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SEVEN TECHNOLOGIES
~ TOWATCHIN2023

Nature's pick of tools and techniques that are poised to have an outsized
impact onsciencein the coming year. By Michael Eisenstein

Single-cell metabolomics

Metabolomics — the study of the lipids,

[ ‘. ,‘ carbohydrates and other small molecules that

P = drive the cell—was originally aset of methods

Q for characterizing metabaolitesina population
B of cells or tissues, but is now shifting to the
& © single-cell level. Scientists could use such

cellular-level data to untangle the functional
complexity in vast populations of seemingly
identical cells. Butthe transition poses daunt-

ing challenges.
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Structural diversity Wide range of concentrations
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(a lipid)

¢ Organic Acids
¢ Carbohydrates

.

¢ Lipids
e Amino Acids

\

¢ Nucleotides
¢ Steroids

¢ Neurotransmitters
* Trace elements

Highly Dynamic
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Mass Spectrometry

» A compound can be identified by its mass

Example: Ethanol - CH3;CH,OH, with molecular weight MW = 46.06844 g/mol

|T| IT' Element Symbol Atomic Mass # of Atoms

H-C-C-0O-H Hydrogen H 1.00794 6

| | carbon C 12.0107 2
i (9] 15.9994 1

» Mass Spectrometry needs to:
dlonize molecules
»Detect molecules

» MW can be determined with high accuracy
» It can be used for qualitative (untargeted) or quantitative
(targeted) analysis
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Mass spectrometry (MS) is an analytical technique that measures the mass-to-charge
ratio of ions. The results are typically presented as a mass spectrum, a plot of intensity
as a function of the mass-to-charge ratio. Mass spectrometry is used in many different
fields and is applied to pure samples as well as complex mixtures. MS is used to identify
and to quantify metabolites after optional separation. Identification leverages the distinct
patterns in which analytes fragment which can be thought of as a mass spectral
fingerprint. MS is both sensitive and can be very specific.

Sample inlet
Data analysis

Chromatography Ion mobility MS detjzction Lysophospholipids _ PG, SM. PG, PE ChoE and TG
mez -

10 12 14 16 18 20

@
-]
M it
Retention time (min)

With high sensitivity and specificity, wide molecular coverage, relative quantitation, and
structural identification capabilities, MS is becoming an important tool for Single-cell
metabolomics. This, by the way, presents many challenges due to the limited sample
volume, low analyte amounts, and rapid turnover rates of the cellular metabolome. Most
single cell metabolomics studies are, thus performed using MS in a shotgun-like
approach, preferably with high mass resolution.
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chemistry

pubs.acs.org’ac

Single Cell Matrix-Assisted Laser Desorption/lonization Mass

Spectrometry Imaging

Yvonne Schober, Sabine Guenther, Bernhard Spengler, and Andreas Rémpp*

Institute of Inorganic and Analytical Chemistry, Justns [iebig University, Giessen, Germany

A Fluorescence

m/z2 = 754.536 £ 0.005

m'z = 445 285 + 0.005

miz=784.567 £ 0,005

Numerous compounds including small metabolites
such as adenine, guanine, and cholesterol as well as
different lipid classes such as phosphatidylcholine,
sphingomyelin, diglycerides, and triglycerides were
detected and identified based on a mass spectrum
acquired from an individual spot of 7 um in diameter.
These measurements provide molecularly specific
images of larger metabolites (phospholipids) in native
single cells. The developed method can be used for a
wide range of detailed investigations of metabolic
changes in single cells.
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SpaceM reveals metabolic states of smgle cells

We present SpaceM, an open-source method for in situ single-cell metabolomics that detects >100 metabolites from
>1,000 individual cells per hour, together with a fluorescence-based readout and retention of morpho-spatial features. We
validated SpaceM by predicting the cell types of cocultured human epithelial cells and mouse fibroblasts.

-14 -
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Mass spectrometry imaging to explore molecular heterogeneity in cell culture

Single-Cell Data Extraction
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Here, we present a sensitive approach to single-cell
MS based on high-resolution MALDI-2-MS imaging in
combination with MALDI-compatible staining and use
of optical microscopy. Our approach allowed
analyzing large amounts of unperturbed cells directly
from the growth chamber. Confident coregistration of
both modalities enabled a reliable compilation of
single-cell mass spectra and a straightforward
inclusion of optical as well as mass spectrometric
features in the interpretation of data. The resulting
multimodal datasets permit the use of various
statistical methods like machine learning-driven
classification and multivariate analysis based on
molecular profile and establish a direct connection of
MS data with microscopy information of individual
cells.
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G Vero-B4  Caki-2 Total
Classified Vero-B4 275 2 277
Classified Caki-2 92 74 166
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H Vero-B4  Caki-2 Total
Classified Vero-B4 340 7 347
Classified Caki-2 24 69 93
Classified Correctly 9264% 90.79% | 92.33 %
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[PC(34:1)+Naj+
m/z760.585 *

[SM(34:1)+Na}
m/z 725.5561

[PC O-(36:4)+H]~+
m/z 768.5917 *

Single cell Metabolomics

Spectrum Peak intesily

Normelized to TIC
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Lipid Species
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Single-cell Lipidomics

HexCer Gb3
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Lipotypes represent local energetic minima of the lipid compositional landscape.

Lipotypes are both a consequence and a component of differentiation programs
that lead to cell state emergence.

Cells populating different regions in tissues and organs are likely to belong to
different lipotypes and lipotypes to mark different anatomical structures

Lipid composition is a major driver for the establishment of cell identity
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Lipotypes represent local energetic minima of the lipid compositional landscape.

Lipotypes are both a consequence and a component of differentiation programs
that lead to cell state emergence.

Cells populating different regions in tissues and organs are likely to belong to
different lipotypes and lipotypes to mark different anatomical structures

Lipid composition is a major driver for the establishment of cell identity
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MALDI-2-IMS

Matrix-assisted laser desorption—ionization mass

|
|

spectrometry imaging in transmission-mode geometry (t-
ﬂ et MALDI-MSI) can provide molecular information with a
- § pixel size of 1 ym and smaller, which makes this label-free
ﬁ — method highly interesting for characterizing the chemical
composition of tissues and cells on a (sub)cellular level.
laser-induced postionization (MALDI-2) increase the
— 1 sensitivity of this technique to allow in situ single cell

F metabolomics
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3D reconstruction of Lipid Distributions
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Overcoming the resolutions limits of MSI instruments

Borrowing ideas from
Resolution limits: super-resolution Microscopy:

o Laserfocus: ~4 um e Computational methods:

¢ Minimum step: ~5 um
e Matrix crystal size: ~1-2 pm o Deep learning .

Microscopy MALDI-NMSI

e Tissue-prep methods s

o Tissue Expansion [t
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Computational methods based on deep inference procedures
Guided super resolution Weakly supervised propagation
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Super resolved single-cell spatial... Ozlruk el al. 2024 Inferring supar-resolved spatial... Rappez el al. 2024
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Gel-assisted expansion for super-resolved MALDI-MSI
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Gel-assisted mass spectrometry... Chan et al. 2024
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Results of GEMSI with 100 um pixel size

[M-H] m/z 744.5 [M-H]- m/z 788.5
PC (34:1) PE (40:7)
G%MSI-'

[M-H]- m/z 790.5 [M-H]- m/z 885.5
PE (40:6) Pl (38:4)

Instrument pixel size = 100 ym _
Gel-assisted mass spectromatry... Chan et al. 2024
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Observing single-cells and subcellular structures in tissue

Mass Image of Purkinje cells in the cerebellum and of their
neurites

Ten-Fold Expansion MALDI Mass... Xie el al. 2024
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What's about context, type and function? Other modalities!

Mouse Retina

MERFISH MALDI-MSI

- ormd

Even in the most simple cases
It can be difficult to tell what

cells we are imaging by MSI.

Concatenating different
modalities brings data
stratification and correlation and
cross-explanatory power.

Choi et al. 2023 Our Data
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Coupling Spatial Proteomics and Metabolomics (MALDI)
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Coupling Spatial Proteomics and Metabolomics (MALDI)

Keratin Vimentin DNA PC(37:5) PI(34:1)
- ) Py ~ " :

Integration of Mass Cytometry... Nunes et al. 2024
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How to molecularly interpret MSI| spectra?

Spatial and single-cell metabolomics data are often challenging to annotate

Intensity

400 500 600 700 800 900

Increase the dimensions for systematic molecular identification
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Foundational benchmarking: 24 untargeted MSI protocols
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Workflow small molecules - single cells - large datasets

Experimental analysis
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Towards a more complete metabolic network coverage
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Computational methods based metabolite annotation

Important idea: Systematically prioritise plausible annotations
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