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Single-cell biology

Week 6 .

Sc-Based Perturbation Screenings
Spatial Omics techniques
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genetics offers unique tools for discovering gene function
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genetic screens are often focused to the assessment of one parameter
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Creating a genome-scale catalog of genetic vulnerabilities

A complete map of the vulnerabilities of cancer cell models is a key first step towards
identifying therapeutics leads. Therefore, researchers are using genome-wide CRISPR
loss-of-function screens to systematically identify essential genes across hundreds of
human cancers
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Dep_ Maps allow the inference of co-functional gene networks
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Dixit et al. 2016 Cell

Perturb-seq (also known as CRISP-seq
and CROP-seq) refers to a high-
throughput method of performing scRNA-
seq on pooled genetic perturbation
screens.

Perturb-seq combines multiplexed
CRISPR mediated gene inactivations with
single cell RNA sequencing to assess
comprehensive gene expression
phenotypes for each perturbation.
Inferring a gene’s function by applying
genetic perturbations to KD or KD a gene
and studying the resulting phenotype is
known as reverse genetics. Perturb-seq
IS a reverse genetics approach that
allows for the investigation of phenotypes
at the level of the transcriptome, to
elucidate gene functions in many cells, in
a massively parallel fashion.
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Dixit et al. 2016 Cell
Perturb-seq combines a pooled CRISPR screen with scRNA-seq by encoding the identity of
the perturbation on an expressed guide barcode (GBC)

so each cell has 2 barcodes one for cell identity (CBC) and the other for perturbation identity
(GBC)
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Bone marrow-derived dendritic cells (BMDCs), they targeted 24 transcription factors (TFs) in
ctrl and LPS treated cells
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Dixit et al. 2016 Cell

Allows to discriminate effects on cell state proportions from those on the expression of a
given gene
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Genetic Interactions
between TFs in BMDCs
can be inferred by looking
at double or triple infected
cells
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Whole Genome Perturb Seq
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Summarizing genotype-phenotype relationships with Perturb-seq

A B Ferturaation clust

Brgets of NKVD
2 | L RN ity
64 sarlurbabion clozlers D L H i..‘ n ..n'.lctor'mm?‘sc e
. , 2-500Me . = NFkE agral ng
'l‘!“ 1 I-'l,!l.! -4 I 1,r~n1jrr1~‘-ln.lnn
G = - 2 $ Tiis .8 1
25l . l .- - J - - n=RNASMrizeres Tanscripts
% = " g o { 451
== i. % - l - . I A0S 2
- s 0 o o “ r H [y Iar,'mr;.d arffarartahcy
.:;.'n.‘ X '_2 - L ] — =
B 3 4 Dartaa-dleivan whisenng 3 TAGHTH, FALZAS
7:'_. - 3 B ol gunes and pevluroenons = J orclaasore
.f: e .3 18 4 . g »
- : > ' ohi
- B 2 = .
2 o S
r’::'\ : “ - '0 % g JPEImTORCT eanairg
“: . —4- : - et 1 b +'55 Ll
.—f;:"'! e 123 QL o ‘
[} = &t -1 - K . ,
I Lgs Rl T S o -
| I ‘ o l T o d ' = + | arcwirdang ots of fdyc
, ™ ‘
Camposta phanatyoes I . rkas=mz hisoarasis
derved from Im call cycie
it rmeinicy I 3l LIS AN Gl
|
|’“""" s m = mwm u = - Inquu JENLENE
- —
Im graloe 3. xh'ru'pkzx la-h':, n-Sal £3NE0MR Nubt amakaw '-“gr“(ilhh‘l itochooorial sma Il ‘(Ml’v [
semplox  ZE0EC Za TTT zarplcx WIS O F =0 nkasomal s o
nrylbro )‘ m gulu wa | | s ) *ly' .i,*u.. nitochoodrial proten
T F 4 ) DNA rxpararar ,. ’!-nr“tHMG syrheRis’ oy
fAucalor 405 nhasome I Kl m l. F.' 5'\ aling elF2Sraraazanypeotain clustar names
HGR ABL sgralng ' < ghenasylatan ' : ' ‘
E L33 [

D GATAL E

15 TPTPNI e

ll~‘1 ME—UU

4HI’~H
‘o *INTSE

Perturbation
mn Contro

PTPN”
KON A
PTPN-/KDM1A

Myclcid dfferenbiation score

Fran ion al sells (dersly !

1’ 10° ip3 10? 10"

UFR szors Erythcld dfarentiation score anli-Co1b (APC)

Replogle et al. 2021 Biorxiv
Data-driven definition of transcriptional programs

18



BIOENG-420

sc-Based Perturb screenings

Contral cell

Loss of ATP synthase

Lces of mitorbosome LSU

Loss of chapercne

Open questior: autonomous
requlation?

basal mito

basal nuclaar
transcriptoma

trenscriptome

LT LT A
] |
|
|
¥
% )
- -
%
PR T

ISR, complex V
activation  signature

ISR miLSU
activation  signature

%

ISR chapcronc
activation  signature

e
!
L4l

independent
local responses?

Replogle et al. 2021 Biorxiv

19




BIOENG-420

Spatial Omics Techniques

Single-cell analyses, especially RNA
sequencing and other genomics
modalities, have been transformative in
revealing new biology.

However, these approaches fail to
provide a complete picture of biological
processes, as contextual information on
cellular location is lost.

New technologies leveraging multiplexed
fluorescence, DNA, RNA and isotope
labeling enable the detection of tens to
thousands molecular biomarkers within
their native spatial context.
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(1) optical barcoding methods for tracking cell subclones
(2) spatial proteomics methods

(3) spatial transcriptomic methods

(4) spatial metabolomics methods

(5) computational integration of these modalities
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Tracking the spatiotemporal fate of live cells in their tissue context

Rosaz6 locus in Mouse, Chré Cre recombination
CAGG promcter Outcomes
g — E— T i 4—
PO e pe - IR v© din 4 D ——
EcoRl Ascl N Hindlil Paci
—
M oo -
5 prote 3'£robe
- 156 kb WT alle! I e
58k 148Kb Kiallcie = —
EcoRl ECoRT ECORT

w_O>
P on - 4

R26R-Confetti knock-in strategy.

Brainbow2.1 encoding four fluorescent proteins was
inserted into the Rosa26 locus. Upstream, the
strong CAGG promoter, a LoxP site, and a
neomycin resistance roadblock cassette were
inserted. Upon cre activation, the neomycin
roadblock is excised, while the brainbow?2.1
recombines in a random fashion to four possible
outcomes.
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Livet et al Nature 2007
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Tracking the spatiotemporal fate of live cells in their tissue context

Intestinal stem cells, characterized by
high Lgrb expression, reside between
Paneth cells at the small intestinal
crypt base and divide every day.

3D -Small Intestine
3D - 5Small Intestine

The authors investigated the fate of
stem cells in vivo.

Sippert et al Cell 2010



BIOENG-420

Spatial Omics Techniques

iIncreasing the number of detectable proteins in a spatial context

Spabal proteomics
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iterative staining (41)

lterative indirect immunofluorescence
imaging (4i), 40-plex protein readouts
from biological samples at high-
throughput from the millimeter to the
nanometer scale.This approach
simultaneously captures properties
apparent at the population, cellular,
and subcellular levels, including
microenvironment, cell shape, and cell
cycle state. It also captures the
detailed morphology of organelles,
cytoskeletal structures, nuclear
subcompartments, and the fate of
signaling receptors in thousands of
single cells in situ.

Gut et al Science 2018
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iterative staining (4i)
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iterative staining (4i)
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41 quantifies subcellular
organization at high spatial
detail in thousands of single
cells based on multiplexed
single-pixel profiles. 4i
builds on a well-established
highthroughput multivariate
imaging platform

Gut et al Science 2018
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iterative staining CODEX
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MS based methods - ImaglngMassCytoIogy
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Giesen et al Nat Met 2018
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MS based methods - MIBI
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multiplexed ion beam imaging (MIBI) can
image upwards of 40 proteins in tissue. The
primary ion beam is rastered across the
tissue to generate secondary ions for
detection by TOF mass spectrometry at
defined spatial coordinates. In theory, the ion
beam in MIBI can be reduced to a spot size

of well below 500 nm in diameter
Angelo et al Nat Med 2013
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MS based methods - MIBI
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FISH based methods

Spalial transcriptomics (FISH)
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osmFISH

Sequential imaging can increase the
multiplexing capacity of smFISH
methods. Ouroboros single-molecule
FISH (osmFISH) is a non-barcoded form
of cyclic smFISH that targets transcripts
In successive rounds of hybridization.
Both osmFISH and other iterative
fluorescence methods are efficient in the
process of fluorophore stripping and
quenching. While fluorophore brightness
and tissue integrity may be marginally
reduced with increasing numbers of
hybridization rounds, samples generally
maintain stability for an extended period
of time.

Codeluppi et al Nat Met 2018
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MERFISH (Barcoding)
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MERFISH is a temporal barcoded smFISH method that measures 100-1,001 genes with
high spatial resolution and detection efficiency. This is a single-molecule imaging
approach that uses combinatorial labeling and sequential imaging with encoding
schemes capable of detection and/or correction of errors. This highly multiplexed
measurement of individual RNAs can be used to compute the gene expression profile
and noise, covariation in expression among different genes, and spatial distribution of

RNAs within single cells. Chen et al Science 2015
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Sequencing methods )
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~mRNA-Capture
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The recent emergence of sequencing-
" i based spatially resolved transcriptomics,
as pioneered by ‘spatial transcriptomics’
has heralded the ability to determine the
unbiased transcriptome of multiple
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Slide-seq
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Stereo-seq
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HybISS (Hybrldlzatlon -based in situ sequencing)
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MALDI-2-IMS

Matrix-assisted laser desorption—ionization mass

|
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spectrometry imaging in transmission-mode geometry (t-
ﬂ et MALDI-MSI) can provide molecular information with a
- § pixel size of 1 ym and smaller, which makes this label-free
ﬁ — method highly interesting for characterizing the chemical
composition of tissues and cells on a (sub)cellular level.
laser-induced postionization (MALDI-2) increase the
— 1 sensitivity of this technique to allow in situ single cell

F metabolomics
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