9

and G11 were enriched in the ammon’s horn (CA) and the DG

regions of the hippocampus, respectively. G25, with Pvalb ex-

hibiting the highest autocorrelation coefficient, was found in

the reticular nucleus (RT) of thalamus, consistent with the known

aggregation of mass Pvalb GABAergic neurons in RT.46,47 The

selective identity of gene modules for different brain regions or

subregions was also confirmed by the distribution patterns of

their representative genes (Figures 4I and S10E). GO analysis re-

vealed that genes within these modules were relevant to the

functions of their corresponding brain regions; for example,

genes in G2 (fiber tracts) are associated with axon ensheathment

and genes in G6 (hypothalamus) are associated with hormone

secretion (Figure S10F). Additionally, gene module analysis

also identified small nuclei not defined in CCFv3, like the MPL

(Figure 4J). The stability of gene module analysis was verified

by high correlation of spatial gene modules between two adja-

cent brain sections (Figures S10G–S10J).

Additionally, we examined gene module distribution in 3-

dimensional space, focusing on the thalamus across 42 sec-

tions. Using Hotspot,45 We found 9 gene modules in 3D within

the thalamus (Figure 4K). G1 was restricted to the medial and

lateral habenula nuclei (MH and LH), whereas others were found

across multiple sub-areas (Figures 4L and 4M). Module scores

and gene expression patterns indicated a subregional prefer-

ence of each module, suggesting a different transcriptomic pro-

file between the medial and lateral thalamus (Figure 4M).

Spatiotemporal profile of gene expression in the
developing brain
The formation of brain regions is governed by sets of TFs and

genes with distinct spatiotemporal profiles.48–50 Our analysis

above showed that some gene modules exhibited regional

selectivity, so we asked whether this is also the case during

development. Accordingly, we collected spatial whole-tran-

scriptome data of developing mouse brain with 7 sagittal sec-

tions from embryonic to adult stage (clustered and annotated
tem

lue). Scale bar, 1 mm.

nuclei. Scale bar, 200 mm.

uclei. Scale bar, 200 mm.

uclei.
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similarly to coronal sections) (Figures 5A and S13A), including

published data on embryonic day 12.5 (E12.5), E14.5, and

E16.519 and post-natal day 7 (P7)51 mice and newly generated

data for P1, P14, and P77 mice.

Among the region-selective gene modules mentioned in the

above section, we found 762 out of all 1,368 mouse TFs ex-

pressed in the 7 sagittal sections,53 indicating distinct gene regu-

lation networks (i.e., TF regulons) across different brain areas.

Using SCENIC,52 we identified 573 TF regulons with regional

enrichment across 13 major brain regions of the adult stage (Fig-

ure S13B) and a total of 998 TF regulons for the 7 developmental

stages. Furthermore, we applied Hotspot45 on each section, re-

sulting in a total of 150 clusters, each of which contains a group

of spatially co-localized TF regulons (Figure 5B; Table S6). GO

enrichment analysis found that regulons within each cluster

were related to distinct biological processes (Figure 5B), and

144 out of 150 clusters were found localized in major brain

regions (Figure 5C), suggesting that these spatial co-localized

regulons could work together during brain region development.

Next, we asked how the activities, as defined by an expres-

sion-based metric from SCENIC,52 of these region-selective TF

regulons change during development. In the cortex, 68 TF regu-

lons exhibited higher activity during embryonic stages, whereas

76 exhibited higher activity in post-natal stages (Figure 5D). In

the striatum, we found that 52 TF regulons were more abundant

in early periods whereas 56 were abundant in later periods (Fig-

ure 5D).We also found a similar pattern for 77 and 65 TF regulons

in the thalamus and cerebellum, respectively (Figure 5D). For

example, TFAP2C (names all in capital letters stand for TF regu-

lons) was found to be abundant in the embryonic cortex and

developing olfactory area (Figure 5E), where the core gene

Tfap2c was considered a key TF determining cortex radial glia

fate in a recent study.54 In the striatum, PAX9 was enriched in

embryonic age, whereas FOXO1 was gradually enriched during

post-natal development (Figure 5E), consistent with previous re-

ports in the developing mouse striatum.55 As for individual

genes, 33 genes were found to maintain a region-selectivity in

the cortex, striatum, or thalamus across all 7 stages, whereas

385 genes showed brain-regional selectivity only at a certain

stage (Figure S13C). The comprehensive dynamics of region-se-

lective regulons and genes was summarized in Table S6.
Figure 4. Spatial gene profiles of adult mouse brain

(A–C) Brain region parcellation using Stereo-seq bin100 clustering. (A) Overview

representative sections (right). (B) Visualization of 14 representative sections (s

Separated views of regions in T74 section.

(D and E) Quantification of Jaccard similarity between molecularly defined brain

subregions within CTX and HIP.

(F) Subregions of 4 representative brain regions (MOBgr, ACB, CA3sp, and IC). The

of lateral and medial subregion of MOBgr. Black lines indicate CCFv3 boundarie

(G) Heatmap showing the genes with significant spatial autocorrelation grouped

modules highlighted.

(H and I) Gene modules with regional preference. Scale bar, 2 mm. (H) Module s

(J) Gene module score distribution in the MPL and expression of the representat

(K) Heatmap showing the genes with significant spatial autocorrelation grouped

(L) Visualization of 9 gene modules associated with thalamic subregions in 3D (u

(M) Genemodule selectivity in the 3D thalamus is presented with enrichment score

with thalamic subregions ordered along the medial-lateral axis, indicated by the

See also Figures S10–S12, Tables S5 and S11, and Videos S2 and S3.
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The cortex was organized as both laminar and columnar

structures during development, which is determined by tran-

scriptional programs.56 We examined transcriptional regulation

across the dorsal-ventral axis or rostral-caudal axis during

development using Spateo.57 In analysis of the dorsal-ventral

axis, we found 206 regulons showing laminar-related distribution

(Table S6). For example, ATF4 gradually shifted from the

superficial layer to the middle layer (Figure 5F). TBR1 shifted

from the superficial layer to the deep layer, in line with the prior

maturation of layer-6 cortical neurons.58,59 NR2E1 shifted from

the deep layer to the superficial layer (Figure 5F), which aligns

well with the important function of Nr2e1 in neural stem cell

proliferation60,61 and its crucial role for the intactness of the

supragranular layer.62 As for the rostral-caudal axis, we found

22 TFs exhibiting spatial increment or decrement gradient

(Figure S13D; Table S6). Lhx2 showed a similar increment along

the rostral-caudal axis asNfix in embryonic stages (E12.5, E14.5,

and E16.5), but the pattern was weakened in post-natal

stages (P1, P7, P14, and P77) (Figure 5G). This seems in line

with previous reports showing the gradient distribution of Lhx2

at E15.5 stage and its crucial role in barrel column formation,63,64

a processmostly in embryonic stages.65 We also found 134 non-

TF genes exhibiting rostral-caudal gradients (Figures 5G and

S13D; Table S6). These gradient distributions of TFs and genes

could be involved in defining the cortical organization patterns.

Next, we examined the kinetics of several neural developmental

events using a gene set enrichment scoring method (STAR

Methods). Our analysis showed that three major neurodevelop-

mental event-associated gene sets exhibited the dynamic change

across 9 brain regions and 7 stages (Figures S13E–S13G). Specif-

ically, genes involved in gliogenesis and synapse maturation

showed higher enrichment in post-natal stages, whereas genes

associated with neuroblast proliferation were enriched in embry-

onic stages. The genes involved in gliogenesis started to show

enrichment around birth and quickly reached peak level at P14.

Interestingly, we found higher levels of gliogenesis-related gene

enrichment in the fiber tracts and hindbrain as compared with

others, consistent with the recent report in human brain gliogene-

sis.66 In addition, genes involved in synapse maturation were

gradually enriched at the very beginning of embryonic stages

and reached steady state after birth (Figure S13G).
of 123 annotated sections from mouse #1 brain (left) and 3D illustration of 14

ection no. and bregma coordinates shown, unit mm). Scale bar, 1 mm. (C)

regions and ABA CCFv3. (D) For large regions (CTX, TH, HIP, and CP). (E) For

dotted box shows a 3D illustration (upper) and feature gene expression (lower)

s. Scale bar, 500 mm.

into different gene modules in T74 section, with 20 spatially selective gene

core distribution. (I) Expression of representative genes in modules.

ive Pth2 gene. Scale bar, 1 mm.

into different gene modules in the whole thalamus.

pper). Module G1 highlighted (bottom).

s in subregions (left) and a heatmap of representative gene expressions (right),

vertical arrow.
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Spatiotemporal profile of lncRNA in the brain
In the mammalian genome, less than 3% of the genome is tran-

scribed into protein-coding transcripts, whereas the majority are

ncRNAs, with some exceeding 200 bp, termed as lncRNAs).67

Although previous studies have characterized some lncRNAs

in the mouse brain,67,68 a comprehensive analysis of their

spatial distribution was lacking. Among 9,580 known mouse

lncRNAs, we detected 5,834 lncRNAs in our adult mouse brain

Stereo-seq dataset, with 513 lncRNAs showing regional enrich-

ment (Figure 6A; Table S7; STAR Methods). For examples,

Gm12688, Gm33651, 6330420H09Rik, Gm20649, Hotairm1,

and Gm14033 exhibited preferential expression in olfactory

areas, striatum, hippocampus, hypothalamus, medulla, and cer-

ebellum, respectively (Figures 6B and 6C; Video S4). Moreover,

37 lncRNAs showed layer-enriched distribution in the cortex

(Figure 6D), with Gm26870, A830009L08Rik, 1700047F07Rik,

Gm11730, and Gm28928 enriched in L1, L2/3, L4, L5, and L6,

respectively (Figure 6E).

Some lncRNAs are known to be crucial for brain develop-

ment.69–71 To identify those potentially involved in neurodevel-

opment, we performed Hotspot analysis on Stereo-seq data

from E12.5 to P77, revealing 184 gene modules, 160 of which

showed brain region preference (Table S8), with P14 data

presented as an example (Figures S14A and S14B). We then

identified 216 lncRNAs with spatiotemporal dynamics (60 for

cortex, 73 for striatum, 30 for thalamus, and 95 for cerebellum)

across development stages (Figures S14C and S14D). For

example, A930024E05Rikwas highly abundant in the embryonic

cortex,72 whereas AC129186.1 peaked in the post-natal period

(Figures 6F and 6G). Several region-enriched lncRNAs, such as

Gm11266 (cortex),73 D430036J16Rik (striatum),2 Gm2694 (cere-

bellum),74,75Gm15577 (cerebellum),76 were also reported in pre-

vious studies. However, most lncRNA expression patterns

remain unknown. Interestingly, some cerebellum-enriched

lncRNAs, such as Gm2694 and Lhx1os, show expression pat-

terns that coincide with cerebellar development starting

from E16.5 (Figure S14D). Gm2694 has been shown to regulate

synaptic stability in the cerebellum, indicating its potential

role in cerebellar development.74,75 These findings suggest

that lncRNAs exhibiting spatiotemporal expression patterns

may play important roles in brain morphogenesis during

development.

Genes within the same modules are often functionally

related.77 To predict the potential roles of lncRNAs in develop-

ment, we performed GO functional enrichment analysis on
Figure 5. Spatial transcriptional profile of developmental mouse brain

(A) Clusters generated by unsupervised spatial constrained clustering (SCC) of s

(B) Heatmap showing TF regulons with high spatial autocorrelation grouped into

(C) Spatial distribution of 6 region-selective TF regulon clusters in P14 sagittal br

(D) Heatmap illustrating the TF regulon activities in the developing cortex, striatu

SCENIC.52

(E) Visualization of regulon activities of 8 TF regulons in the developing cortex, st

(F) Top: sketch of the orthogonal visualization for cortical laminar-columnar structu

along the dorsal-ventral axis in the developmental cortex.

(G) Visualization of dynamic changes of genes with rostral-caudal gradient in d

demonstrated using an auxiliary scatterplot, with black dots indicating the mean

linear regression of these points. Scale bar, 1 mm.

See also Figures S13 and Table S6.
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brain-region-selective gene modules. Early-stage modules

(E12.5–E16.5) were primarily associated with neuronal develop-

ment (Figures 6H, 6I, S14E, and S14F), suggesting that lncRNAs

in these modules may be involved in brain development. At later

stages (P1–P77), modules became enriched with genes related

to brain-region-specific functions. For example, in the striatum,

post-natal modules (including 36 lncRNAs) were linked to the

dopamine receptor signaling pathway (Figures 6H and 6I),

whereas in the cortex, modules (including 15 lncRNAs) were

associated with synapse maturation (Figure S14E). In the cere-

bellum, post-natal modules (including 46 lncRNAs) were linked

to the GO term of parallel fiber to Purkinje cell synapse (Fig-

ure S14F). These findings suggest that lncRNAs may regulate

brain-region-specific functions during later stages. Overall,

lncRNAs with spatiotemporal expression patterns likely

contribute to both early embryonic neural development and later

neural function, though further experimental studies are needed

to confirm their roles.

Recent studies indicate that lncRNA transcription is linked to

nearby gene transcription, sharing promoter regions.78–80 Diver-

gent lncRNAs transcribe from the same promoter as adjacent

mRNAs but on opposite strands, whereas convergent lncRNAs

transcribe toward adjacent mRNAs on opposite strands, often

overlapping.81 Although expression patterns of these lncRNA-

mRNA pairs have been studied in cells and tissues,78,82 their

spatial brain expression remains largely unknown. To investigate

this, we categorized lncRNA-mRNA pairs into divergent

(2,503 pairs) and convergent (4,480 pairs) groups based on the

genomic distance between their transcription start sites (STAR

Methods). In our spatial transcriptomic analysis of the adult

mouse brain, we identified 3,049 lncRNA-mRNA gene pairs,

with 1,019 divergent and 2,030 convergent pairs (Table S9).

We discovered that divergent pairs had a significantly higher

expression correlation than convergent pairs across different

brain regions (Figure 6J). Notably, 18 convergent pairs exhibited

antagonistic expression patterns, such as the Airn-Mas1

pair, which showed negative correlation in various regions

(Figures 6K and 6L). Similarly, the Gm45441-Grin2d pair dis-

played opposing expression levels (Figures S14G and S14H).

Further analysis revealed that 103 convergent gene pairs had

distinct antagonistic expression in different cell types. For

instance, Gm13944 was more highly expressed than Zfp385b

in Purkinje cells but less in granule cells (Figures 6M and S14I).

Stereo-seq data confirmed these spatial distribution differences,

with Gm13944 highly expressed in the Purkinje cell layer and
ections across E12.5–P77. Scale bar, 1 mm.

clusters (e.g., C3 and C6), and correlated to distinct GO biological processes.

ain section as examples. Scale bar, 1 mm.

m, thalamus, and cerebellum. Regulon activity was calculated using AUCell-

riatum, thalamus, and cerebellum. Scale bar, 1 mm.

re. Bottom: heatmap showing the spatial enrichment of 4 example TF regulons

eveloping cortices. The gradient distribution of each gene at each stage is

expression on each relative rostral-caudal position, and a red line showing the
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Zfp385b in the granule cell layer of the cerebellum (Figures 6N

and 6O). Among these 103 gene pairs, 18 gene pairs also ex-

hibited antagonistic expression trends in different brain regions,

as mentioned above (Figure S14J). Our findings provide valuable

insights into the spatial expression patterns of lncRNA-mRNA

pairs in the mouse brain, highlighting their potential regulatory

functions.

DISCUSSION

The mammalian brain possesses a remarkably intricate organi-

zation. In this study, we constructed a single-cell-resolution

spatial transcriptomic atlas of the mouse brain with genome-

wide coverage of most genes in the genome, including lncRNAs.

By leveraging the spatial profile of the whole transcriptome, we

precisely delineated brain regions with the spatial clustering

method across the whole brain, including several novel

subregions. Our atlas provided a spatiotemporal map of gene

expression from embryonic to adult stages, revealing numerous

TF regulons and lncRNAswith distinct spatiotemporal dynamics.

These findings lay a foundation for understanding the complex

interactions among diverse cell types and the neural mechanism

underlying animal behavior.

Brain-wide distribution of diverse cell types
Our study extends the understanding of the spatial organization

of diverse cell types in the mouse brain, revealing their distinct

laminar and regional distribution patterns that align with brain

function and disease relevance. For instance, glutamatergic

neurons exhibited laminar distribution in the cortex, while certain

clusters were enriched in specific cortical regions. In the ILA, the

area related in mood and affective disorder,83 we identified

neuron clusters enriched with depression-related expression

profiles, suggesting a potential role in mood regulation. A recent

study of the macaque cortex highlighted variations in cellular

configurations correlated with the hierarchical structure of the vi-

sual system.84 This supports the idea that the enrichment of cell

types in cortical regions plays a critical role in both brain function

and diseases.

In the brainstem, we observed nucleus-enriched clusters,

such as glycinergic interneurons in the NTB as documented85
Figure 6. Spatial profile of lncRNA in mouse brain

(A) Heatmap of region-enriched lncRNAs in 14 brain regions.

(B and C) Whole-brain distribution (upper) and spatial expression (lower) of 6 lncR

Scale bar, 500 mm.

(D) Expression heatmap of 37 cortical-layer-enriched lncRNAs. Examples in (E) m

(E) Spatial distribution of 5 lncRNAs in coronal section T75. Scale bar, 500 mm.

(F) Dynamic expression changes of lncRNAs in developing cortex.

(G) Spatiotemporal distribution of cortical-enriched lncRNAs across developmen

(H) Distribution of striatum-selective modules and their lncRNA expression acros

(I) GO enrichment pathways of striatum-selective modules across development

(J) Pearson correlation distribution (right) of convergent and divergent gene pairs

(K) Expression levels of Airn-Mas1 convergent gene pair in different brain region

(L) Spatial distribution of Airn-Mas1 pair in 16 sections. Scale bar, 2 mm.

(M) Expression of Gm13944-Zfp385b pair in cerebellar cell clusters of granule ce

(N) Distribution of Gm13944-Zfp385b convergent gene pairs in cell types of Purk

(O) Expression of Gm13944 (red) and Zfp385b (green) in Purkinje (PU) and granu

See also Figures S14, Tables S7, S8, and S9, and Video S4.
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and glutamatergic neurons in CN. Notably, both clusters were

Pvalb-positive. Pvalb interneurons are widely distributed in the

auditory system, are well-tuned for sound frequency,86 and

enhance temporal coding in the auditory pathway.87 The distinct

distribution of glutamatergic and GABAergic Pvalb neurons

across auditory nuclei suggests their specialized roles in audi-

tory information processing. Together, these findings under-

score the importance of our transcriptomic atlas for annotating

cell types and elucidating their roles in brain function and

pathology.

Brain-region-enriched modules and gene expression
Although mRNA distribution in the brain has been examined by

ISH,2,88 these data were collected in different animals, which

often confounds analysis of gene expression patterns across

thewhole brain.With the 123 coronal brain sections from a single

mouse brain, our atlas provided the opportunity for integrated

analysis, especially in a 3D manner. We comprehensively identi-

fied brain region-selective genes, especially within brain regions

such as the thalamus and brainstem nucleus.

Besides, whole-transcriptome coverage has enabled us to

profile a large number of less-studied lncRNAs. Our findings

extended the existing knowledge regarding brain-regional or

subregional enrichment of numerous lncRNAs, suggesting that

these lncRNAs may be crucial for the formation of brain regions.

For instance, the antagonistic expression of convergent gene

pairs such as Airn and Mas1 suggests potential functional

interference. Furthermore, we identified lncRNAs with spatio-

temporal dynamics during brain development. Some of them

have been studied previously. For example, A930024E05Rik,

highly expressed in the developing cortex, is essential for cortical

projection neuron differentiation and migration,72 whereas

Gm2694, associated with cerebellar development, influences

synapse density and motor function.74,75 The identification of

lncRNAs with distinct spatiotemporal dynamics paved the way

for further analysis of their functional roles.

Moreover, spatial transcriptomic data enabled the identifica-

tion of molecular differences in neurons across small nuclei,

such as cholinergic neurons in distinct motor nuclei of the brain-

stem, which is difficult to achieve with single-cell sequencing.

For instance, hypoglossal nuclei genes were linked to diverse
NAs in brain sections (section no. and bregma coordinates shown, unit mm).

arked in red.

t stages. Scale bar, 1 mm.

s development stages. Scale bar, 1 mm.

stages.

(cartoon shown on left).

s.

lls (CB_GRC_GLU_261) and Purkinje cell (CB_PKC_GABA_262).

inje (red) and granule (green) cells in section T114.

le cell layer (GR), respectively. Scale bar, 2 mm.
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physiological processes, including heart contraction and im-

mune response, aligning with studies implicating this region in

perinatal lung inflammation89 and sudden unexplained perinatal

death.90 The identification of region-selective genes would facil-

itate our understanding of the function of these small nuclei.

Parcellation of brain areas based on
transcriptomic profile
Traditionally, the boundaries of brain regions have been defined

based on cytoarchitecture and function.1,91,92 Our analysis

defined the boundaries of 148 mouse brain areas based on

spatial transcriptomic properties, largely consistent with ABA

CCFv3.27 This supports the transcriptomic basis of brain parcel-

lation, consistent with a recent study.12 Given that our transcrip-

tomic data have high spatial resolution, our analysis allowed for a

more detailed division of certain brain regions, such as the CP

further divided into CPl and CPm, and ACB into ACBd and

ACBv, identifying subdivisions not present in the ABA CCFv3.

However, the functional relevance of these finer parcellations re-

mains to be determined. Transcriptome-based parcellation is

likely to enable studies of other less-studied species, where

common parcellation frameworks of brains or other organs are

not available.

Spatiotemporal analysis of transcriptome for the
developing mouse brain
Our atlas also included a comprehensive spatiotemporal map of

gene expression from embryonic to adult stage, exceeding ex-

isting works that only covered limited genes or stages. This

has enabled the identification of 411 TFs with drastic spatiotem-

poral dynamics. For example, TFAP2C is enriched in the cortex

during early development and involved in regulating cell fate of

cortical radial glia.54 These TFs regulons likely play roles in brain

development, providing a valuable resource for neurodevelop-

mental research.

Further analysis showed that some of the TF regulons

exhibited delicate spatiotemporal patterns within specific brain

regions. In the developing cortex, we showed that 206 TF regu-

lons exhibited laminar enrichment along the dorsal-ventral axis,

and 156 genes showed gradient distribution on the rostral-

caudal axis. For example, Lhx2 displayed a rostral-caudal

gradient, consistent with a previous study.93 This gradient distri-

bution pattern was thought to be important for the formation of

sub-structures.56 Consistently, it has been shown that Lhx2 is

involved in barrel cortex formation.63 These TF regulons or genes

showing gradient distribution are likely crucial in shaping cortical

structure. Our study significantly extended previous findings56

and revealed hundreds of genes exhibiting rostral-caudal axis

gradient patterns across developmental stages, with their func-

tional roles yet to be experimentally explored.

In summary, our study has constructed a 3D single-cell-reso-

lution spatial transcriptome atlas for the mouse brain, mapping

the spatial distribution of genes and cell clusters. This revealed

region-selective cell clusters and genes, including lncRNAs,

and demonstrated precise brain area definitions based on tran-

scriptomic analysis. Moreover, we identified numerous TF regu-

lons with spatial and temporal selectivity. The construction of a

mouse brain atlas with single-cell resolution provides the basis
for further exploring the mechanisms underlying physiological

processes and development of the mouse brain.

Limitations
There are several limitations in this study. First, the limited capture

efficiency of gene transcripts in spatial transcriptomics could

result in lower detection of low-expressed genes, a common issue

for in situ-based spatial transcriptomicsmethods.4 Consequently,

we could have missed some genes with low-expression levels in

our spatial transcriptomic analysis. In fact, we identified 668 genes

for one cell on average, which was insufficient for precise cell

annotation. Therefore, we adopted Spatial-ID, an integrating

transfer learning and spatial embedding strategy,29 to perform

precise cell-type annotation for spatial transcriptomic datasets

based on our snRNA-seq data. Second, sparse brain sectioning

and sampling points limited the resolution and depth of devel-

oping brain analysis. Third, coronal sections at 100-mm intervals

in Stereo-seq may have missed small nuclei and disrupted brain

region continuity. Therefore, the sampling of the brain with smaller

spatial intervals, or even profiling all sections across the whole

brain, would be needed for a more precise 3D whole-brain sin-

gle-cell transcriptomic atlas in the future.
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31. Bellenguez, C., K€uç€ukali, F., Jansen, I.E., Kleineidam, L., Moreno-Grau, S.,

Amin, N., Naj, A.C., Campos-Martin, R., Grenier-Boley, B., Andrade, V.,

et al. (2022). New insights into the genetic etiology of Alzheimer’s disease

and related dementias. Nat. Genet. 54, 412–436. https://doi.org/10.1038/

s41588-022-01024-z.

32. Schizophrenia Working Group of the Psychiatric; Genomics Consortium

(2014). Biological insights from 108 schizophrenia-associated genetic

loci. Nature 511, 421–427. https://doi.org/10.1038/nature13595.

33. Zingg, B., Hintiryan, H., Gou, L., Song, M.Y., Bay, M., Bienkowski, M.S.,

Foster, N.N., Yamashita, S., Bowman, I., Toga, A.W., et al. (2014). Neural

networks of the mouse neocortex. Cell 156, 1096–1111. https://doi.org/

10.1016/j.cell.2014.02.023.
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80. Sjöstedt, E., Fagerberg, L., Hallström, B.M., H€aggmark, A., Mitsios, N.,

Nilsson, P., Pontén, F., Hökfelt, T., Uhlén, M., and Mulder, J. (2015).

Defining the Human Brain Proteome Using Transcriptomics and

Antibody-Based Profiling with a Focus on the Cerebral Cortex. PLoS

One 10, e0130028. https://doi.org/10.1371/journal.pone.0130028.

81. Schmitz, S.U., Grote, P., and Herrmann, B.G. (2016). Mechanisms of long

noncoding RNA function in development and disease. Cell. Mol. Life Sci.

73, 2491–2509. https://doi.org/10.1007/s00018-016-2174-5.

82. Hamazaki, N., Uesaka, M., Nakashima, K., Agata, K., and Imamura, T.

(2015). Gene activation-associated long noncoding RNAs function in

mouse preimplantation development. Development 142, 910–920.

https://doi.org/10.1242/dev.116996.

83. Alexander, L., Clarke, H.F., and Roberts, A.C. (2019). A focus on the func-

tions of area 25. Brain Sci. 9, 129. https://doi.org/10.3390/brainsci

9060129.

84. Chen, A., Sun, Y., Lei, Y., Li, C., Liao, S., Meng, J., Bai, Y., Liu, Z., Liang,

Z., Zhu, Z., et al. (2023). Single-cell spatial transcriptome reveals cell-

type organization in the macaque cortex. Cell 186, 3726–3743.e24.

https://doi.org/10.1016/j.cell.2023.06.009.

85. Bach, E.C., and Kandler, K. (2021). Author Correction: long-term poten-

tiation of glycinergic synapses by semi-natural stimulation patterns dur-

ing tonotopic map refinement. Sci. Rep. 11, 22022. https://doi.org/10.

1038/s41598-021-01422-z.

86. Moore, A.K., and Wehr, M. (2013). Parvalbumin-expressing inhibitory in-

terneurons in auditory cortex are well-tuned for frequency. J. Neurosci.

33, 13713–13723. https://doi.org/10.1523/JNEUROSCI.0663-13.2013.

87. Nocon, J.C., Gritton, H.J., James, N.M., Mount, R.A., Qu, Z., Han, X., and

Sen, K. (2023). Parvalbumin neurons enhance temporal coding and

reduce cortical noise in complex auditory scenes. Commun. Biol. 6,

751. https://doi.org/10.1038/s42003-023-05126-0.

88. Ng, L., Bernard, A., Lau, C., Overly, C.C., Dong, H.-W., Kuan, C., Pathak,

S., Sunkin, S.M., Dang, C., Bohland, J.W., et al. (2009). An anatomic gene

expression atlas of the adult mouse brain. Nat. Neurosci. 12, 356–362.

https://doi.org/10.1038/nn.2281.

89. Jafri, A., Belkadi, A., Zaidi, S.I.A., Getsy, P., Wilson, C.G., andMartin, R.J.

(2013). Lung inflammation induces IL-1b expression in hypoglossal neu-

rons in rat brainstem. Respir. Physiol. Neurobiol. 188, 21–28. https://doi.

org/10.1016/j.resp.2013.04.022.

90. Lavezzi, A.M., Corna, M., Mingrone, R., and Matturri, L. (2010). Study of

the human hypoglossal nucleus: normal development and morpho-func-

tional alterations in sudden unexplained late fetal and infant death. Brain

Dev. 32, 275–284. https://doi.org/10.1016/j.braindev.2009.05.006.

91. Swanson, L.W. (2012). Brain Architecture: Understanding the Basic

Plan (OUP).

92. Paxinos, G. (2014). The Rat Nervous System (Academic Press).
93. Chou, S.-J., Perez-Garcia, C.G., Kroll, T.T., and O’Leary, D.D.M. (2009).

Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors

generating cerebral cortex. Nat. Neurosci. 12, 1381–1389. https://doi.

org/10.1038/nn.2427.

94. Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S.,

Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021).

Integrated analysis of multimodal single-cell data. Cell 184, 3573–

3587.e29. https://doi.org/10.1016/j.cell.2021.04.048.

95. Liaw, A., and Wiener, M. (2002). Classification and Regression

by randomForest. R News 2, 18–22. https://CRAN.R-project.org/

doc/Rnews/.

96. Korsunsky, I., Millard, N., Fan, J., Slowikowski, K., Zhang, F., Wei, K.,

Baglaenko, Y., Brenner, M., Loh, P.-R., and Raychaudhuri, S. (2019).

Fast, sensitive and accurate integration of single-cell data with Harmony.

Nat. Methods 16, 1289–1296. https://doi.org/10.1038/s41592-019-

0619-0.

97. Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D.,

François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., et al.

(2019). Welcome to the Tidyverse. J. Open Source Software 4, 1686.

https://doi.org/10.21105/joss.01686.

98. Wickham, H. (2016). Data Analysis. In ggplot2 (Springer), pp. 189–201.

https://doi.org/10.1007/978-3-319-24277-4_9.

99. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,

Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). PyTorch: An

Imperative Style, High-Performance Deep Learning Library. Advances

in Neural Information Processing Systems 32 (NeurIPS 2019).

100. Fey, M., and Lenssen, J.E. (2019). Fast Graph Representation Learning

with PyTorch Geometric. Preprint at arXiv.

101. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P.,

Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al. (2020).

Array programming with NumPy. Nature 585, 357–362. https://doi.org/

10.1038/s41586-020-2649-2.

102. McKinney, W. (2017). Python for Data Analysis: Data Wrangling with

Pandas, NumPy, and IPython (O’Reilly Media, Inc.).

103. Wolf, F.A., Angerer, P., and Theis, F.J. (2018). SCANPY: large-scale sin-

gle-cell gene expression data analysis. Genome Biol. 19, 15. https://doi.

org/10.1186/s13059-017-1382-0.

104. Jing, Z., Zhu, Q., Li, L., Xie, Y., Wu, X., Fang, Q., Yang, B., Dai, B., Xu, X.,

Pan, H., et al. (2024). Spaco: A comprehensive tool for coloring spatial

data at single-cell resolution. Patterns (N Y) 5, 100915. https://doi.org/

10.1016/j.patter.2023.100915.

105. Yu, G., Wang, L.-G., Han, Y., and He, Q.-Y. (2012). clusterProfiler: an R

package for comparing biological themes among gene clusters. Omics

16, 284–287. https://doi.org/10.1089/omi.2011.0118.

106. Hunter, J.D. (2007).Matplotlib: A 2DGraphics Environment. Comput. Sci.

Eng. 9, 90–95. https://doi.org/10.1109/MCSE.2007.55.

107. Virshup, I., Rybakov, S., Theis, F.J., Angerer, P., and Wolf, F.A. (2024).

anndata: Access and store annotated data matrices. J. Open Source

Software 9, 4371. https://doi.org/10.21105/joss.04371.

108. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S.,

Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast uni-

versal RNA-seq aligner. Bioinformatics 29, 15–21. https://doi.org/10.

1093/bioinformatics/bts635.

109. Li, M., Liu, H., Li, M., Fang, S., Kang, Q., Zhang, J., Teng, F., Wang, D.,

Cen, W., Li, Z., et al. (2023). StereoCell enables high accuracy single

cell segmentation for spatial transcriptomic dataset. Prepirnt at.

bioRxiv. https://doi.org/10.1101/2023.02.28.530414.

110. Zhang, Z., Liu, Q., and Wang, Y. (2018). Road Extraction by Deep

Residual U-Net. IEEE Geosci. Remote Sens. Lett. 15, 749–753. https://

doi.org/10.1109/LGRS.2018.2802944.

111. Jing, Z., Yang, B., and Bai, Y. (2024). Protocol for enhancing visualization

clarity for categorical spatial datasets using Spaco. Star Protoc. 5,

103062. https://doi.org/10.1016/j.xpro.2024.103062.
Neuron 113, 1–20, July 9, 2025 19

https://doi.org/10.1371/journal.pbio.3001297
https://doi.org/10.1371/journal.pbio.3001297
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref76
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref76
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref76
https://doi.org/10.1016/j.devcel.2022.04.009
https://doi.org/10.1016/j.devcel.2022.04.009
https://doi.org/10.1073/pnas.1221904110
https://doi.org/10.1016/j.cell.2013.10.048
https://doi.org/10.1016/j.cell.2013.10.048
https://doi.org/10.1371/journal.pone.0130028
https://doi.org/10.1007/s00018-016-2174-5
https://doi.org/10.1242/dev.116996
https://doi.org/10.3390/brainsci<?show [?tjl=20mm]&tjlpc;[?tjl]?>9060129
https://doi.org/10.3390/brainsci<?show [?tjl=20mm]&tjlpc;[?tjl]?>9060129
https://doi.org/10.1016/j.cell.2023.06.009
https://doi.org/10.1038/s41598-021-01422-z
https://doi.org/10.1038/s41598-021-01422-z
https://doi.org/10.1523/JNEUROSCI.0663-13.2013
https://doi.org/10.1038/s42003-023-05126-0
https://doi.org/10.1038/nn.2281
https://doi.org/10.1016/j.resp.2013.04.022
https://doi.org/10.1016/j.resp.2013.04.022
https://doi.org/10.1016/j.braindev.2009.05.006
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref91
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref91
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref92
https://doi.org/10.1038/nn.2427
https://doi.org/10.1038/nn.2427
https://doi.org/10.1016/j.cell.2021.04.048
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.21105/joss.01686
https://doi.org/10.1007/978-3-319-24277-4_9
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref98
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref98
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref98
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref98
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref99
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref99
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref101
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref101
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1016/j.patter.2023.100915
https://doi.org/10.1016/j.patter.2023.100915
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.04371
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1101/2023.02.28.530414
https://doi.org/10.1109/LGRS.2018.2802944
https://doi.org/10.1109/LGRS.2018.2802944
https://doi.org/10.1016/j.xpro.2024.103062


ll
Article

Please cite this article in press as: Han et al., Single-cell spatial transcriptomic atlas of the whole mouse brain, Neuron (2025), https://doi.org/10.1016/
j.neuron.2025.02.015
112. Bakken, T.E., Hodge, R.D., Miller, J.A., Yao, Z., Nguyen, T.N.,

Aevermann, B., Barkan, E., Bertagnolli, D., Casper, T., Dee, N., et al.

(2018). Single-nucleus and single-cell transcriptomes compared in

matched cortical cell types. PLoS One 13, e0209648. https://doi.org/

10.1371/journal.pone.0209648.

113. Van de Sande, B., Flerin, C., Davie, K., De Waegeneer, M., Hulselmans,

G., Aibar, S., Seurinck, R., Saelens, W., Cannoodt, R., Rouchon, Q., et al.

(2020). A scalable SCENIC workflow for single-cell gene regulatory

network analysis. Nat. Protoc. 15, 2247–2276. https://doi.org/10.1038/

s41596-020-0336-2.

114. Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010).

Inferring regulatory networks from expression data using tree-based
20 Neuron 113, 1–20, July 9, 2025
methods. PLoS One 5, e12776. https://doi.org/10.1371/journal.pone.

0012776.

115. Qiu, X., Zhang, Y., Martin-Rufino, J.D., Weng, C., Hosseinzadeh, S.,

Yang, D., Pogson, A.N., Hein, M.Y., Hoi Joseph Min, K., Wang, L.,

et al. (2022). Mapping transcriptomic vector fields of single cells. Cell

185, 690–711.e45. https://doi.org/10.1016/j.cell.2021.12.045.

116. Fabian, P. (2011). Scikit-learn: Machine learning in Python. J. Mach.

Learn. Res. 12, 2825.

117. Zerbino, D.R., Achuthan, P., Akanni, W., Amode, M.R., Barrell, D., Bhai,

J., Billis, K., Cummins, C., Gall, A., Girón, C.G., et al. (2018). Ensembl

2018. Nucleic Acids Res. 46, D754–D761. https://doi.org/10.1093/nar/

gkx1098.

https://doi.org/10.1371/journal.pone.0209648
https://doi.org/10.1371/journal.pone.0209648
https://doi.org/10.1038/s41596-020-0336-2
https://doi.org/10.1038/s41596-020-0336-2
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1371/journal.pone.0012776
https://doi.org/10.1016/j.cell.2021.12.045
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref115
http://refhub.elsevier.com/S0896-6273(25)00133-3/sref115
https://doi.org/10.1093/nar/gkx1098
https://doi.org/10.1093/nar/gkx1098


ll
Article

Please cite this article in press as: Han et al., Single-cell spatial transcriptomic atlas of the whole mouse brain, Neuron (2025), https://doi.org/10.1016/
j.neuron.2025.02.015
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Tissue-Tek OCT Sakura Cat# 4583; RRID: SCR_026577

Methanol Sigma Cat# 34860; RRID: SCR_026579

ssDNA reagent Invitrogen Cat# Q10212; RRID: SCR_026580

20 3 SSC Ambion Cat# AM9770; RRID: SCR_026581

Pepsin Sigma Cat# P7000; RRID: SCR_026582

RNase inhibitor NEB Cat# M0314L; RRID: SCR_026583

Exonuclease I NEB Cat# M0293L; RRID: SCR_026584

KAPA HiFi Hotstart Ready Mix Roche Cat# KK2602; RRID: SCR_026585

Qubit dsDNA HS Assay Kit Invitrogen Cat# Q32854; RRID: SCR_026586

VAHTS DNA Clean Beads Vazyme Cat# N411-03; RRID: SCR_026588

Deposited data

Raw data of Stereo-seq and snRNA-

seq data

This study CNGB: CNP0003837 (https://db.cngb.org/

search/?q=CNP0003837)

Processed data of Stereo-seq and snRNA-

seq data

This study https://doi.org/10.12412/BSDC.

1699433096.20001

Public scRNA-seq data of mouse isocortex

and hippocampal formation

Yao et al.28 https://assets.nemoarchive.org/dat-

jb2f34y

Public scRNA-seq data of mouse nervous

system

Zeisel et al.3 http://mousebrain.org/adolescent

Public Stereo-seq data of E12.5, E14.5,

E16.5 mouse brain

Chen et al.19 https://db.cngb.org/stomics/mosta

Public Stereo-seq data of P7 mouse brain Cheng et al.51 https://db.cngb.org/stomics/datasets/

STDS0000139/data

Experimental models: Organisms/strains

Mouse: C57BL/6, Male Shanghai Lingchang

Biotechnology Co., Ltd.

N/A

Oligonucleotides

Stereo-seq-TSO: CTGCTGACGTA

CTGAGAGGC/rG//rG//iXNA_G/

Sangon N/A

cDNA PCR primer: CTGCTGACGTA

CTGAGAGGC

Sangon N/A

Stereo-seq-library-F: /5phos/CTGCT

GACGTACTGAGAGG*C*A

Sangon N/A

Stereo-seq-library-R: GAGACGTTCT

CGACTCAGCAGA

Sangon N/A

Stereo-seq-library-splint-oligo: GTACGT

CAGCAGGAGACGTTCTCG

Sangon N/A

Stereo-seq-read1: CTGCTGACGTAC

TGAGAGGCATGGCGACCTTATCAG

Sangon N/A

Stereo-seq-MDA-primer:TCTGCTGA

GTCGAGAACGTC

Sangon N/A

Stereo-seq-read2: GCCATGTCGTTCTG

TGAGCCAAGGAGTT

Sangon N/A

Software and algorithms

R v4.1 and greater R Foundation https://cran.r-project.org

Seurat v4.3.0 and greater Hao et al.94 https://satijalab.org/seurat

(Continued on next page)

Neuron 113, 1–20.e1–e9, July 9, 2025 e1

https://db.cngb.org/search/?q=CNP0003837
https://db.cngb.org/search/?q=CNP0003837
https://doi.org/10.12412/BSDC.1699433096.20001
https://doi.org/10.12412/BSDC.1699433096.20001
https://assets.nemoarchive.org/dat-jb2f34y
https://assets.nemoarchive.org/dat-jb2f34y
http://mousebrain.org/adolescent
https://db.cngb.org/stomics/mosta
https://db.cngb.org/stomics/datasets/STDS0000139/data
https://db.cngb.org/stomics/datasets/STDS0000139/data
https://cran.r-project.org
https://satijalab.org/seurat


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SeuratDisk v0.0.0.9020 Satija Lab https://github.com/mojaveazure/

seurat-disk

Spatial-ID Shen et al.29 https://github.com/

TencentAILabHealthcare/spatialID

randomForest v4.7-1.1 Liaw and Wiener95 https://cran.r-project.org/web/packages/

randomForest/index.html

harmony v0.1 Korsunsky et al.96 https://github.com/eddelbuettel/harmony

scrattch.hicat v1.0.0 Allen Institute https://github.com/AllenInstitute/

scrattch.hicat

tidyverse v1.3.2 Wickham et al.97 https://cran.r-project.org/web/packages/

tidyverse/index.html

ggplot2 v3.4.1 Wickham98 https://cran.r-project.org/web/packages/

ggplot2/index.html

python v3.8 and greater Python Software Foundation https://www.python.org

PyTorch v1.13.1 Paszke et al.99 https://pytorch.org

PyTorch Geometric v2.1.0 Fey and Lenssen100 https://pytorch-geometric.readthedocs.io

numpy v1.23.3 Harris et al.101 https://numpy.org

pandas v1.5.0 McKinney102 https://pandas.pydata.org

scanpy v1.9.1 Wolf et al.103 https://scanpy.readthedocs.io

Spateo v1.1.0 Qiu et al.57 https://github.com/aristoteleo/spateo-

release

Spaco v0.2.2 Jing et al.104 https://pypi.org/project/spaco-release/

SCENIC v1.1.2 Aibar et al.52 https://scenic.aertslab.org/

Hotspot v0.9.0 DeTomaso and Yosef45 https://yoseflab.github.io/Hotspot/

BayesSpace v1.5.1 Zhao et al.44 https://github.com/edward130603/

BayesSpace

clusterprofiler v3.2 Yu et al.105 https://bioconductor.org/packages/

release/bioc/html/clusterProfiler.html

matplotlib v3.8.3 Hunter106 https://matplotlib.org/

anndata v0.8.0 Virshup et al.107 https://anndata.readthedocs.io/

loompy v3.0 Linnarsson Lab https://github.com/linnarsson-lab/loompy
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals
Animal protocol was approved (NA-005-2022) by the Biomedical Research Ethics Committee of CAS Center for Excellence in Brain

Science and Intelligence Technology, Chinese Academy of Sciences. Animal care complied with the guideline of this committee.

Mouse brains were collected from P1, P14 and 11-week-old C57BL/6J male mice. Left hemispheres were collected from these

male mice for experiments.

METHOD DETAILS

Brain tissue collection for Stereo-seq
Male mice (C57BL/6J) were used for the experiments. Left hemispheres of male mice (P1, P14, 11 weeks) were collected. Animals

were deeply anesthetized with 3% isoflurane and quickly perfused with 4�C bubbled (with a mixture of 95%O2 and 5%CO2) artificial

cerebrospinal fluid (ACSF, containing (in mM) NaCl 126, KCl 2.5, NaH2PO4 1.25, MgCl2 2, CaCl2 2, NaHCO3 26, and glucose 10, 300–

305mOsm). After the dissection of the brain, the whole left hemisphere was obtained using themouse brain sections (RWD, #68708).

To prevent the formation of ice crystals during the tissue freezing, ACSF on the surface of brain blocks were dried with sterile gauze

and brain blocks were transferred into OCT (4583#, Sakura) for 3 times to adequately displace the remaining ACSF. Subsequently,

brain blockswere transferred to a self-mademetal mold filledwith OCT and quickly frozenwith dry ice. After the freezing, brain blocks

were stored in -80�C before the slicing. To minimize the RNA degradation, all solutions we used were prepared with diethyl
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pyrocarbonate (DEPC) (B501005-0005, Sangon Biotech) treated sterilized water (DEPC-H2O), and all instruments were washed with

DEPC-H2O and RNase Zap (AM9780, Invitrogen). And time spent for the whole tissue collection process was limited to 10 min.

Tissue cryosection, section flattening and RNA quality control
Cryosection was performed to obtain 10-mm sections for Stereo-seq at 100-mm interval in coronal coordinate. The sections were

carefully placed on pre-cooled Stereo-seq chips (-20�C) with a finger gently pressed under the chip to gradually raise section tem-

perature on Stereo-seq chip, which helps to reduce bubbles and wrinkles. RNA quality was examined, and only samples with RNA

integrity number (RIN) value greater than or equal to 9 were used for analysis.

Stereo-seq experiment procedure
The tissue section on the Stereo-seq chip (1 cm x 1 cm) was then incubated at 37�C for 3 min and subsequently fixed in methanol

(Sigma, 34860; precooled for 20 min at -20�C; 1 ml methanol was added in multi-orifice for each section) and incubated at -20�C for

30 min. Methanol was then dried out in a hood. Tissue section on the chip was then stained with ssDNA reagent (Invitrogen, Q10212)

for 5 min and subsequently washed with 0.1x SSC buffer (Ambion, AM9770; containing 0.05 U/ml RNase inhibitor). Section images

were captured using Zeiss Axio Scan Z1 microscope (at EGFP and DAPI wavelength, 10-ms exposure). Tissue sections were then

permeated by incubating in 0.1% pepsin (Sigma, P7000, pepsin was prewarmed at 37�C for 3 min) at 37�C for 12 min (6 min for ol-

factory bulb) in 0.01 M HCl buffer (pH = 2) and then washed with 0.1x SSC buffer (containing 0.05 U/ml RNase inhibitor) to remove

pepsin. In this step, RNAs were released from the permeated tissue and captured by the Stereo-seq chip. RNAs were then reverse

transcribed for 1 hour at 42�C. After reverse transcription, tissue sections were washed with 0.1x SSC buffer and digested with tissue

removal buffer (10 mM Tris-HCl, 25 mM EDTA, 100 mM NaCl, 0.5% SDS) at 37�C for 30 min, and then the chips were washed twice

with 0.1x SSCbuffer. The cDNA-containing chips were then subjected to Exonuclease I (NEB,M0293L) treatment for 3 hours at 55�C.
The released cDNAs were collected and the chips were washed once with NF-water. The cDNAs were purified using 0.8x VAHTS�
DNA Clean Beads and then amplified with Hot Start DNA Polymerase (QIAGEN). The PCR reaction protocol was: first incubation at

95�C for 5min, 15 cycles at 98�C for 20 s, 58�C for 20 s, 72�C for 3min and a final incubation at 72�C for 5min. The PCRproductswere

then purified using 0.6x VAHTS� DNA Clean Beads and were quantified by Qubit dsDNA HS Assay kit (Invitrogen, Q32854).

Stereo-seq library construction and sequencing
20 ng of cDNA products were fragmented using in-house Tn5 transposase at 55�C for 10 min, after which the reaction was stopped

by the addition of 0.02%SDS. The fragmentation products were added with KAPA HiFi Hotstart ReadyMix (Roche, KK2602), 0.3 mM

Stereo-seq-Library-F primer and 0.3 mM Stereo-seq-Library-R, and the samples were then transferred to a thermal cycler and for

amplification using the following protocol: 1 cycle at 95�C for 5 min, 13 cycles at 98�C for 20 s, 58�C for 20 s, and 72�C for 30 s,

and 1 cycle at 72�C for 5 min. The PCR products were then purified using VAHTS� DNA Clean Beads (0.6x and 0.15x). Finally,

the library was sequenced on MGI DNBSEQ� T10 sequencer with sequencing length of 35 bp for read 1 and 100 bp for read 2.

Processing of Stereo-seq raw data
The stereo-seq libraries were sequenced by MGI DNBSEQ� T10 sequencer, and the fastq files generated were then processed with

the SAWpipeline (https://github.com/BGIResearch/SAW). For read 1, coordination identity (CID) sequences weremapped to the de-

signed coordinates of the in situ captured chip, allowing 1 basemismatch. Uniquemolecular identifiers (UMI) having either N bases or

more than 2 bases with quality score less than 10 were filtered out. The associated CIDs and UMIs extracted from read 1 were ap-

pended to the read header of relative read 2. Then STAR108 was used to align retained read 2 to reference genome (mm10), andmap-

ped reads with MAPQ >10 were kept. UMIs with the same CID and the same gene locus were collapsed, where one mismatch was

allowed for sequencing and PCR errors. Finally, this information was used to generate an expression profile matrix containing

coordinates.

Quality control of Stereo-seq sections
For brain section quality, we manually checked the boundary of each brain section generated by Stereo-seq data, there were 7 sec-

tions removed due to abnormal capture of transcripts as compared with their adjacent sections, whichmay be caused by incomplete

attachment of brain tissue to the chips. For the rest of 200 sections, we then identified and filtered out low-quality brain sections with

less than 1000 genes based on the distribution of average gene numbers of sections on bin100. Accordingly, 5 low quality sections

were excluded. Totally, 12 brain sections were excluded, the rest of 195 sections (123 sections for mouse #1, 72 sections for

mouse #2) were used for analysis.

To assess batch effects, we divided the 123 brain sections fromMouse #1 into 12 groups, based on the time intervals correspond-

ing to the appearance and disappearance of major brain regions. Data from each group of sections were integrated and subjected to

unsupervised clustering. Using PCA and UMAP for dimensionality reduction, we observed that the clusters within each group were

evenly distributed across the brain sections, indicating no significant batch effects (Figure S1). Moreover, the spatial distribution of

each cluster across the sections showed a high degree of consistency in spatial localization, as exemplified by the T37-T47 group

(Figure S1).
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Cell segmentation
We harmonize the nucleic acid staining image and CID-containing expression matrix from the same section to perform spatial cell

segmentation. Specifically, we utilized StereoCell (https://github.com/BGIResearch/StereoCell)109 to perform a three-step cell seg-

mentation procedure. Firstly, staining images were registered with their corresponding expression matrices. Secondly, cell morpho-

logical segmentation was done based on nuclei-stained images. We employedmedian filtering to smooth the noise that may present

in input staining images. Then, a modified U-Net based deep learning model110 was used to identify cell morphology from the image.

Cells were filtered by their area, while shape and boundary was revised using opening operation (erode and dilate). Thirdly, after the

basic nuclei mask was identified, a molecule labeling step is employed to label spatially detected UMIs to cells. The UMI that are

contained within each nucleus are assigned directly to each cell. Then, to retrieve the UMIs in cytoplasm, a Gaussian mixture model

was used to estimate the probability of each remaining UMI belonging to a given cell based on the initial nuclei segmentation, and

label the UMIs with high confidence to the corresponding cells. Finally, we aggregated the UMIs that belong to the same cell, for each

gene, and generated a cell-gene matrix for downstream analysis.

Gene-based brain region parcellation
Firstly, the expression profile matrix of both the coronal and sagittal mouse brain was divided into non-overlapping bins covering an

area of 1003100 DNB (i.e., Bin100 spots). The UMIs were aggregated per gene within each bin. The resulting bins were further pro-

cessed by Seurat.94 To be specific, we performed quality control on the Bin100 spots of each brain section, filtering out bins with

gene counts less than 200 and mitochondrial proportions higher than 5%.

Then, we used the SCTransform function in the Seurat package to normalize the expression matrix of each Seurat object for each

brain section separately. For the continuous sections of the whole mouse brain, we grouped the brain section data based on the in-

terval from the appearance to the disappearance of major brain regions in the brain section (e.g. the 123 brain sections of mouse #1

were divided into 12 compartments). We thenmerged the Seurat objects of brain sections in each group separately.We then used the

RunPCA function to perform dimensionality reduction on the merged Seurat objects and performed unsupervised spatial clustering

with the spatialCluster function of BayesSpace (parameters:platform="ST", init.method="mclust", model="t", gamma=2,nrep=1000,

burn.in=100). Resulting clusters were annotated based on their transcriptomic marker genes identified by the FindAllMarker function

of Seurat using default parameters. For each compartment, we first annotated each cluster with broad brain regions, such as olfac-

tory area, cortex, thalamus, hypothalamus, hippocampal region, midbrain, cerebellum, and hindbrain. We then grouped brain sec-

tions with the same annotation together and repeated spatial clustering procedure and annotated the second round of cluster results

into fine brain regions. We repeated the spatial clustering and annotation process to generate high granularity of brain region

parcellation.

Annotations were further verified and compared with ABA (http://mouse.brain-map.org/). Color palette for spatial visualization of

clustering and annotation results was optimized using Spaco.104,111

Image registration and anatomy-based parcellation
The expression matrix of each section was used to generate total RNA images. The ssDNA and DAPI channel images scanned by

ZEISS Z1 were spliced to extract the check lines, which were then registered with the corresponding check lines on the total RNA

image so that the total RNA image, ssDNA image and DAPI channel image were aligned in the same coordinate system. Next, we

identified the tilt angle and position corresponding to each section on the Allen 3D standard brain atlas. Marker points were then

selected to perform cortical registration between the total RNA data and the standard brain atlas. Homemade CellPlot software

was used to obtain parcellation of all cortical regions and subregions.

3D reconstruction of coronal sections
2D sections registration: The reconstructed brain sections are registered into the ABA CCFV3. Initially, we use 3D slicer software to

manually add corresponding landmark points between the fixed and moving images based on the morphological characteristics of

specific brain regions. During this process, we monitored in real-time the overlay effect of the fixed image and the moving image,

adjusting the position of the landmark points to align the moving image with the fixed image as closely as possible. After registration,

we obtained the transformation matrix of the brain sections. Subsequently, this transformation matrix was applied to the recon-

structed cellular and genetic data in the brain, achieving the unified transformation of the data into the CCFv3 framework.

Sample preparation for single-nucleus sequencing
Mouse was anesthetic with the mixture of Loratadine Tablets (50 mg/kg) and Xylazine Hydrochloride (0.1 mg/kg), and perfused with

ice-cold artificial cerebral spinal fluid (ACSF) containing (in mM) NaCl 126, KCl 2.5, NaH2PO4 1.25, MgCl2 2, CaCl2 2, NaHCO3 26, and

glucose 10 (300-305 mOsm). The mouse brain was quickly dissected and transferred to the dish (diameter: 6 cm) that contained

bubbled ice-cold ACSF. Then, the brain was divided into two parts along the coronal axis, the dividing site dependent on the tissue

that we need to correct. After that, the part that we needed was attached to the platform of the cutting system (Leica VT1200S) and

the platform was attached to the cutting chamber which was filled with bubbled ice-cold ACSF. Coronal slices (500 mm) were pre-

pared at the speed of 0.2 mm/s with blade vibration amplitude of 0.8 mm. After the section, brain slices were immediately transferred

to the dissection chamber (containing bubbled ice-cold ACSF). Then, target brain areas were carefully dissected according to the
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allen-atlas and collected to responding tubes that stored on the dry-ice. After the collection of all brain areas of themouse, tubeswere

put into the liquid nitrogen for 3 min and then transferred into the dry-ice. The duration should be less than 10 min from the time point

of perfusion to that of put tubes into liquid nitrogen. After the daily collection of all tissues, the boxes that contain dry-ice and tubes

were stored in the -80�C refrigerator before being sent out for sequencing.

Single-nucleus suspension preparation
Similar to previously described,112 frozen brain tissues were rapidly transferred to a 1-ml Dounce homogenizer (TIANDZ) and imme-

diately homogenized in a 1-ml homogenization buffer. After filtered with a cell strainer into a 1.5-ml tube (Eppendorf), solution in the

tube was subsequently centrifuged at 500 g for 5 min at 4�C to pellet the nuclei. Then, the pelleted nuclei were diluted in a resuspen-

sion buffer at 1000 nuclei/ml for library preparation.

Single-nucleus library preparation and sequencing
Single-nucleus RNA sequencing libraries were prepared using DNBelab C Series High-throughput Single-Cell RNA Library Prepara-

tion Kit (MGI, #940-000047-00). In brief, single-nucleus suspensions were processed as follows: droplet generation, emulsion

breakage, beads collection, reverse transcription and cDNA amplification to generate barcode libraries. Indexed libraries were pre-

pared according to the manufacturer’s protocol (MGI, 1000021082). Qubit ssDNA Assay Kit (Thermo Fisher Scientific, Q10212) was

used to quantify the constructed libraries. The library was sequenced on DNBSEQ� T1 or DNBSEQ� T7 sequencer with following

read length: 41-bp length for read 1, 100-bp read length for read 2 and 10-bp read length for sample index.

Single-nucleus raw data processing
Raw sequencing reads were processed with filtering, demultiplexing barcode processing and 3’ UMI counting using the DNBelabC

Series HT scRNA analysis Software Suite (v1.0.0) set with default parameters (https://github.com/MGI-tech-bioinformatics/

DNBelab_C_Series_HT_scRNA-analysis-software/tree/version1.0). PISA software (https://github.com/shiquan/PISA) was applied

to parse raw reads into FASTQ format according to library structure and cell barcode information. Processed readswere then aligned

to GRCm38.p3 (mm10) mouse genome with STAR (v2.7.4a) and sorted by sambamba (v0.7.0). Due to the large amount of unspliced

pre-mRNA in mouse brain cell nucleus, a custom ‘pre-mRNA’ reference was created for alignment of count reads to exons as well as

to introns. Accordingly, each gene’s transcript in snRNA-seq was counted by exon and intron reads together. Finally, a nucleus-gene

metric was generated, which was then adjusted by SoupX (v1.5.21) to reduce ambient RNA noise.

Single-nucleus data filtering
In all single-nucleus sequencing libraries, we removed libraries with median gene count % 800 and selected the remaining 136 li-

braries as high-quality libraries. Nuclei were further filtered based on criteria including median gene count > 800, mitochondrial

gene content < 5%, and a ratio of UMI counts to gene counts > 1.2. The expression datawere then subjected to SCTransform normal-

ization in the Seurat package (v4.3.0). We performed unsupervised clustering on the normalized data using the FindNeighbors and

FindClusters functions (parameters: dims = 1:50). Based on the marker genes of each group, the clustering results were divided into

sixmajor cell classes:Neurons,Astrocytes,Oligodendrocytes,Microglia, Ventricular cells, andVascular cells. Nuclei that could not be

clearly classified into these six major types were classified as Uncertain.

When dividing nuclei into major classes, it was found that some nuclei existed at the boundaries between classes and were clas-

sified as the uncertain class without clear marker genes. Therefore, we trained a random forest model to predict the major nuclei

classes in order to remove the uncertain nuclei. First, we downsampled each nuclei class and extracted 5,000 nuclei (up to 80%

of the type) as the training set. The FindAllMarkers function in the Seurat package was used to identify marker genes for each class

in the training set, and further filtered genes with corrected p values (p_val_adj) < 0.01 and average log2 fold change (avg_log2FC) > 1

as feature genes for the random forest model. Using the SCTransform normalized values as gene-expression data, the randomForest

function in the randomForest package (v4.7.1.1) was used to build themodel based on the training set (parameter: ntree = 500). Then,

the predict function was used to apply the trained model to all single-nucleus data. The model evaluated the probability of the major

classes for each nucleus, and we assigned each nucleus to the class with the highest probability. Nuclei with highest probability < 0.9

were discarded. After the iterative clustering and annotation that introduced below, clusters with unclear marker expression were

removed. 378,287 nuclei were kept after all filtering processes and used in further analysis.

Single-nucleus iterative clustering and classification
The single nucleus data was first normalized using SCTransform and reduced the dimension using RunPCA. We used the modified

RunHarmony function in the harmony package (v0.1.0) to integrate data from different batches. We modified the kmeans clustering

algorithm used in the package by adding a new parameter kmeans.algorithm, which replaces the default Hartigan-Wong algorithm

with the Lloyd algorithm. We also added two parameters, kmeans.iter.max and kmeans.nstart, to make it applicable to larger data-

sets (parameters: assay.use ="SCT", reduction = "pca", dims.use = 1:50, theta = 2, max.iter.harmony = 10, max.iter.cluster = 20,

kmeans.algorithm = "Lloyd", kmeans.iter.max = 1000, kmeans.nstart = 20, epsilon.cluster = -Inf, epsilon.harmony = -Inf).

To further subdivide cell types, we followed the iterative clustering method for single-cell sequencing data in the scrattch.hicat

package (https://github.com/AllenInstitute/scrattch.hicat), while using the batch correction method in harmony to correct the batch
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effects in different batches during each iteration. This allowed us to reduce batch effects while clustering cell clusters in as much

detail as possible. The specific steps are shown as follows:

(1) First, we defined a clustering function, OnestepCluster, which takes the single cell data in Seurat object format and performs

SCTransform normalization, RunPCA dimension reduction, and RunHarmony batch correction. The clustering results are

checked using theMergeCluster function in step (2) tomerge the clusters without distinguishable gene expression differences.

(2) The MergeCluster function calculates the Pearson correlation coefficient between any two clusters. Clusters with fewer than

20 cells will be merged directly with the other cluster with the highest Pearson correlation coefficient, and then the Pearson

correlation coefficient is recalculated for all clusters. Next, we calculated the gene expression differences between the cluster

and the other top 3 clusters with the highest Pearson correlation coefficient. The FindMarkers function is used to calculate the

differentially expressed genes G between any two clusters. To shorten the computation time, each cluster is downsampled to

500 cells for calculation. The differential gene score S is calculated based on the following formula:
S =
X

G

minð � log10ðPadjÞ;20Þ

Among them, differentially expressed gene G requires corrected p values < 0.01 and average fold change > 1, with at least 50% of

cells expressing the gene in the highly expressed cluster, and the expression proportion of the gene in the lowly expressed cluster is

more than 50% lower than the highly expressed clusters. If the number of differentially expressed genes G is less than 5 or the dif-

ferential gene score S is less than 200, the two clusters will bemerged. All calculations will be repeated until the differential gene score

S between any two clusters larger than 200.

(3) We defined the clustering recursive function IterCluster, which combines the OnestepCluster andMergeCluster in step (1-2). If

all clusters are merged in the result, the recursion will be terminated because it cannot be further split. If there are more than

one clusters in the result, the clusters with more than 50 cells are selected and the IterCluster function is performed on this

cluster again. The process continues until all clusters cannot be further splitted, and all clustering results are summarized

and returned.

At the beginning, we used the results of the sixmajor nuclei classes as the start point. For eachmajor class, the IterCluster recursive

function is executed, and eventually, all clusters splitting results are returned. We annotated the clusters based on the marker genes,

and removed some groups with unclear marker genes. In the end, we obtained 308 clusters covering 378,287 high quality nuclei.

Single-nucleus cluster dendrogram construction
Dendrogram of 308 nuclei clusters was constructed based on the marker gene expression. First, the FindAllMarkers function in

Seurat software package was used to identify marker genes for all cell types. Only genes with adjusted p values (p_val_adj) < 0.05

and avg_log2FC > 0 were kept. For each nuclei cluster, the top 20 genes with the largest avg_log2FC were selected. Marker genes

with expression in less than 20% of nuclei in the corresponding cluster were filtered out. Next, the mouse whole-brain snRNA-seq

data were divided into two groups: neuronal and non-neuronal nuclei. For each group, the AverageExpression function was used to

calculate the average expression values of marker genes for each nuclei cluster. The pvclust function in the pvclust package (v2.2.0)

was used to construct a classification dendrogram, based on the Spearman correlation distances between clusters. Finally, the

merge function was used to combine two dendrograms together.

Independence test of nuclei clusters
We tested the independence of each cluster in the iterative clustering results to ensure there are sufficient differences between nuclei

clusters. We used the randomForest function in the randomForest package to build a random forest model for all 308 clusters. We

first used the FindAllMarkers function in the Seurat package to find themarker genes for each cluster, Only the geneswith an adjusted

p value (p_val_adj) < 0.05 and an avg_log2FC > 0. For each nuclei cluster, we selected the top 50 genes with the highest avg_log2FC

and used them as the feature genes for the random forest model. Then, the single-nucleus data was downsampled, and 200 nuclei

were selected for each nuclei cluster. Using the SCTransform-normalized values as expression data, we built the random forest

model using the randomForest function (parameters: ntree = 1000). The confusion matrix was calculated using the out-of-bag

(OOB) data of the model, Prediction accuracy of the confusion matrix data was used as the standard for evaluating independence

clusters.

Single-nucleus data co-clustering with published dataset
We used two public scRNA-seq datasets as references. One of which is the mouse whole nervous system scRNA-seq dataset,3 we

removed cell types from the spinal cord and peripheral nervous system since these cells were not included in our snRNA-seq dataset.

For the other public dataset,28 which only contains single-cell data from the cortex and hippocampus structures, we extracted cell

types belonging to these two regions from our dataset and discarded clusters with cell counts < 20 for comparison purposes.
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We first downsampled 200 cells for each cell type in each dataset separately. Using the SCTransform function in the Seurat pack-

age (v4.3.0), we normalized each dataset (parameters: variable.features.n = 5000, method = "glmGamPoi") and reduced the data

using the RunPCA and RunUMAP functions (parameters: dims = 1:50). We used the FindAllMarkers function to find marker genes

for each cell type and only kept genes with a corrected p value (p_val_adj) < 0.05 and an avg_log2FC > 0. We then summarized

the top 50 genes with the highest avg_log2FC for each cell type as the marker gene set for that dataset. Using the

FindIntegrationAnchors and IntegrateData functions, we integrated our dataset with any one of the publicly available datasets, using

the intersection ofmarker gene sets as integration anchors.We then reduced the integrated data again using RunPCA andRunUMAP

(parameters: dims = 1:100), and performed clustering using FindNeighbors (parameters: reduction = "pca", dims = 1:100) and

FindClusters (parameters: resolution = 3, n.start = 10, algorithm = 1).

For the integrated clustering results, we calculated the proportion R of a cell type x in our dataset that clusters with a cell type y in

other public dataset using the following formula:

R =
XC

i

min
�
Rix;Riy

�

where C represents all clusters generated after re-clustering the integrated dataset, i represents any cluster in C, Rix represents the

proportion of cell type x in cluster i among all cell types of x, and Riy represents the proportion of cell type y in cluster i among all cell

types of y.

Stereo-seq cell type transfer
Due to the intricate diversity of neuron types throughout the entire brain and the wide-ranging spatial transcriptomic regions, we par-

titioned both the snRNA-seq data and Stereo-seq data into six distinct, mutually independent regions (cerebral cortex, cerebral

nuclei, interbrain, midbrain, hindbrain, cerebellum). When transferring cell types to a specific region within the Stereo-seq data,

we selected the snRNA-seq neuron clusters from the corresponding region as the reference set. Clusters comprising less than 20

nuclei were excluded. Considering that non-neuronal cells exhibit relatively lower regional selectivity in their distribution across

the entire brain, we utilized all non-neuronal cells from the complete mouse brain snRNA-seq dataset as the reference set. Each re-

gion in Stereo-seq data was transferred using the corresponding neuronal and all non-neuronal cell clusters. In addition, the Stereo-

seq data also included fiber tracks and ventricular regions, which are not primary structural regions of the mouse brain and predom-

inantly comprise non-neuronal cells. Consequently, for these regions, we exclusively employed non-neuronal cells as the reference

set for cell type prediction. We defined the cells with more than 100 genes and the percentage of mitochondrial genes less than 15%.

Prior to cell type transfer, each cell cluster in the snRNA-seq data was downsampled to 1000 nuclei. We computed the marker genes

for each cluster, selecting the top 300 genes (sorted by fold changes, excluding genes associated with mitochondria or ribosomes),

which were subsequently utilized in the subsequent training phase.

We used Spatial-ID, a novel cell type mapping algorithm,29 to annotate single cells in Stereo-seq data with cell types classified by

snRNA-seq analysis. To remove uncertainty annotation caused by bubble artifacts in Stereo-seq data, cells in Stereo-seq data with

detected genes less than 100 and percentage of mitochondrial genes larger than 15% were removed in the transfer process (Fig-

ure S3). This filtering process resulted in the exclusion of 20,019 cells. The remaining 4,209,604 cells were assigned as high-quality

cells and used for cell type annotation. The annotation procedure mainly consisted of two stages. In the first stage, we trained a four-

layer deep neural network (DNN) with the snRNA-seq data. The DNNmodel included two hidden layers of 2048 and 1024 nodes and

was trained by a Cross Entropy loss with learning rate = 3310-4, weight decay = 1310-6. The trained DNN predicted the initial prob-

abilities of defined cell types for single cells on the Stereo-seq data. In the second stage, we applied a graph convolution network

(GCN) including two autoencoders and a classifier to integrate gene expression, spatial neighborhood information and cell type in-

struction generated in the previous stage to refine the probabilities. Spatial neighborhood information of the Stereo-seq data was

encapsulated into an adjacencymatrix of cells with normalized Euclidean distances as values for non-zero elements. TheGCNmodel

took the gene expressionmatrix, the distance-weighted adjacencymatrix and the initial probabilities as inputs and produced the final

probabilities after 200 epochs of training with learning rate = 1310-2, weight decay = 1310-4. The two autoencoders of the GCN

model were trained via a self-supervised learning strategy with reconstruction losses and the classifier was trained by a Cross

Entropy loss. Spatial-ID used in this study was implemented with PyTorch (v1.13.1) and PyTorch Geometric (v2.1.0) packages in

Python (v3.8.10).

Evaluation of cell type transfer consistency and accuracy
To evaluate the consistency of Stereo-seq data and the impact of different quality control criteria on cell type annotation, we applied a

series of cell quality cutoffs (ranging from 100 to 400MID counts per cell). Stereo-seq data were processed separately for each cutoff

to annotate cell types. Consistency rates were calculated for each comparison between different cutoffs. The results showed that

Spatial-ID transfer of cell clusters maintained over 80% consistency across filtering thresholds, demonstrating the robustness of

cell cluster transfer (Figures S3C and S3D). To assess the accuracy of Spatial-ID, we calculated the scaled Pearson correlation of

gene expression between cell types annotated in Stereo-seq sections and snRNA-seq data. For cell clusters, the Pearson correlation

was scaled within each cell subclass (Figures S3E and S3F).
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Analysis of cell type distribution across brain regions
We calculated the density distribution of cell clusters across brain regions using Stereo-seq sections. Density was derived by dividing

the count of a specific cell cluster within each region by the region’s area. The regions’ areas were computed by tracing lines using

total RNA and registered ssDNA images of the coronal sections.

Cell ratio of a cell cluster is derived by dividing the count of the cell cluster within each region by the total cell count of the region.

The "relative max cell ratio" (used in Figure S7A) was defined as follows:

Relative max cell ratio =
Rmost � Rsec

Rmost

where Rmost represents the cell ratio of the cluster in themost populous area; Rsec represents the cell ratio of the cluster in the second

most populous area.

Regulon analysis
The regulon activity analysis of transcript factors was performed using standard pySCENIC pipeline.113 Transcriptomic profiles of

previously divided bins (bin100) were used as input. The GENIE3 algorithm114 was used to reconstruct the co-expressed gene

network for each transcript factor. This network was then analyzed and filtered according to cisTarget database (https://

resources.aertslab.org/cistarget/), resulting in regulons consisting of each TF and its potential targets. The activity of a regulon within

each bin was calculated by AUCell using default parameters and threshold, and then mapped to physical space for visualization. We

aggregated potential target genes sharing the same TF across different developmental time points by using the union function.

Aggregated regulons were subjected to AUCell again to re-calculate comparable activity scores across each developmental stage.

The regulon activity of each anatomic region was defined as the mean activity of all bins belonging to the region.

Identification of spatial gene modules
Spatially co-expressed genes and co-activated regulons are identified and grouped into modules using Hotspot.45 Top 5000 highly

variable genes or all identified regulons were used as input. Gene expression in each bin100 was scaled by size factor and log trans-

formed. Then the spatial autocorrelation score was calculated using compute_autocorrelations function. Significantly auto-corre-

lated genes or regulons with p value less than 0.05 were kept and further grouped into modules using the create_modules function

with min_gene_threshold = 10 and fdr_threshold = 0.05 (for the regulon: min_gene_threshold = 5, C > 0.15 and fdr_threshold = 0.05,

for genes in developmental sections: min_gene_threshold = 20 and fdr_threshold = 0.05). Identified gene or regulon clusters were

annotated to related anatomic brain regions according to their spatial localization and contents of genes or TFs.

We identified genemodules with spatial selectivity through genemodule enrichment analysis of 123 brain sections frommouse #1.

To identify gene modules with regional selectivity among these modules, we calculated the enrichment scores of gene modules in

bin100 spots from different brain regions of each brain section. For a given gene module in a particular brain section, we calculated

the significance of the difference in genemodule enrichment scores for bin100 spots across brain regions. If the enrichment score of a

gene module in a specific brain region was significantly higher than that in other brain regions (p_val_adj < 0.01), we considered

this gene module to be region-specific for that brain region. Due to the fact that computer-based methods cannot accurately anno-

tate gene modules that cover multiple brain regions, we combined computational andmanual methods to determine the brain region

selectivity of each gene module and annotate the gene modules.

Gene ontology analysis and enrichment scoring
Gene ontology (GO) analysis was performed on identified modules using clusterProfiler.105 Gene members of each gene module

were used as input. For TF regulon clusters, corresponding TFs and top 10 target genes of each regulon member were used. GO

enrichment score and significance for biological process (BP),Molecular Function (MF) andCellular Component (CC) were calculated

with the compareCluster function using the org.Mm.eg.db database with default parameters. BP, MF, CC with Benjamini-Hochber-

adjusted p values less than 0.05 were considered to be enriched in corresponding modules. For manually chosen developmental

related process, we extracted the gene sets from Mouse Genome Informatics website (http://www.informatics.jax.org/vocab/

gene_ontology), and calculated enrichment scores for these gene set within each bin100, using the AddModuleScore function in

Seurat94 package. The results were then visualized in groups by brain sections, using the ggplot2 package.

Spatial expression pattern analysis
To quantify and analyze the spatial distribution of transcriptomic features, cortex region of each developmental mouse brain section

was digitized and divided into conformal layers or columns along the dorsal-ventral and rostral-caudal axis using the Spateo package

digitization pipeline.57 Concretely, for each brain section, cortex-corresponding clusters were subjected to the extract_cluster_con-

tours function, and converted into a closed contour line indicating the boundary of cortex region. We arbitrarily divided and labeled

the boundary of cortex into 4 segments, indicating the dorsal, ventral, rostral and caudal side of cortex, respectively, which were

further used by digitize function to generate relative dorsal-ventral and rostral-caudal coordinates for each bin100 within cortex.

We then performed differential analysis on gene expression or regulon activities distribution along the dorsal-ventral axis to identify

laminar peak shifting in the developmental process as described in Figure 5F. Generalized linear models are applied on expression
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distribution of the rostral-caudal axis to detect significant gradient patterns, using the glm_degs function in Dynamo package115 with

default parameters. Geneswith Benjamini-Hochberg-adjusted p values greater than 0.05 or expressed in less than 25 percent of bins

in cortex were filtered out. Then, min-max normalized expressions of each significant gradient gene were further fitted using sklearn.

linear_model. LinearRegression116 to get a normalized gradient coefficient and a coefficient of determination, where genes with co-

efficient of determination greater than 0.05 were shown in Figures 5G and S13D.

Identification of region-enriched genes
For identification of region-enriched genes, the gene density of each region was calculated as nCounts/region size, then the fold

change was calculated as the highest region density/median density of all regions. Region-enriched genes were defined as fold

change > 1.5 and density > 25 per mm2. Finally, some genes were added or deleted based onmanual screening by checking expres-

sion images of individual genes obtained by spatial transcriptomic experiment. Layer enriched genes were calculated similarly

except the cortex was manually divided into layer 1-6.

Identification of convergent and divergent gene pairs
The lncRNAswe used here were derived from the gene annotation of Ensembl V93.117 Long non-coding RNA (lncRNA) is defined as a

non-coding gene/transcript larger than 200bp in length according to the definition from Ensembl (https://www.ensembl.org/info/

genome/genebuild/biotypes.html). We divided lncRNA-mRNA gene pairs into divergent and convergent groups based on the

distance between the transcription start sites of lncRNA and mRNA on the genome. In a gene pair, lncRNA and mRNA are close

or overlap and need to be on different DNA strands. When the transcription start site (TSS) distance between lncRNA and mRNA

is greater than -1000 nt and less than 10000 nt, we define it as a divergent gene pair (TSS distance = TSS in plus strand – TSS in

minus strand). When the TSS distance between lncRNA andmRNA is less than -1000 nt and lncRNA overlaps with mRNA, we define

it as a convergent gene pair.

Calculation of lncRNA-mRNA gene pairs
To calculate the correlation of lncRNA-mRNA expression in different brain regions of mice, we combined the gene expression levels

in the same brain region, and then calculated the CPM value of each gene in each section. Then filter out low expression values

(lncRNA + mRNA >1), and calculate the lncRNA-mRNA Pearson correlation coefficient.

To calculate the differential expression of lncRNA-mRNA in different cell types, we calculated the average expression of each gene

in different cell types. Then calculated the fold change and adjusted P-values (p_val_adj) of lncRNA and mRNA in the two cell types

(FC = log2 (lncRNA/mRNA)). When the adjusted P-values (p_val_adj) were less than 0.01, the absolute values of fold changes (FCs)

were greater than 1, and the signs of FCs in the two cell types were opposite, we consider that lncRNA and mRNA were antagonistic

expressed in these two cell types.

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methods were used to predetermine sample sizes, but the sample sizes here are similar to those reported in previous

publications. No randomization was used during data collection as there was a single experimental condition for all acquired data.

Data collection and analyses were not performed blind to the conditions of the experiments as all experiments followed the same

experimental condition. Statistical details of experiments and analyses can be found in the figure legends and main text above.

ADDITIONAL RESOURCES

An interactive website for visualizing gene expression patterns and cell type distributions in the mouse brain (https://mouse.digital-

brain.cn/spatial-omics).
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