

Single Cell Epigenomics

scATAC sequencing

Fides Zenk

Learning Objectives of this week

Knowing different types of chromatin

How do identify/map accessible chromatin

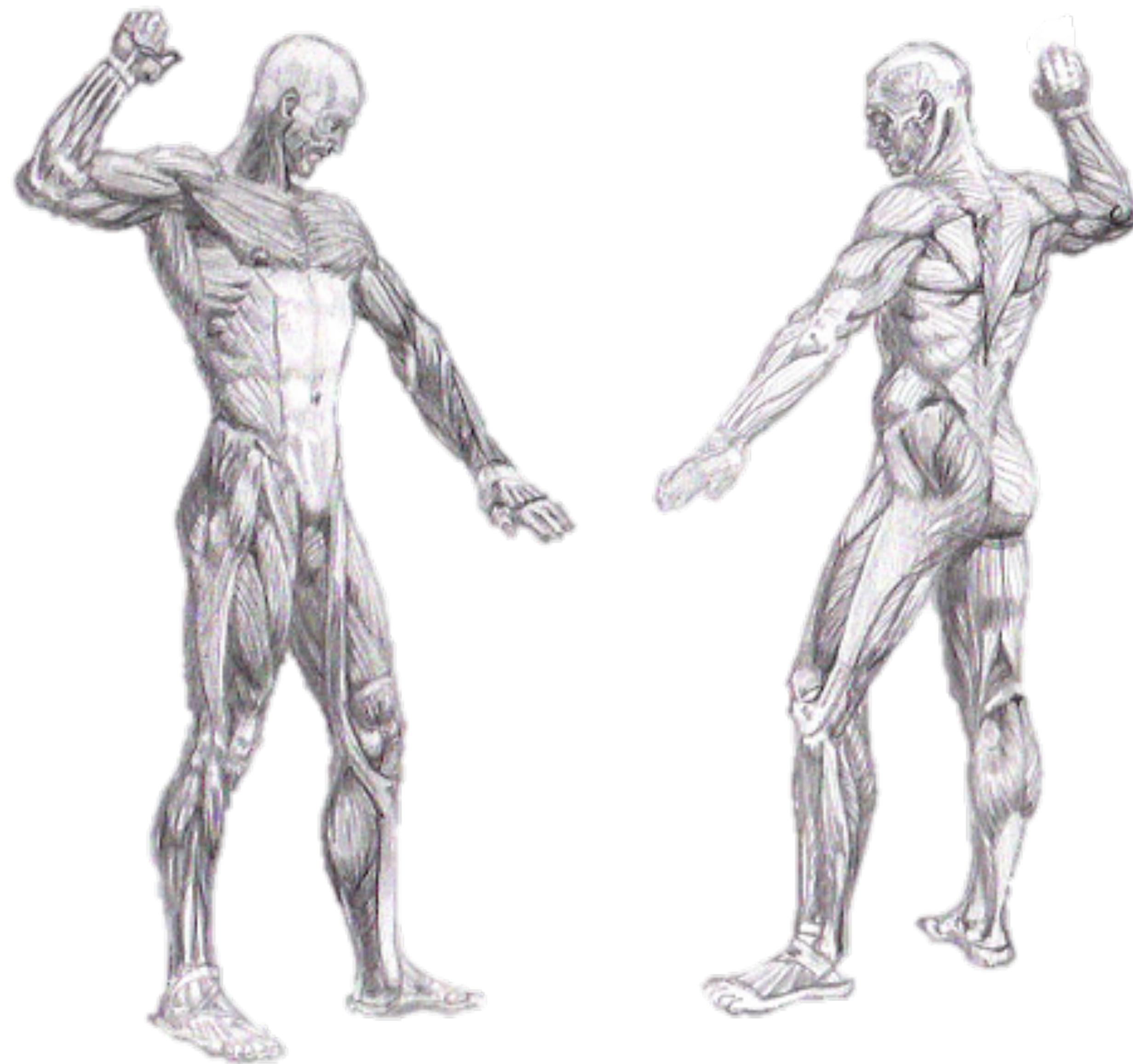
Isolating accessible chromatin in single cells

Sequencing libraries using NGS sequencing

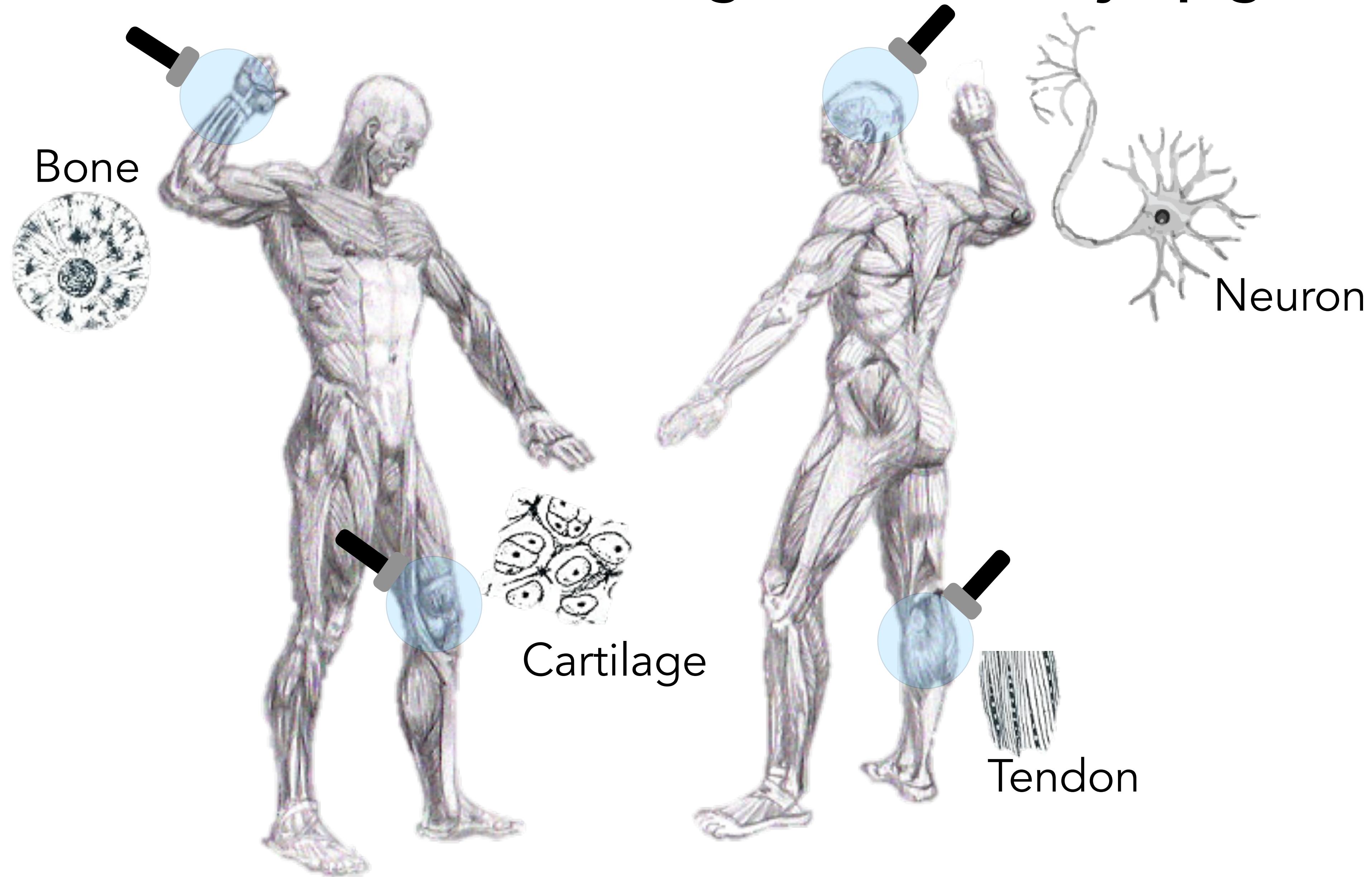
Visualizing chromatin accessibility in the genome browser

How to analyze and interpret single cell ATAC data - hands on tutorial will follow

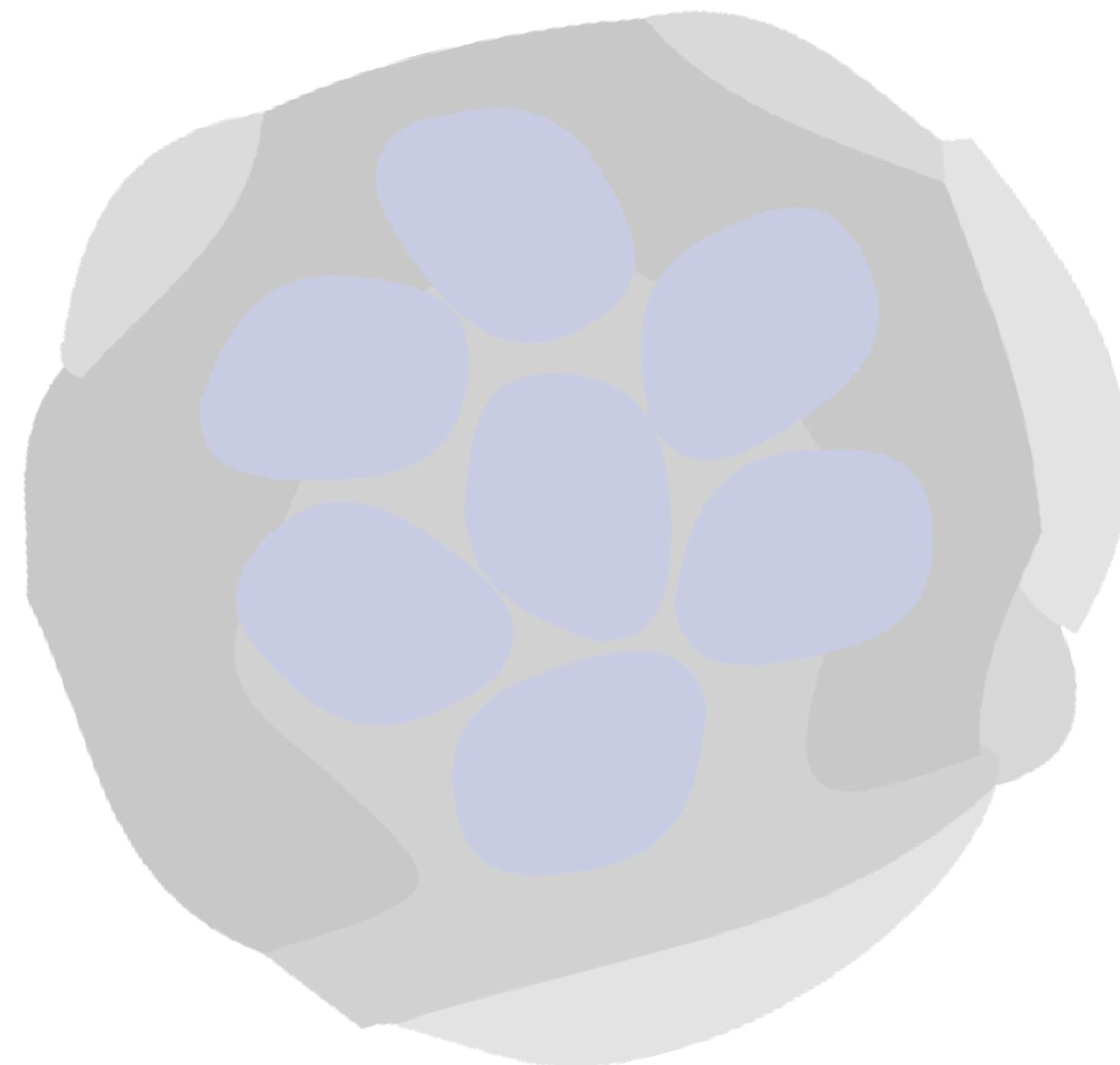
One genome - many epigenomes



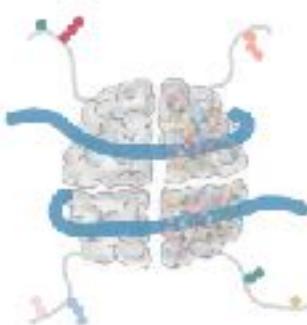
One genome - many epigenomes



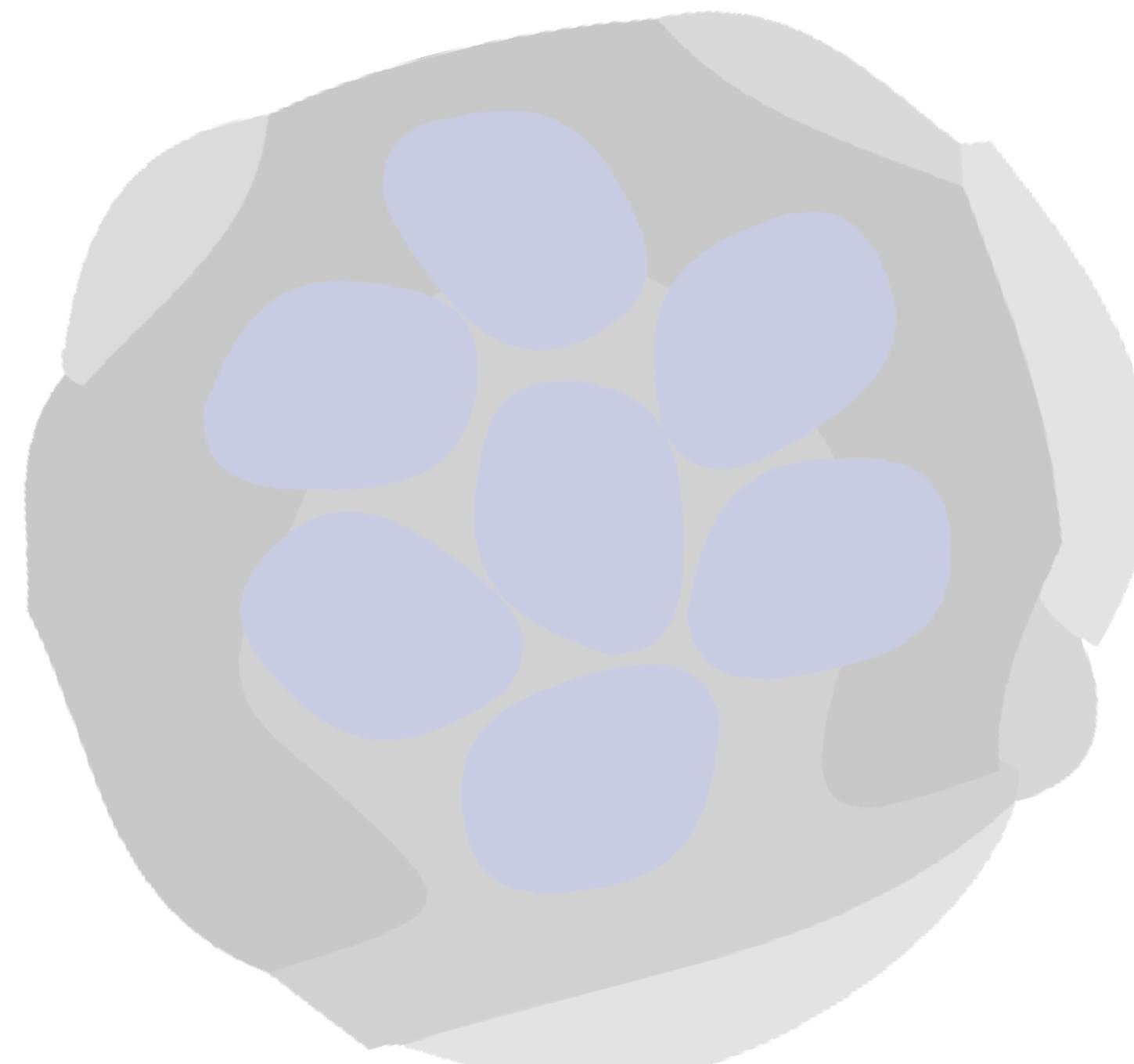
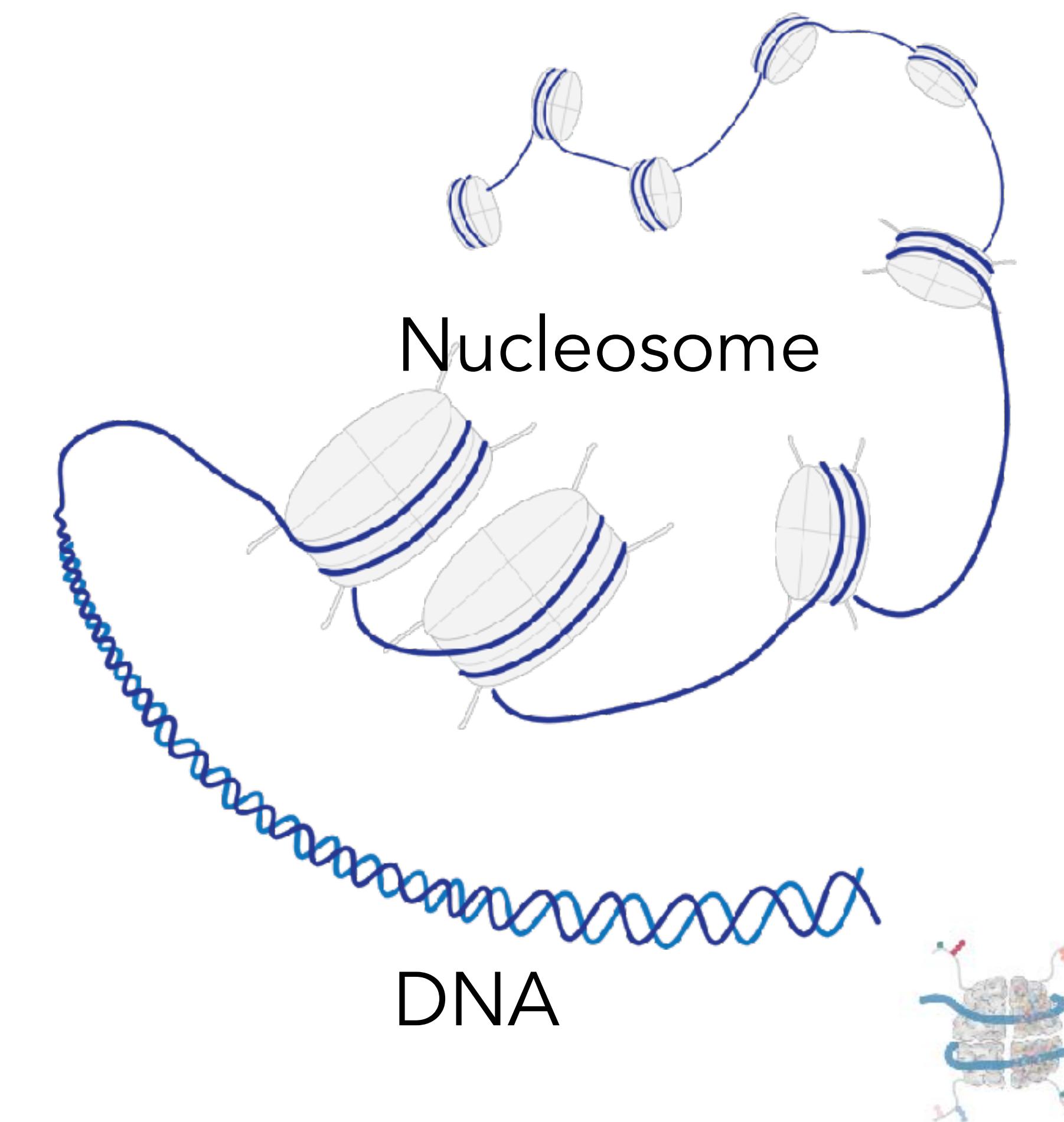
Packaging of Chromatin inside the Nucleus



Chromosome Territories

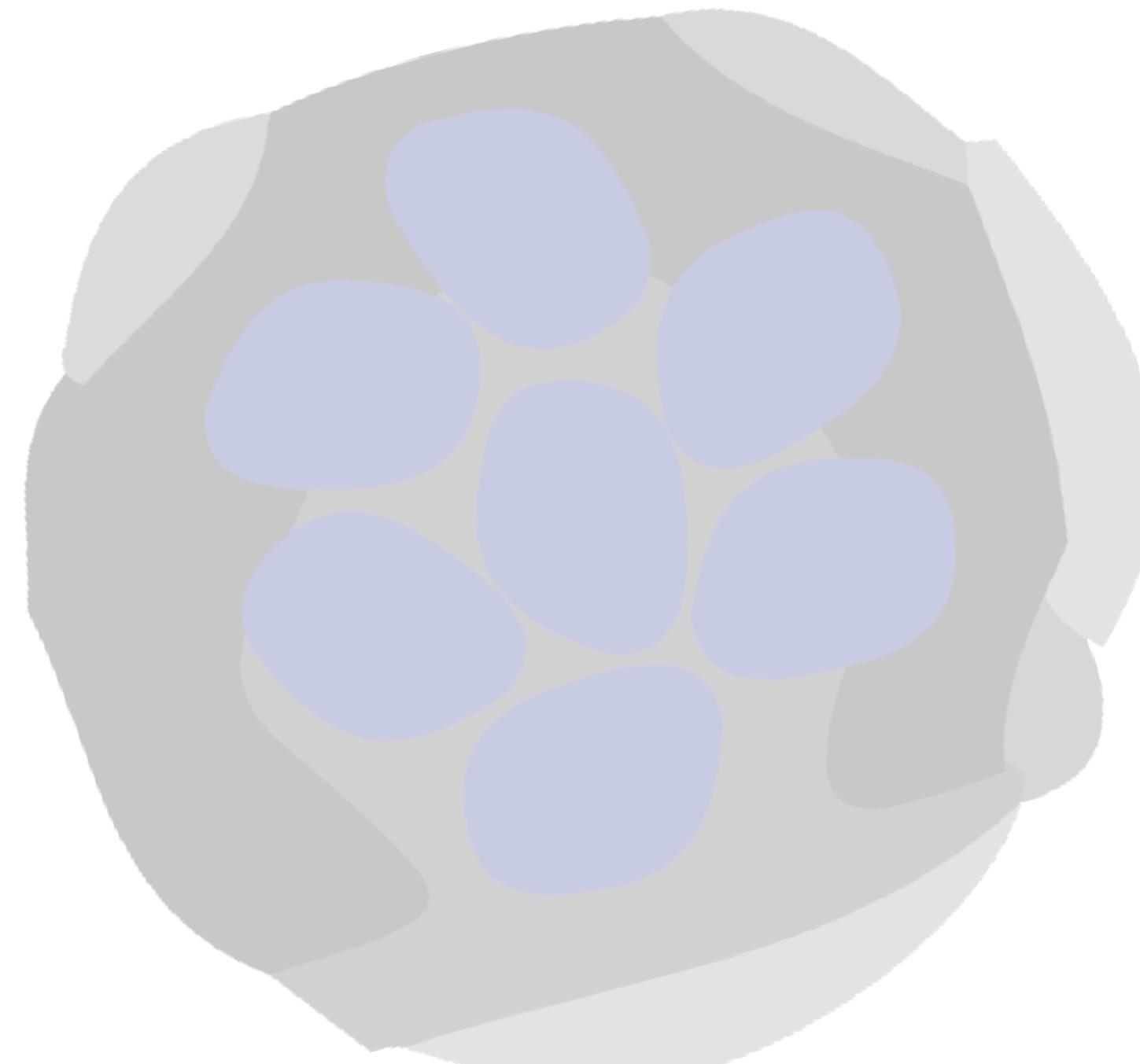


Packaging of Chromatin inside the Nucleus

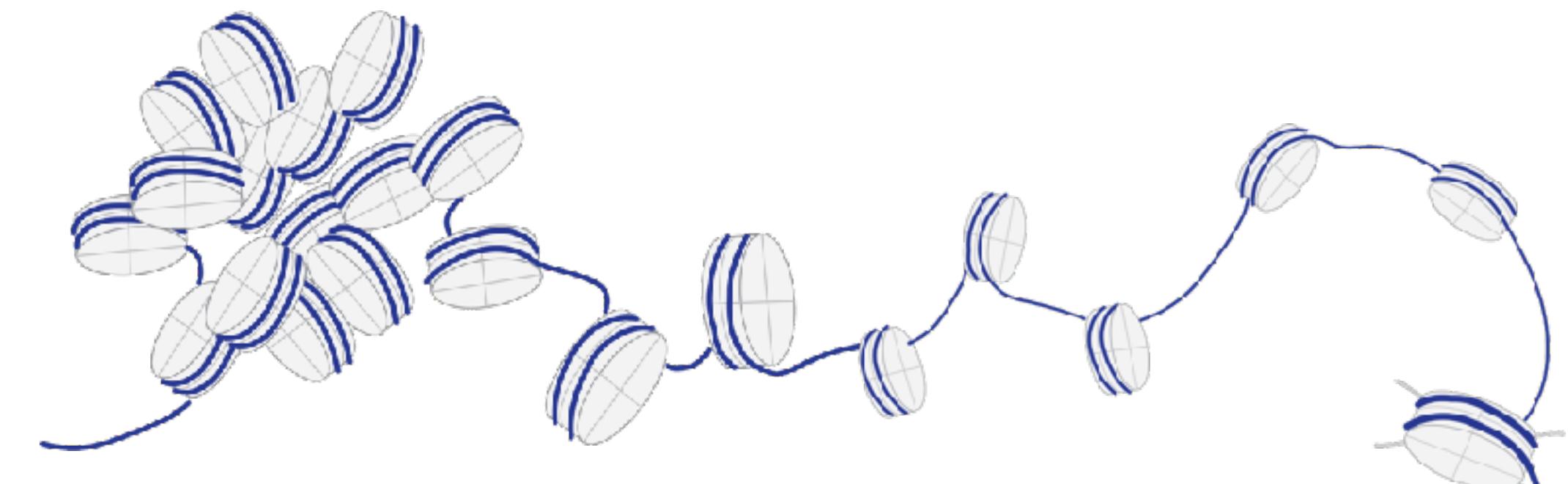
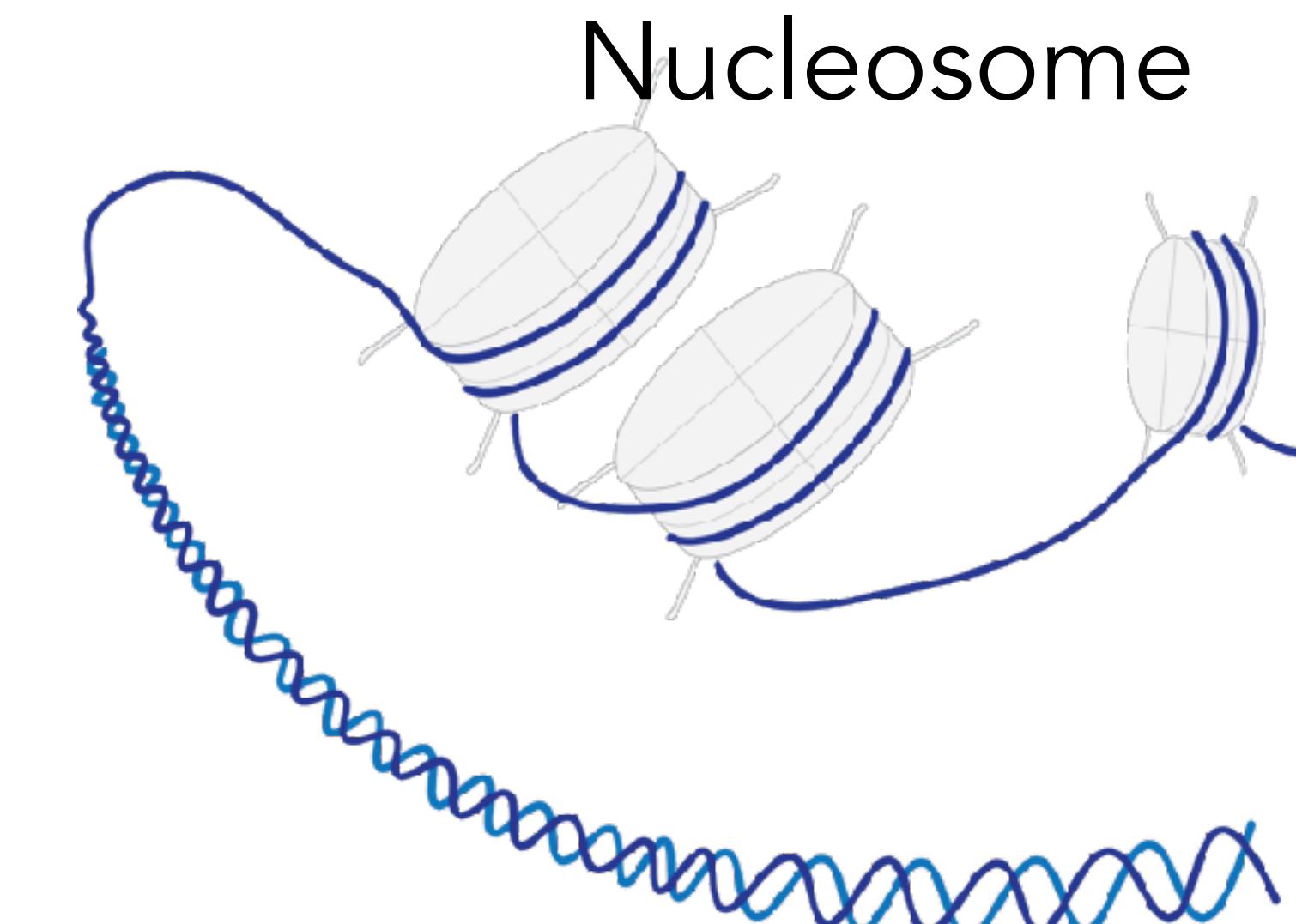
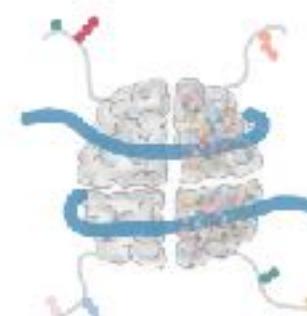


DNA

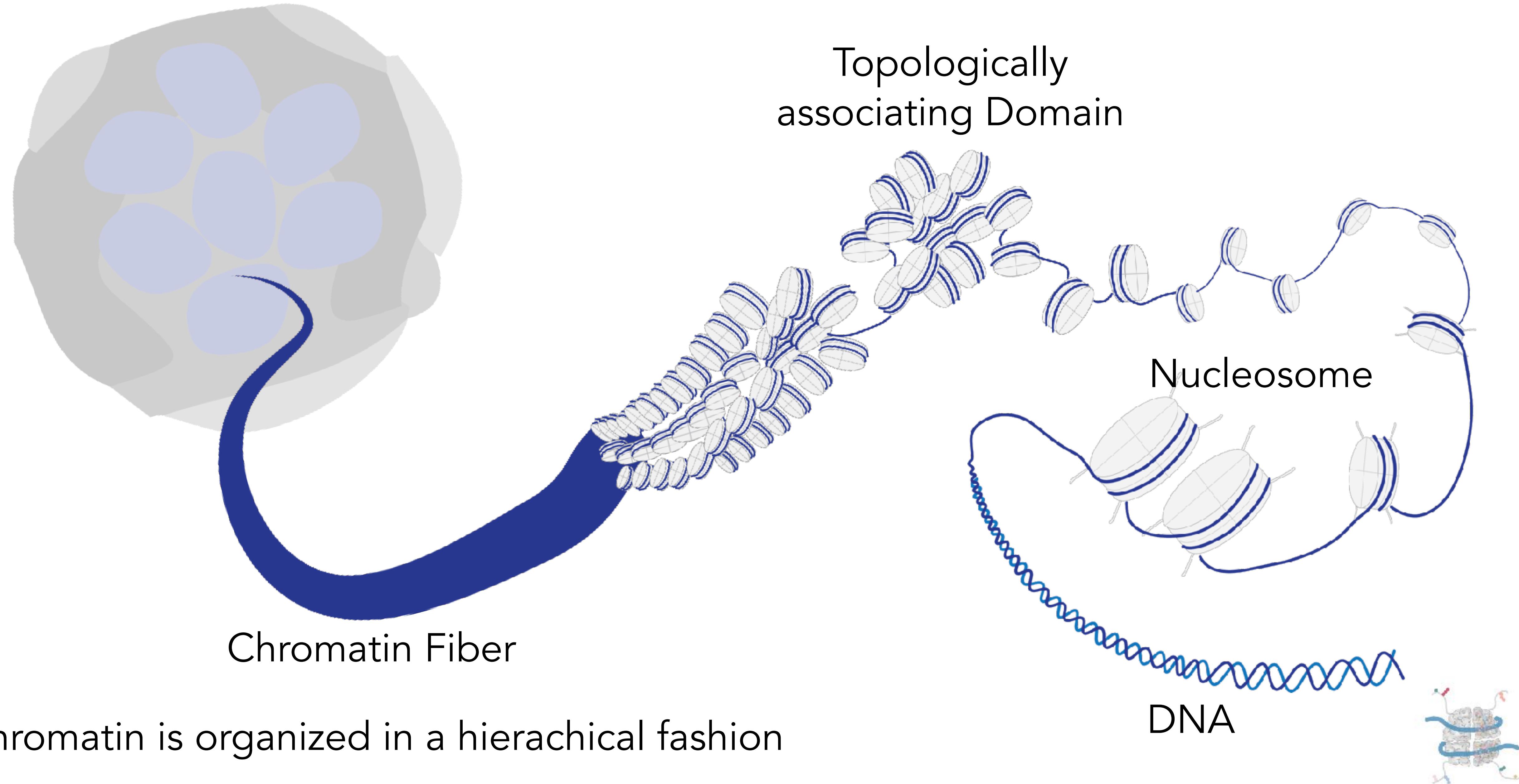
Packaging of Chromatin inside the Nucleus



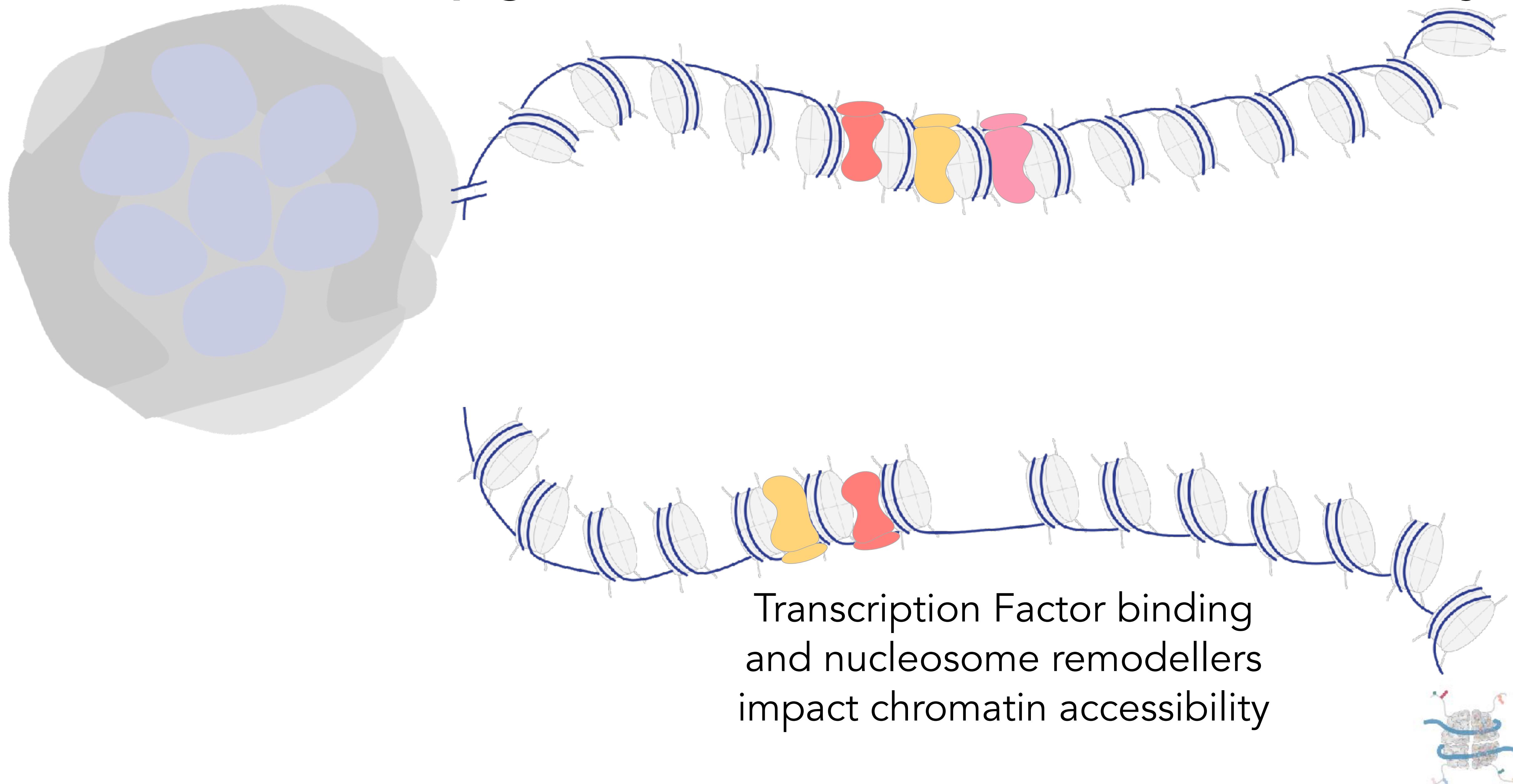
Topologically
associating Domain



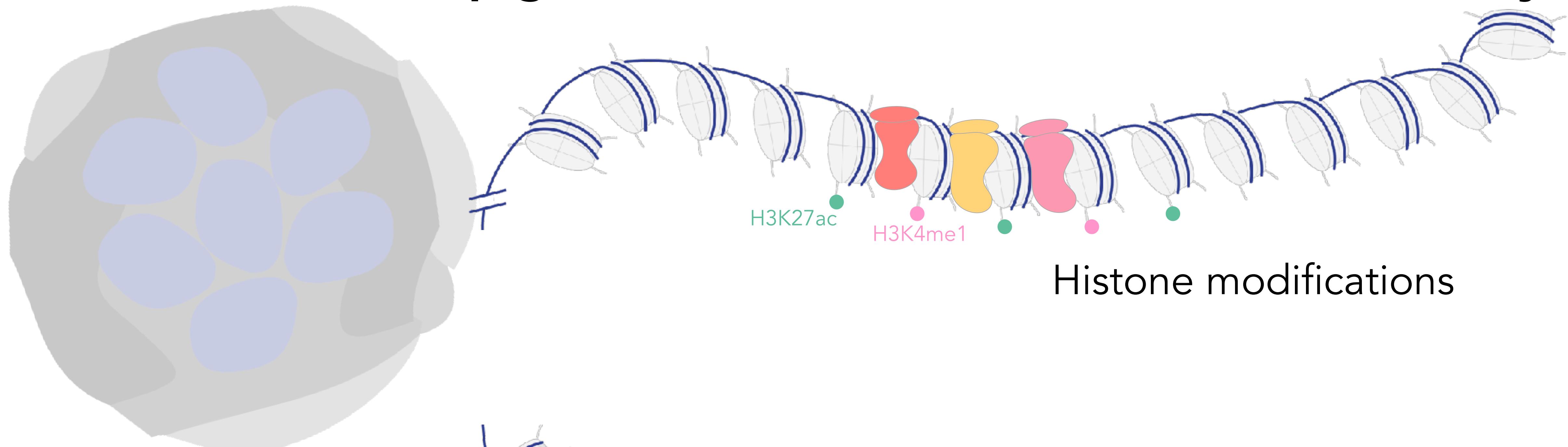
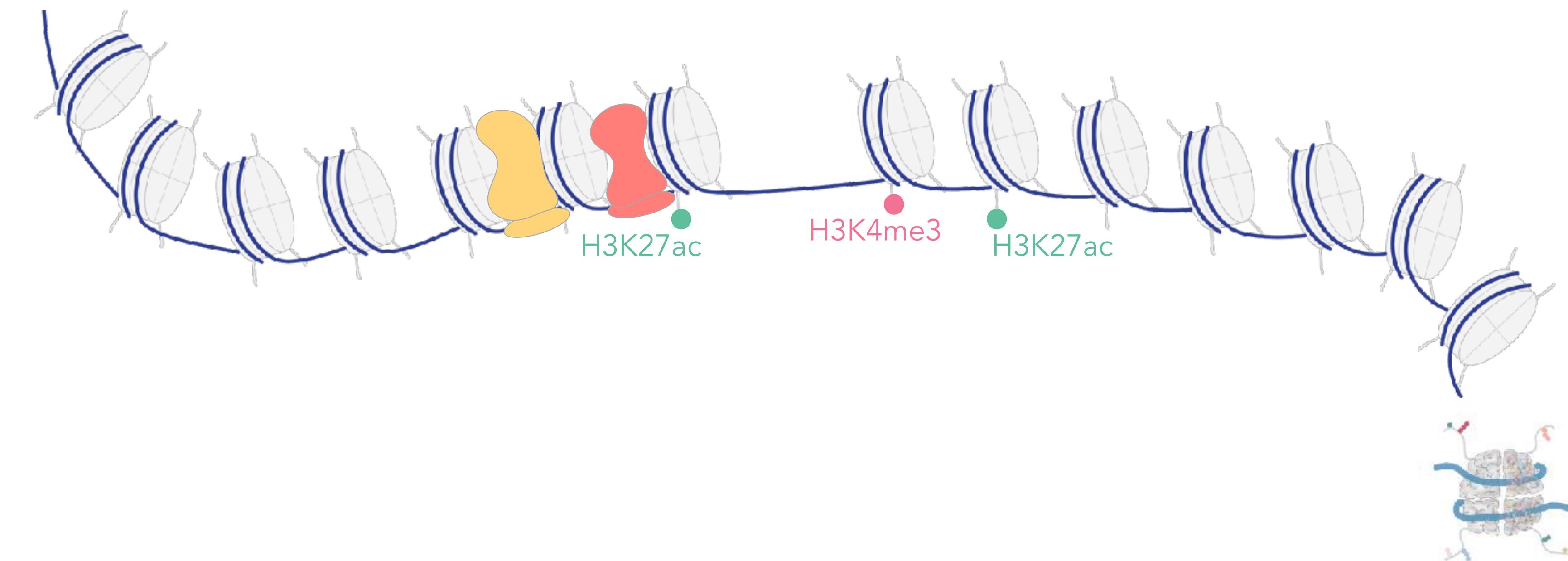
Packaging of Chromatin inside the Nucleus



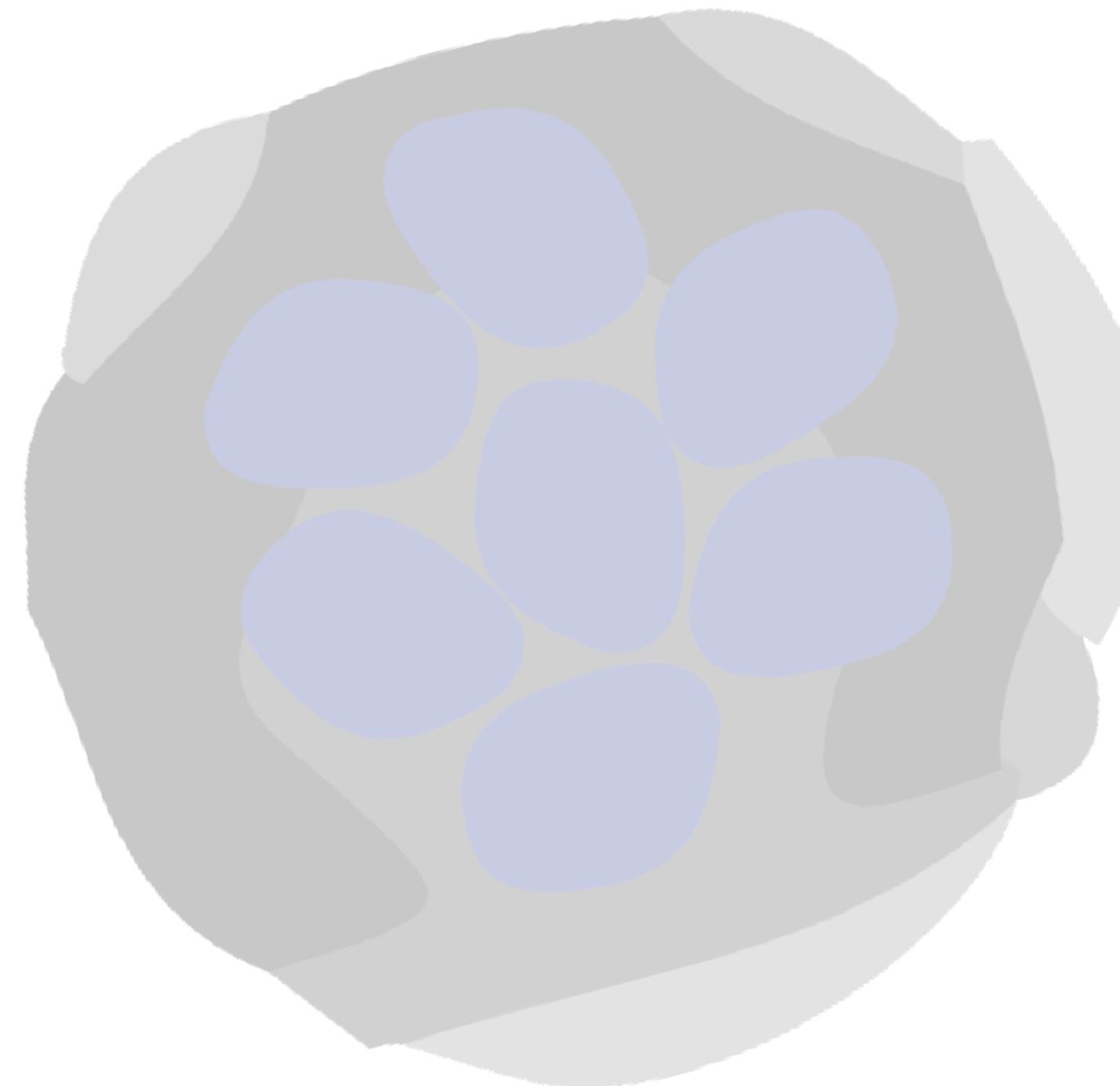
Epigenetic Mechanisms control Gene Activity



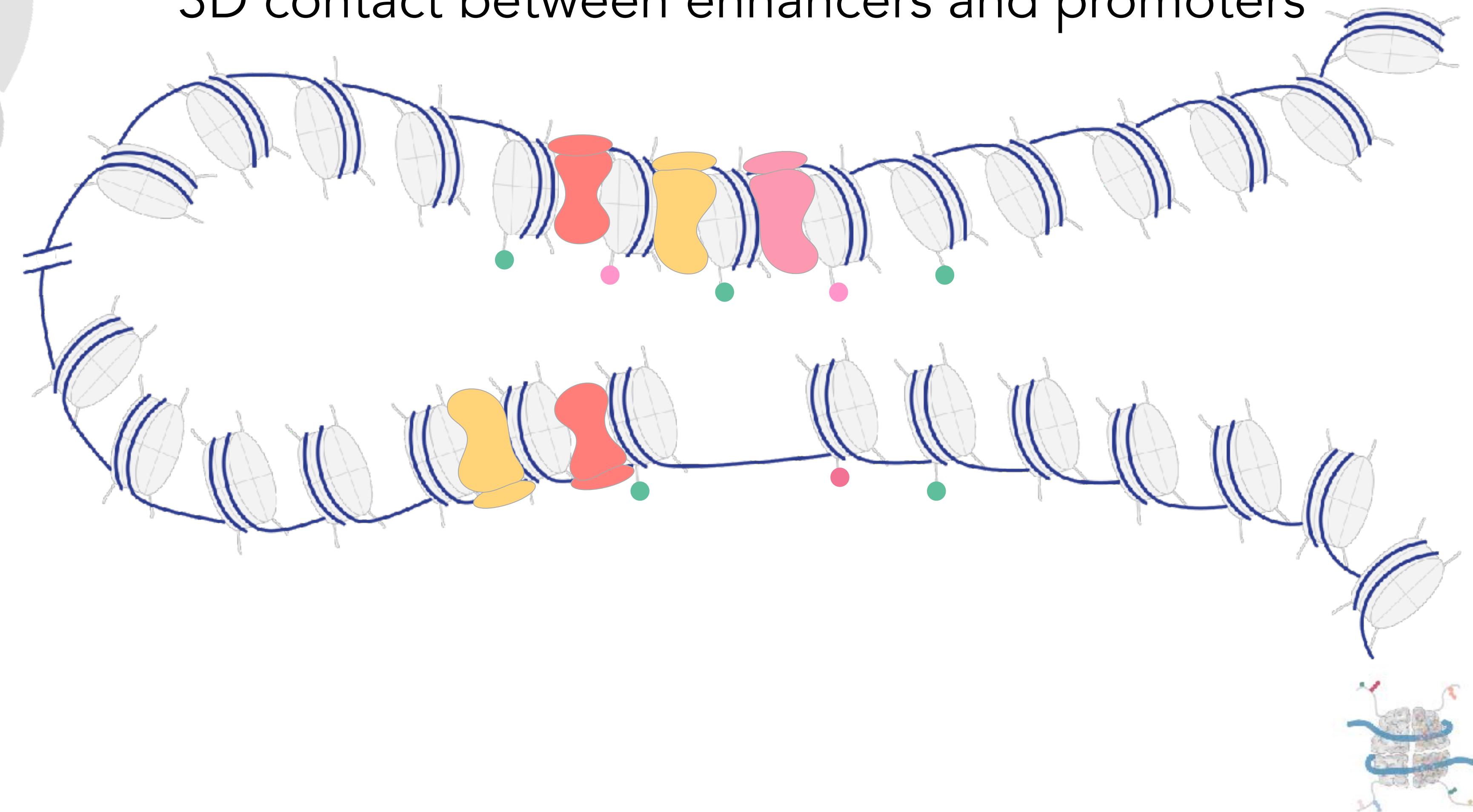
Epigenetic Mechanisms control Gene Activity



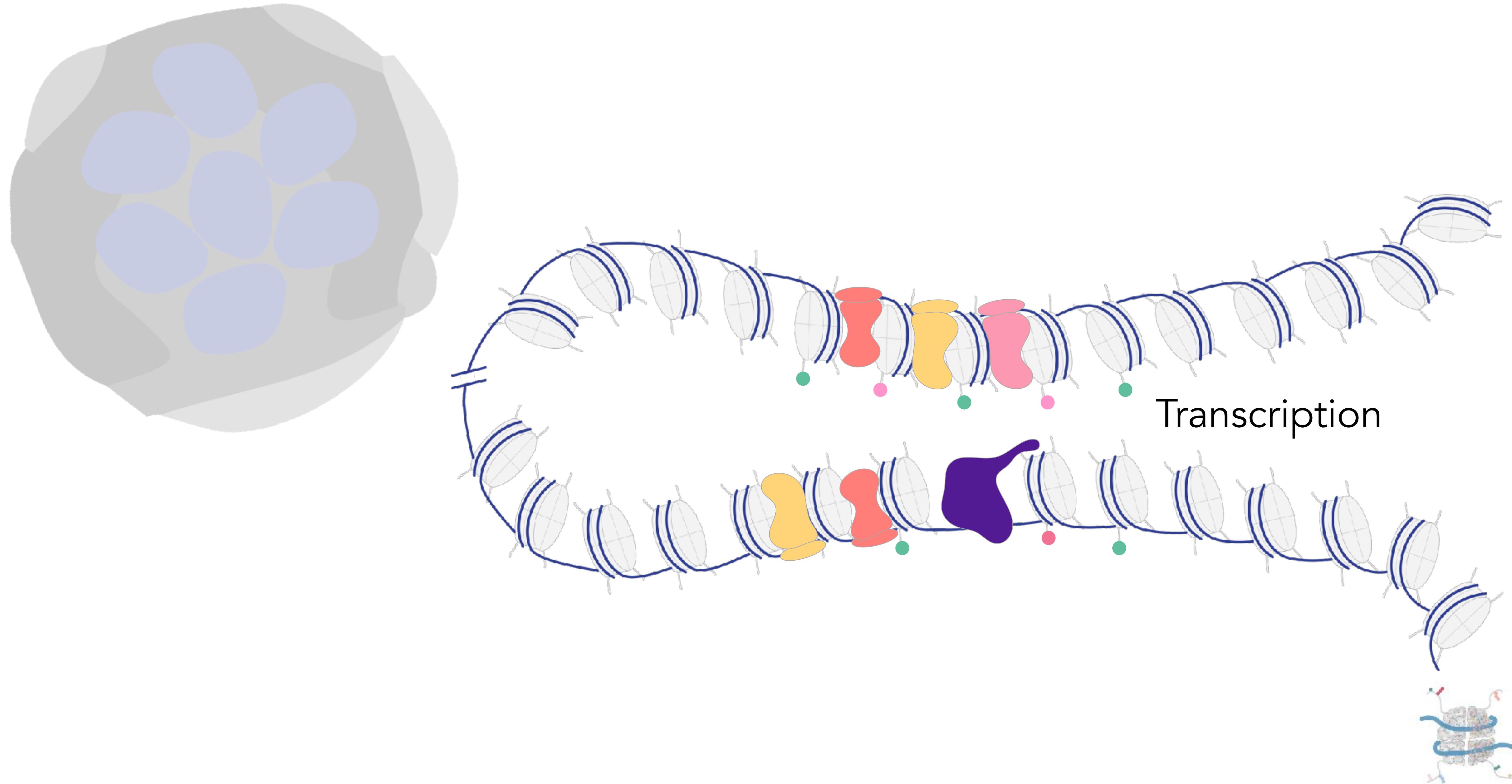
Epigenetic Mechanisms control Gene Activity



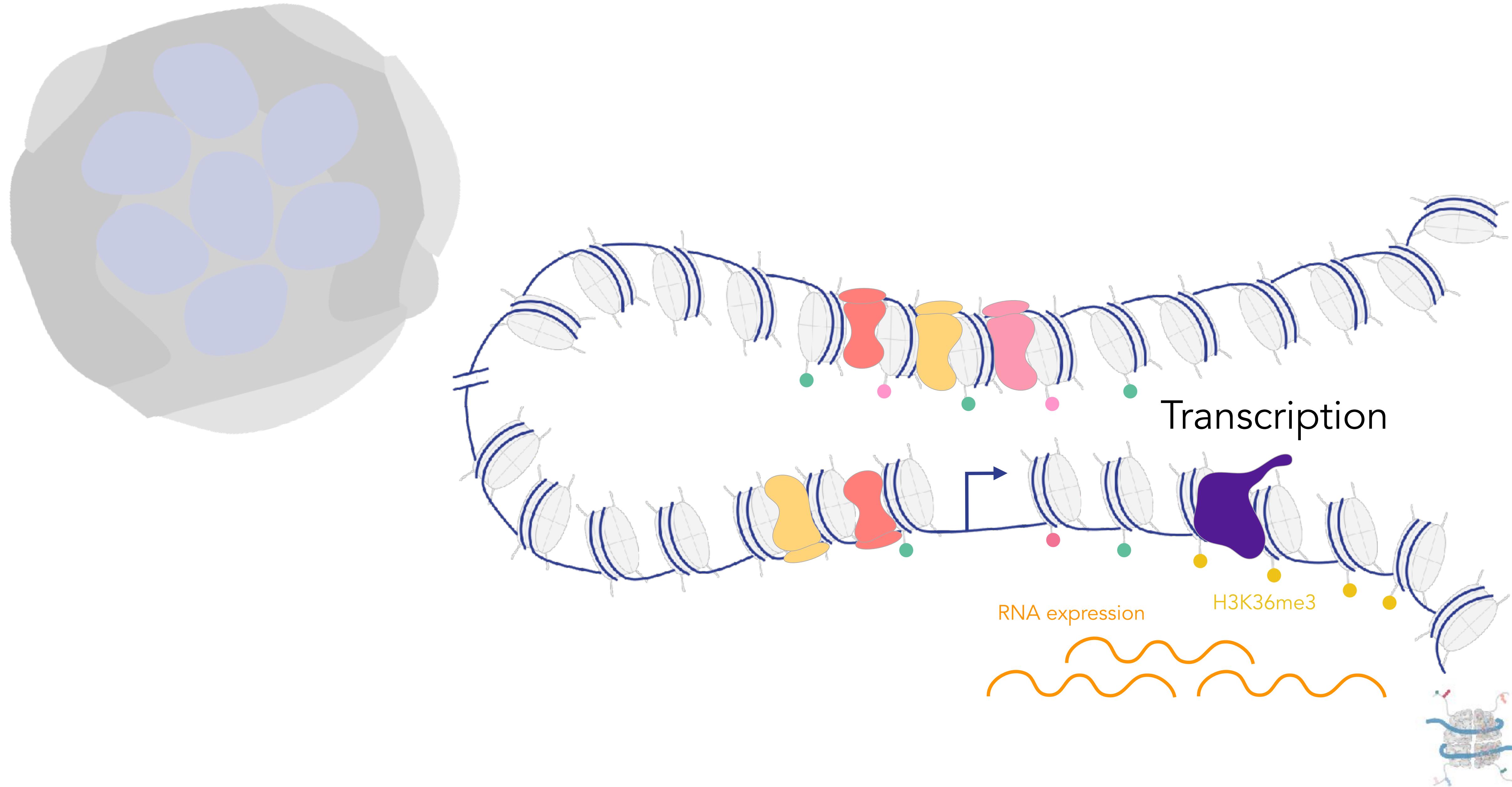
3D contact between enhancers and promoters



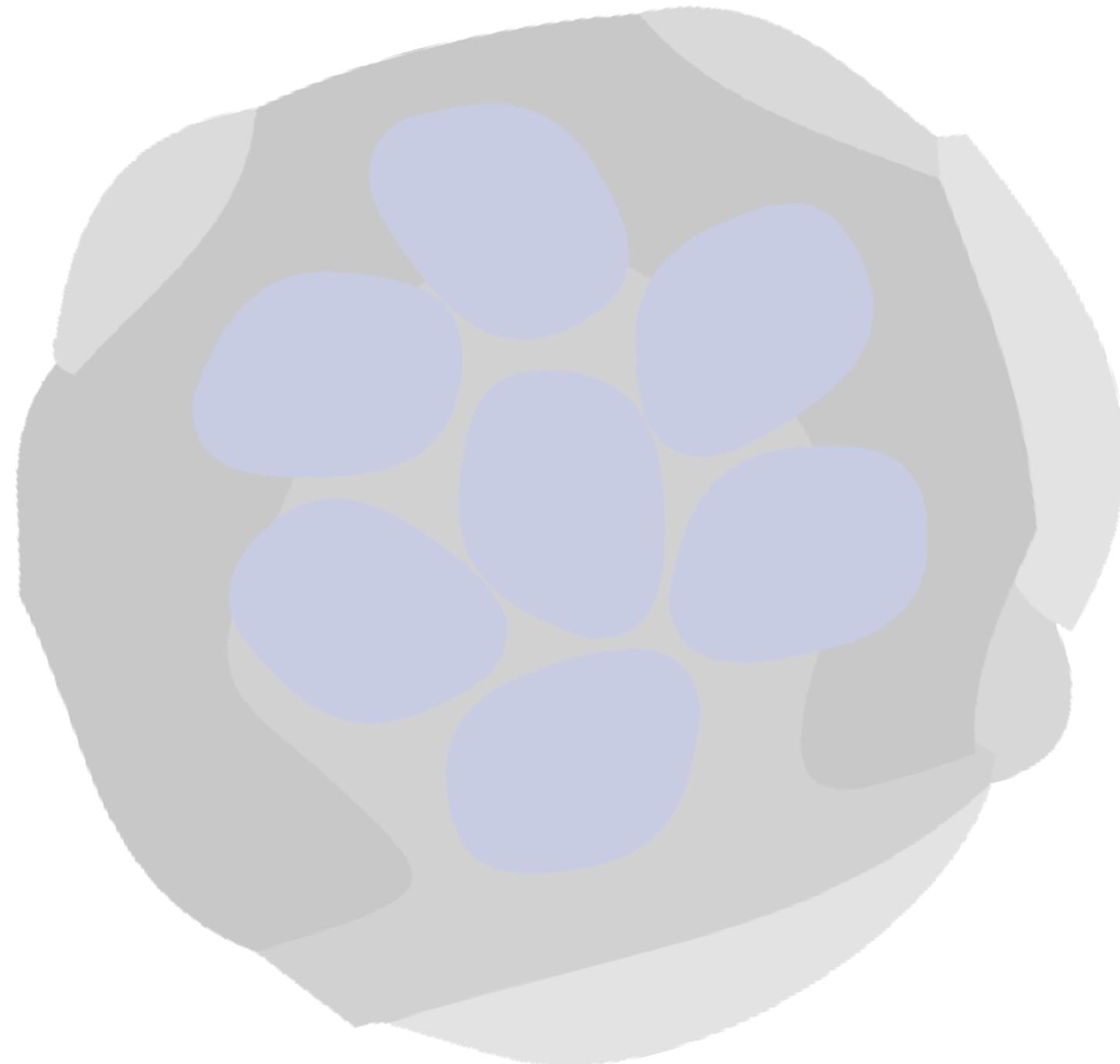
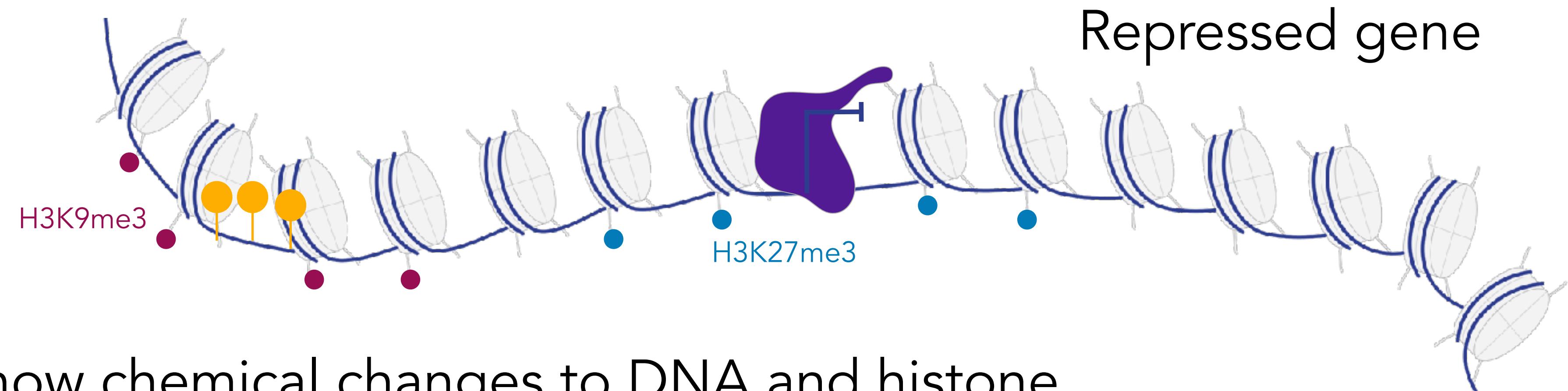
Epigenetic Mechanisms control Gene Activity



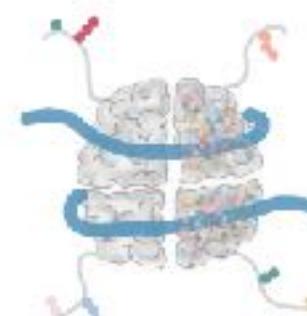
Epigenetic Mechanisms control Gene Activity



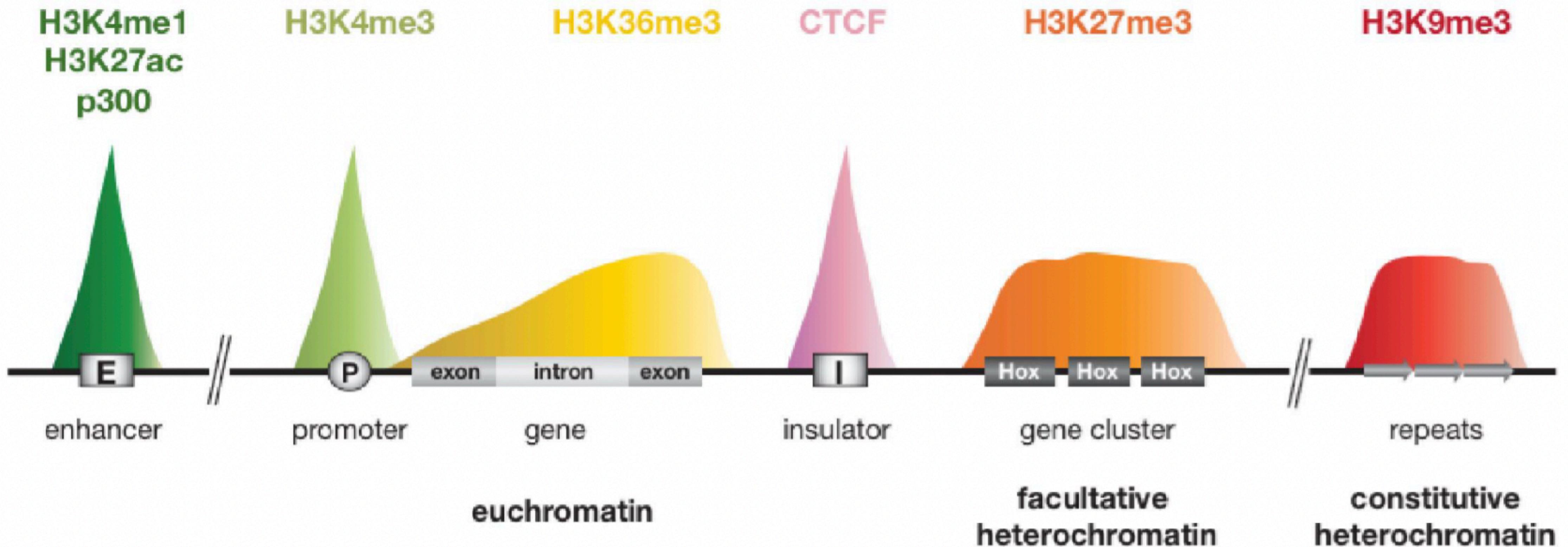
Epigenetic Mechanisms control Gene Activity



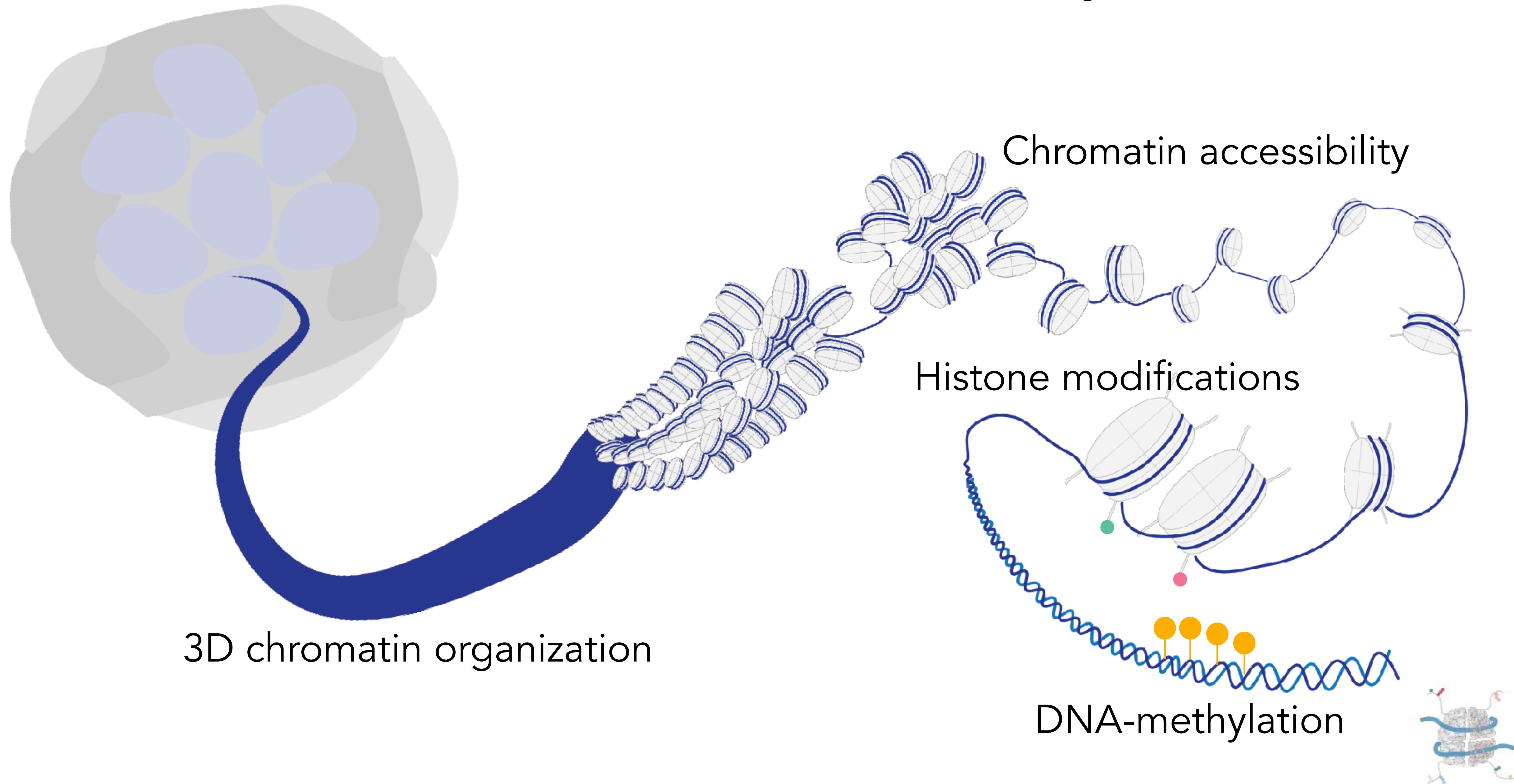
Epigenetics describes how chemical changes to DNA and histone proteins can influence gene expression



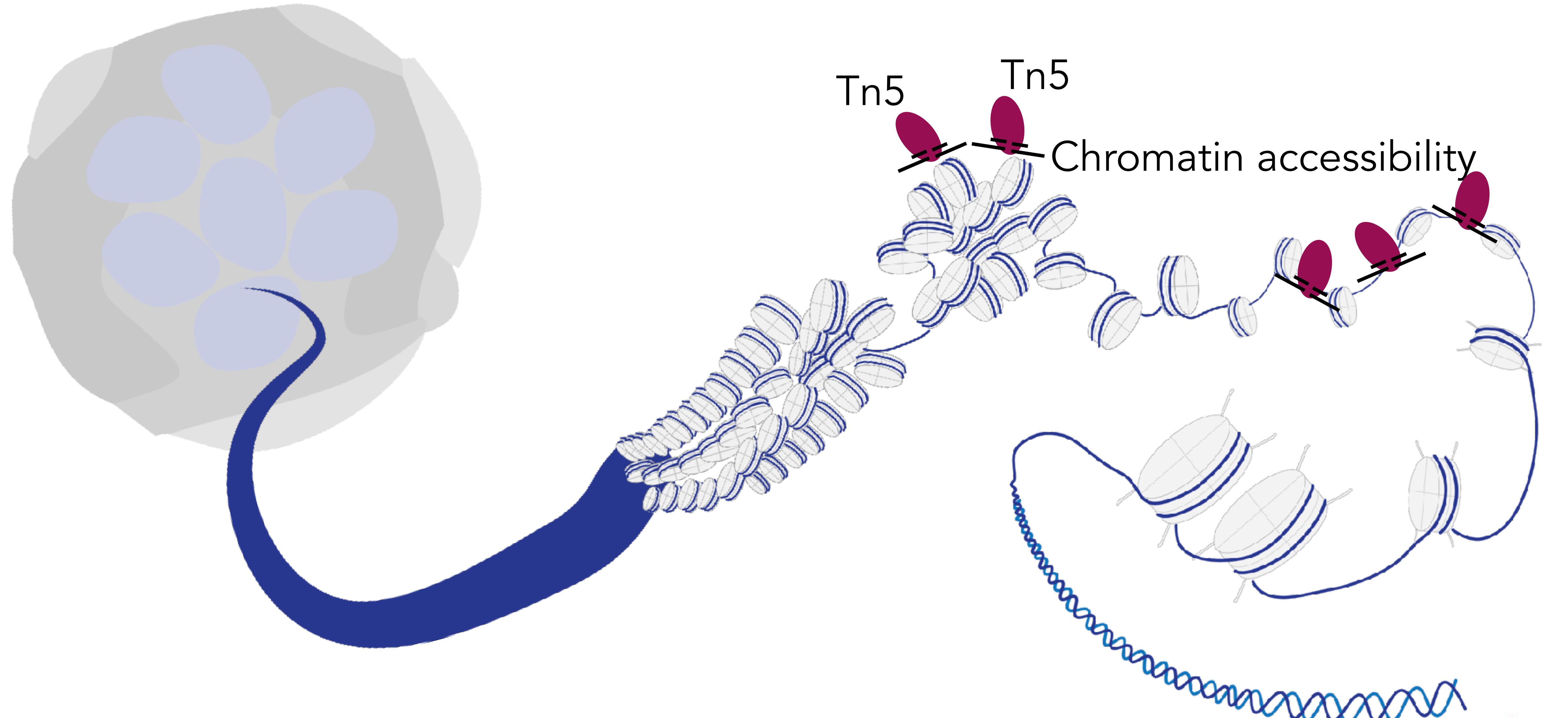
Histone modifications are differentially enriched in the genome



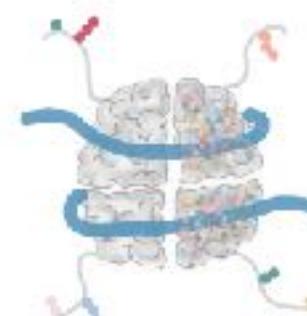
How can we measure and study these features?



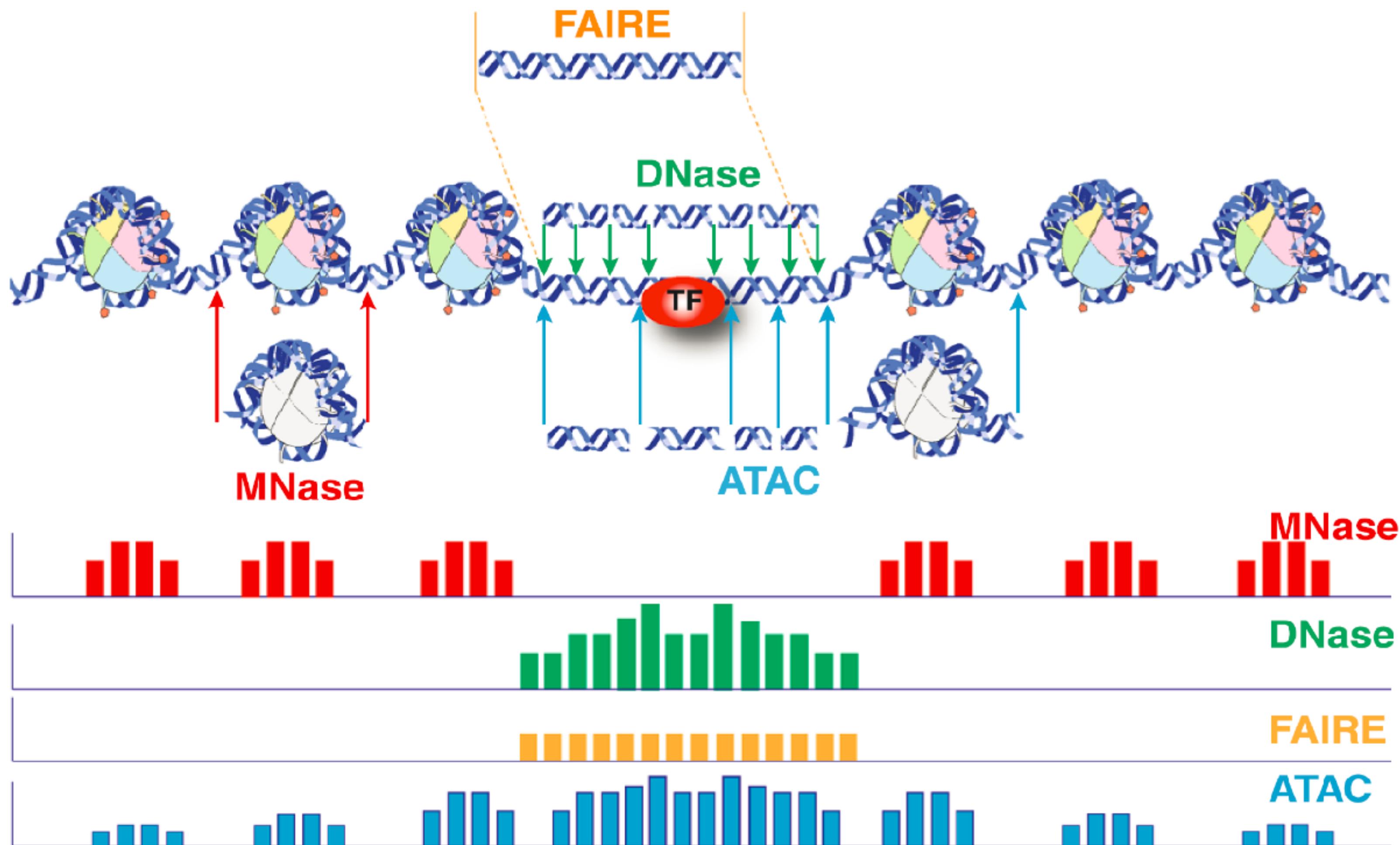
ATAC - assay for transposase-accessible chromatin



Tn5 (tagmentase) binds open chromatin and inserts sequencing adapters



Several different enzymes cut open chromatin regions



ATAC - assay for transposase-accessible chromatin

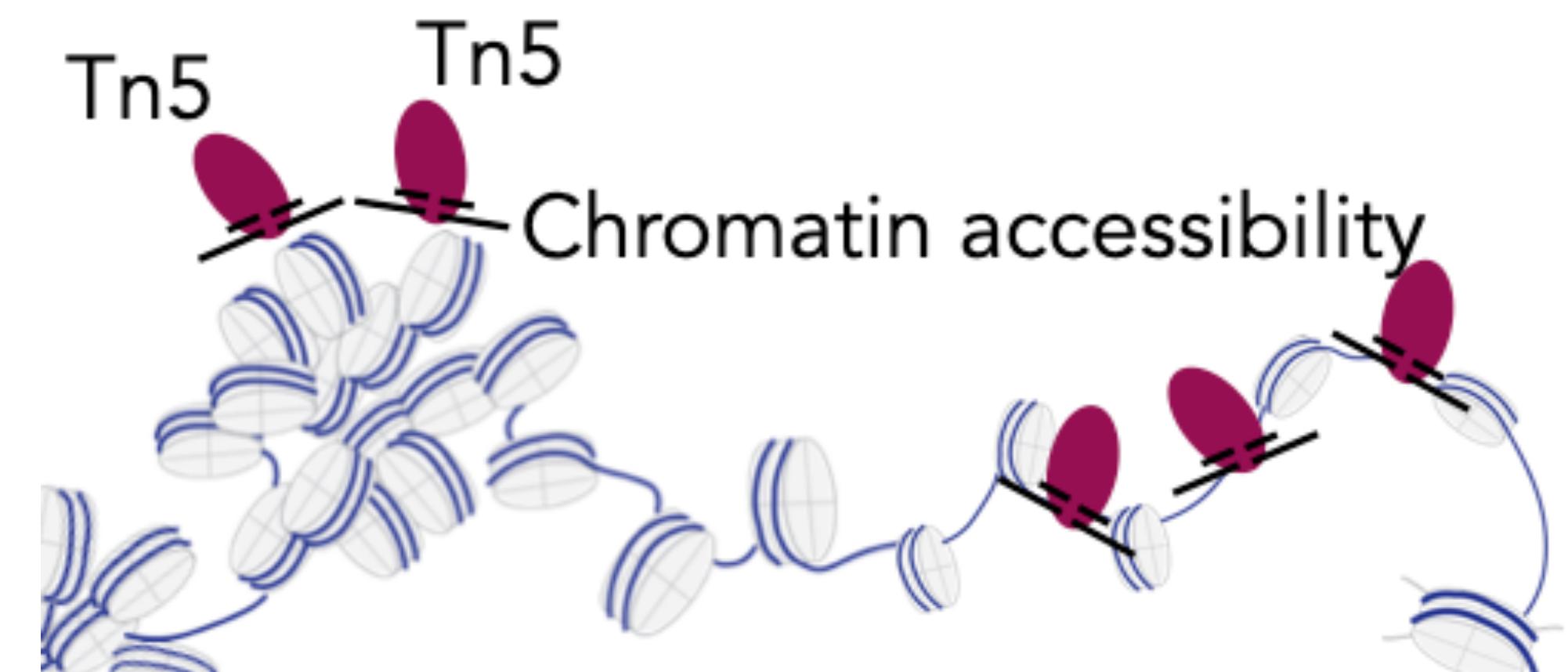
Article | Published: 06 October 2013

Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position

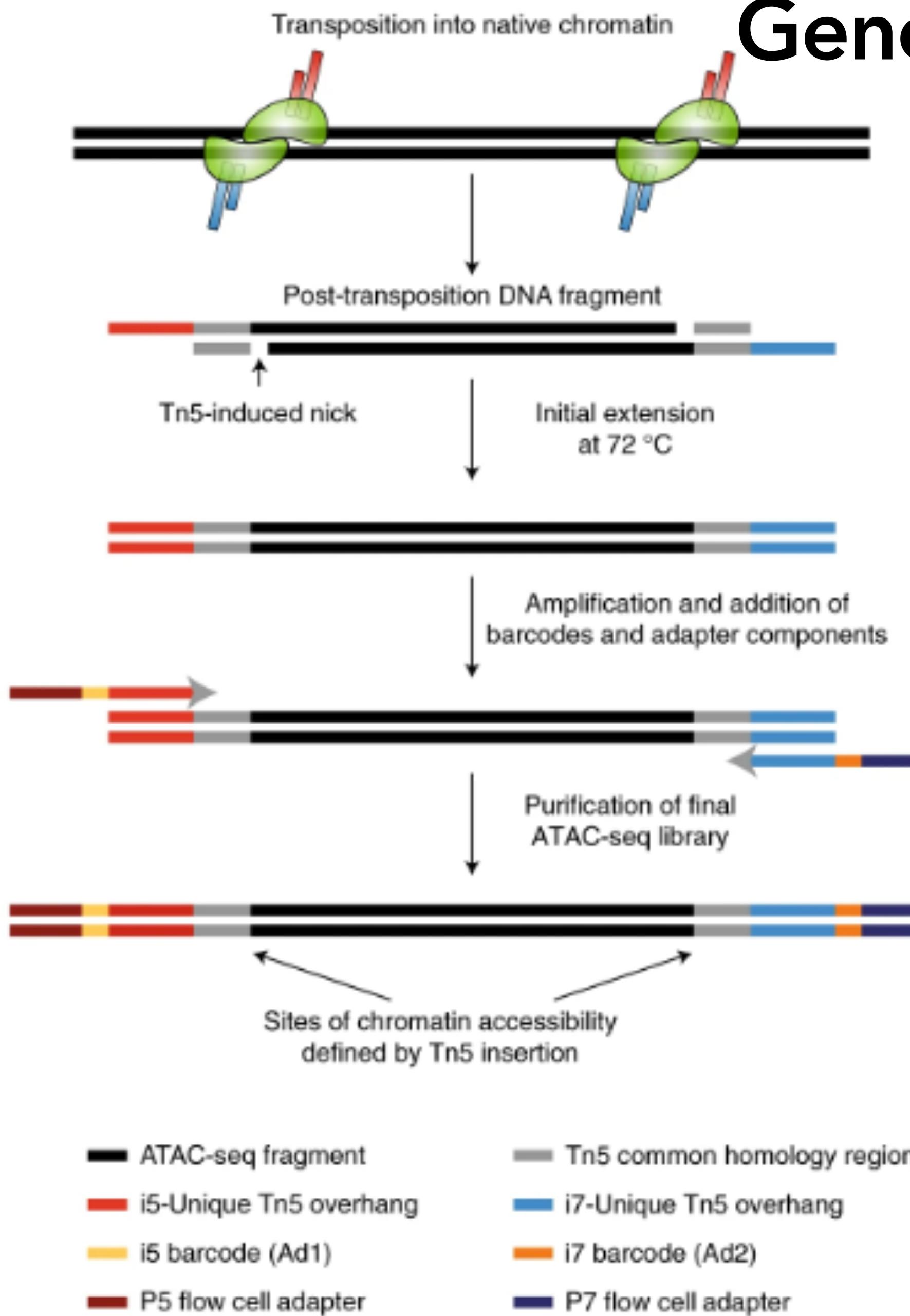
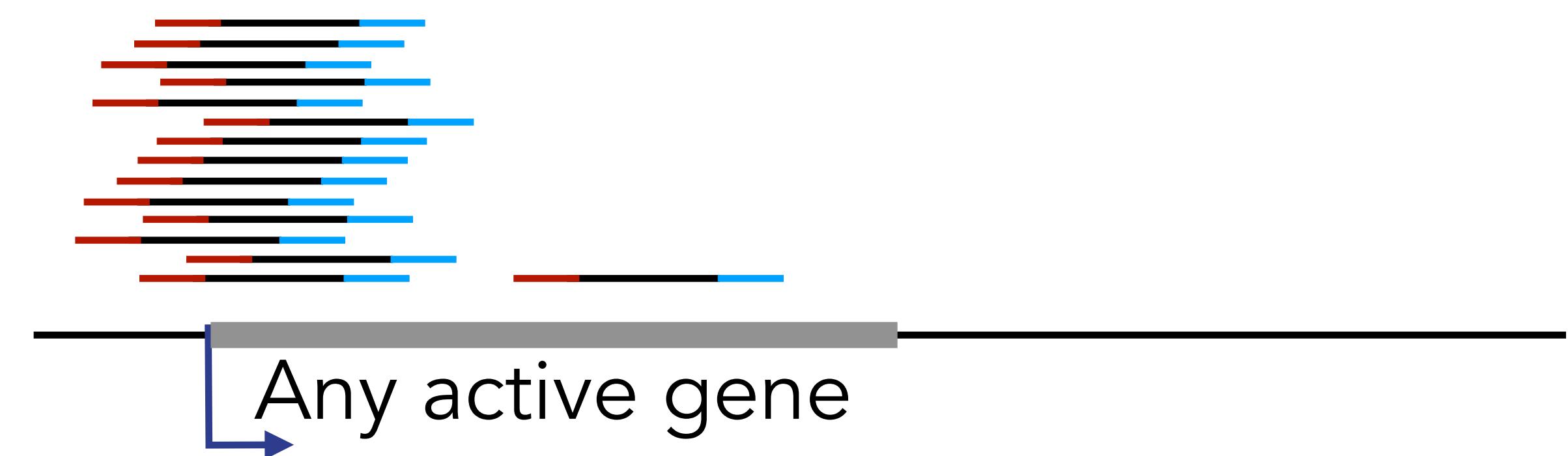
[Jason D Buenrostro](#), [Paul G Giresi](#), [Lisa C Zaba](#), [Howard Y Chang](#)✉ & [William J Greenleaf](#)✉

Nature Methods 10, 1213–1218 (2013) | [Cite this article](#)

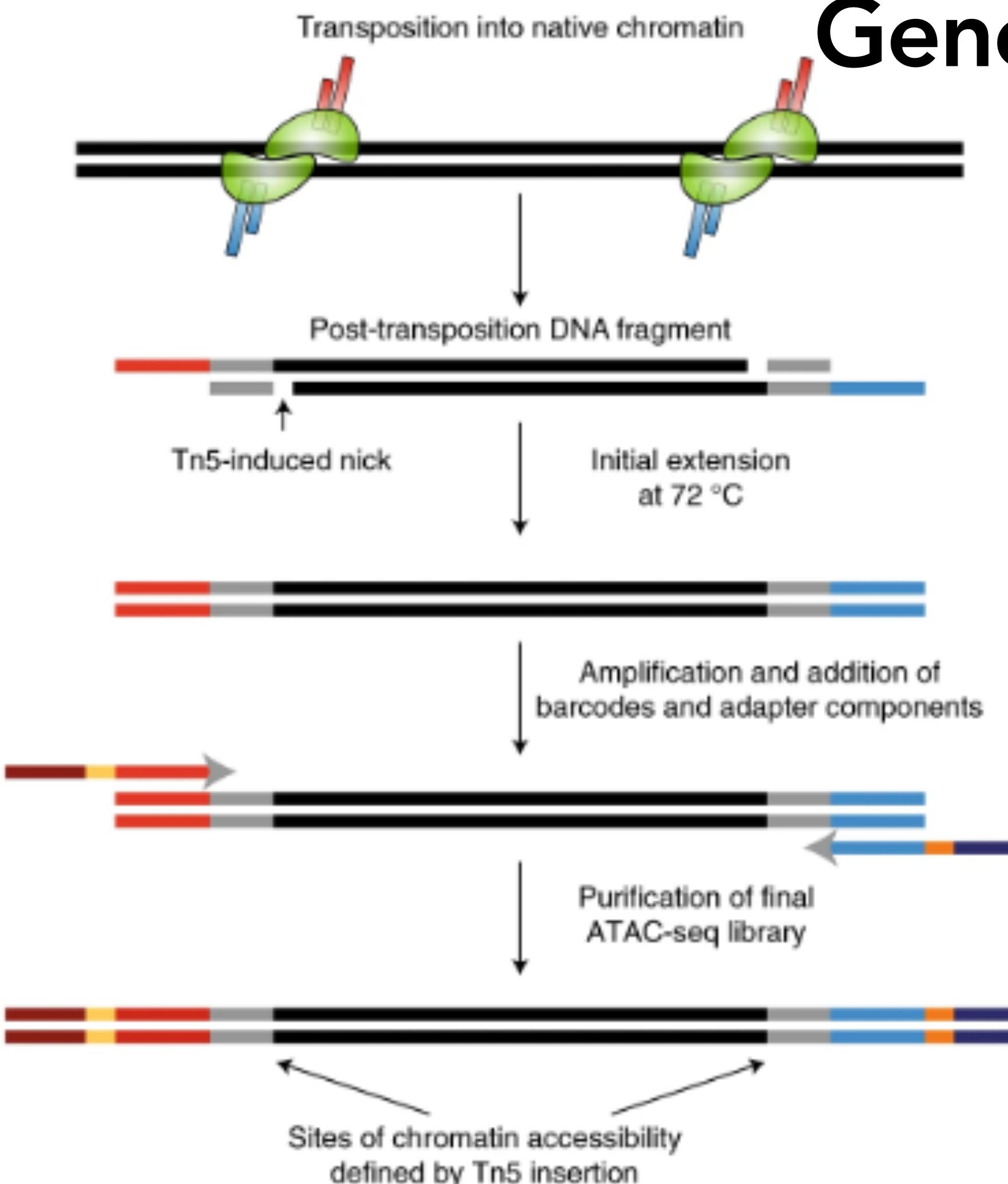
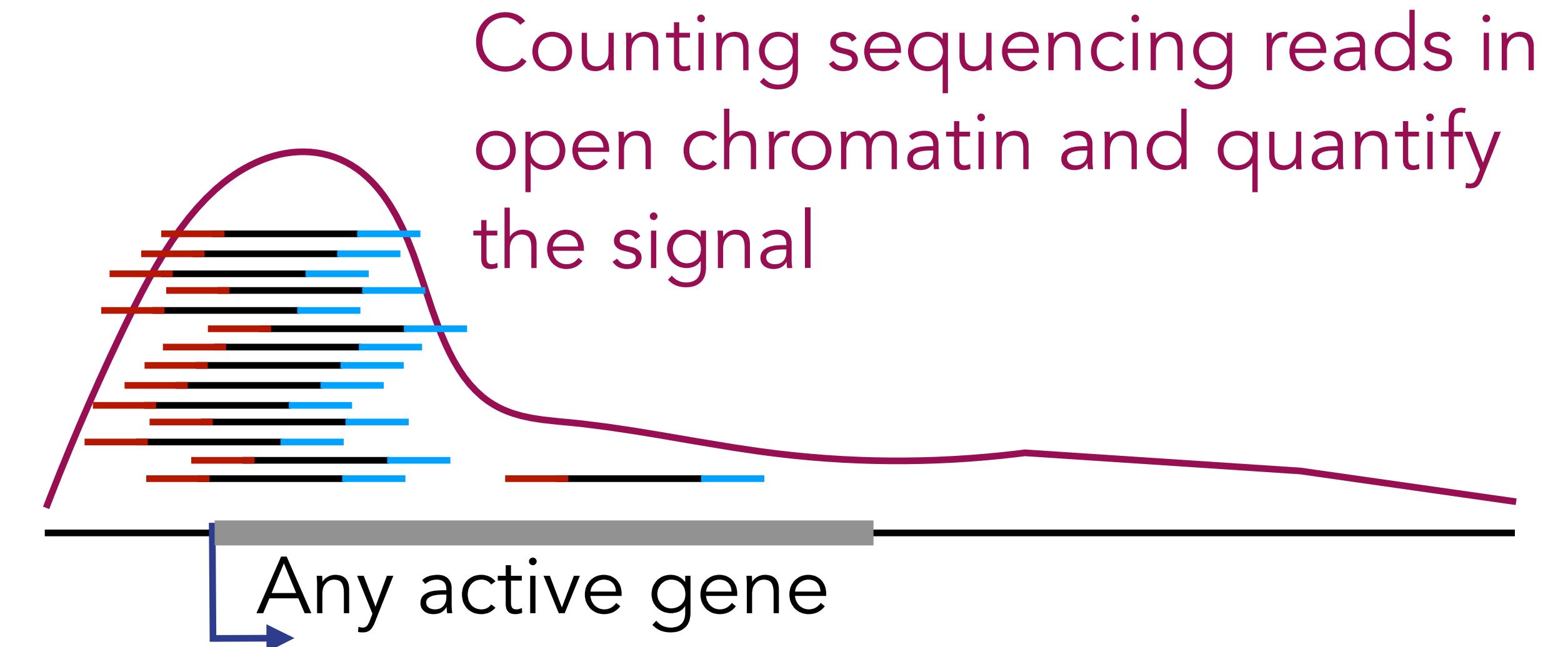
249k Accesses | 144 Altmetric | [Metrics](#)



Generation of adapter-flanked DNA fragments

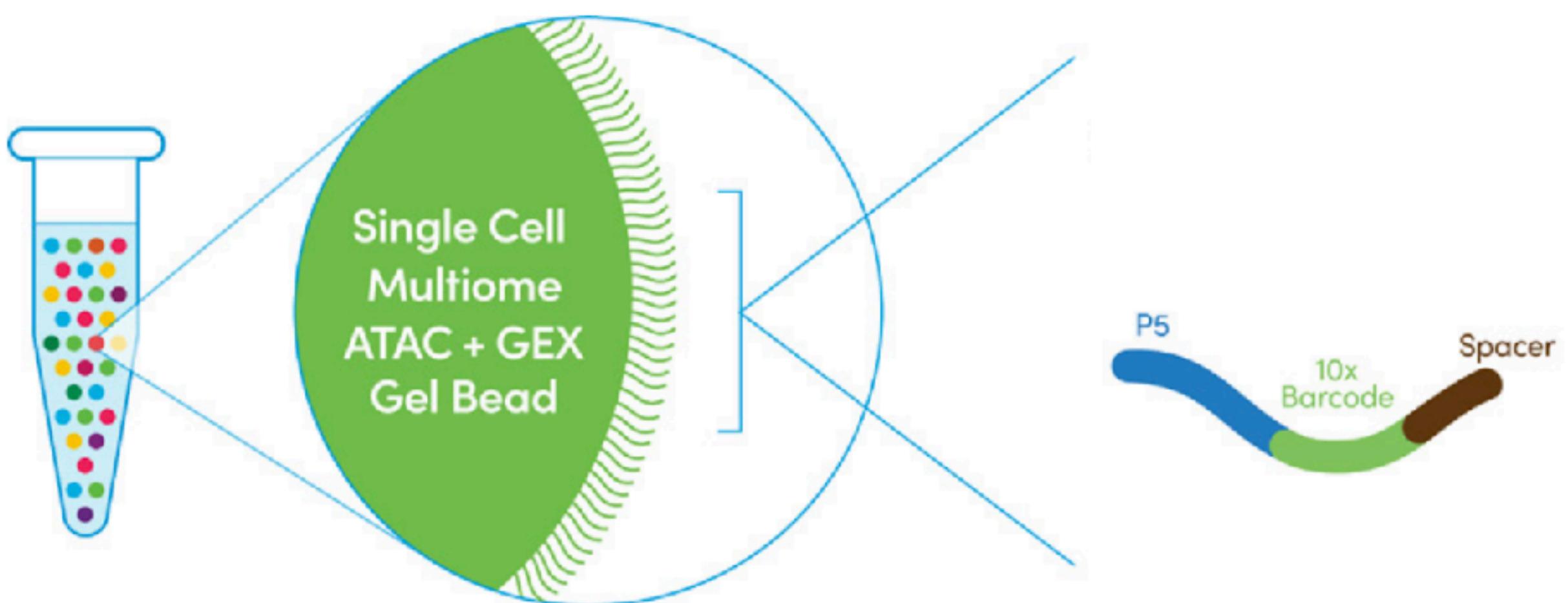
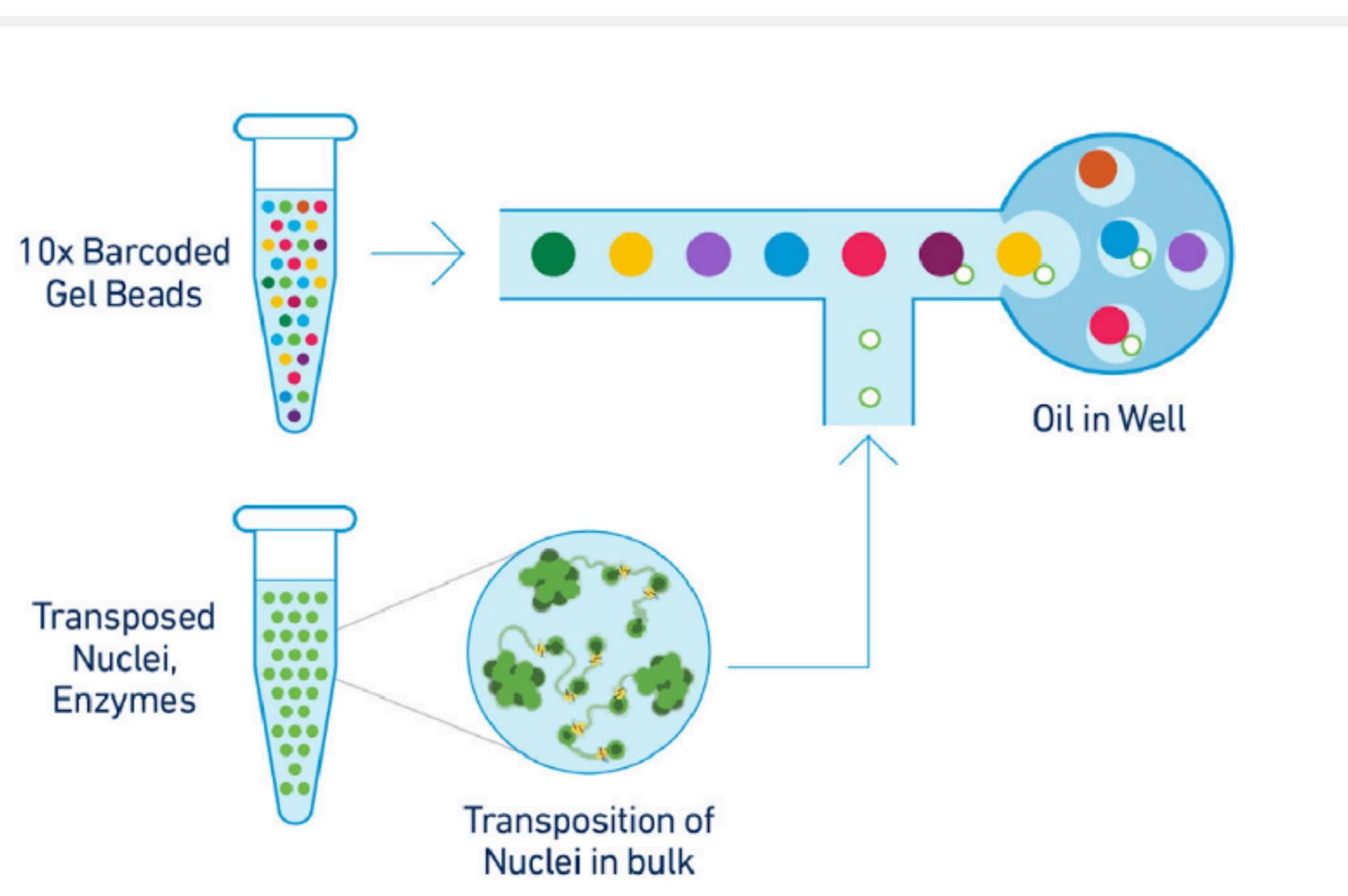


Generation of adapter-flanked DNA fragments

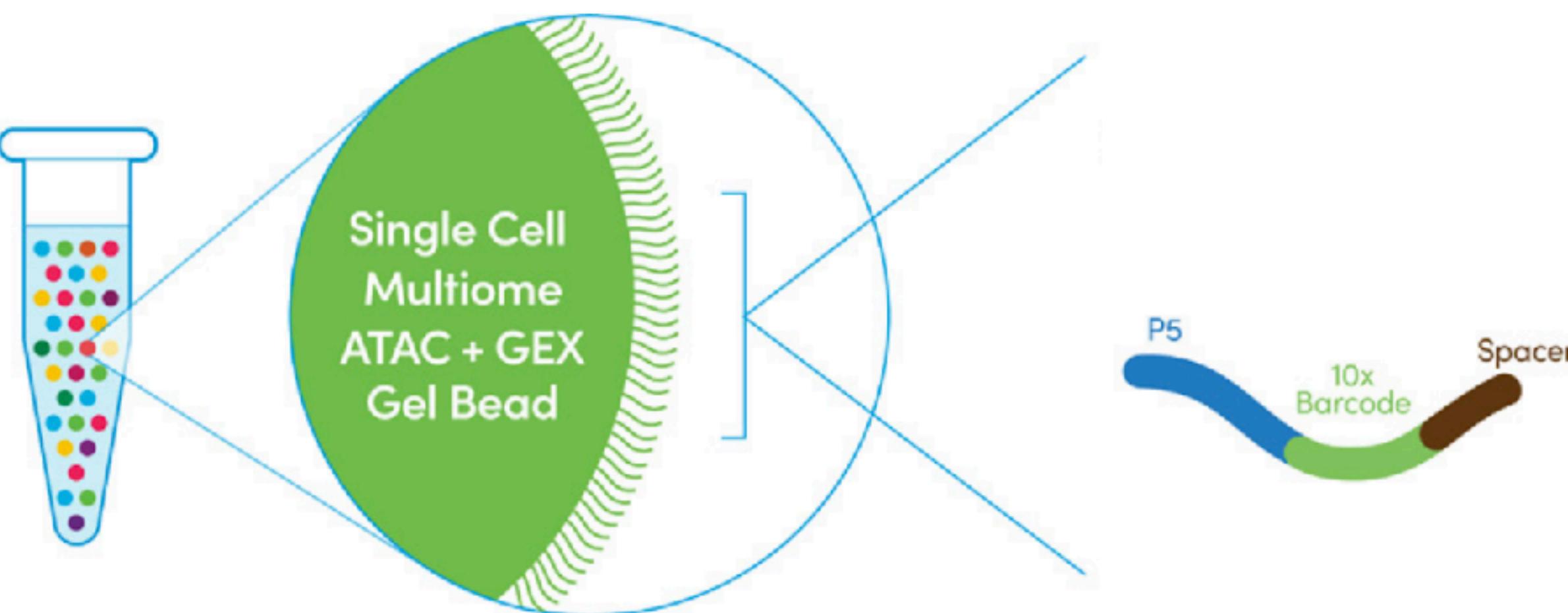
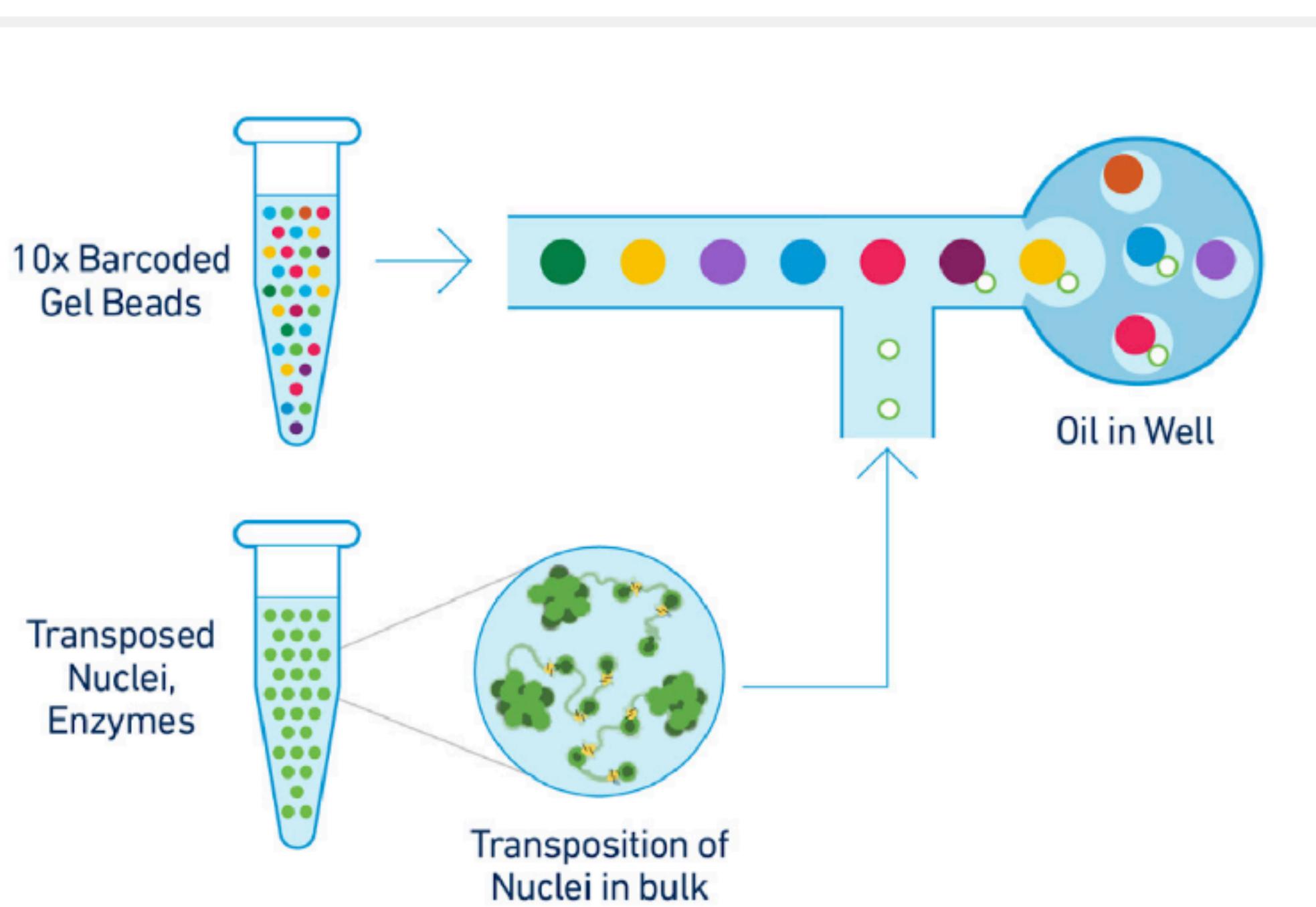
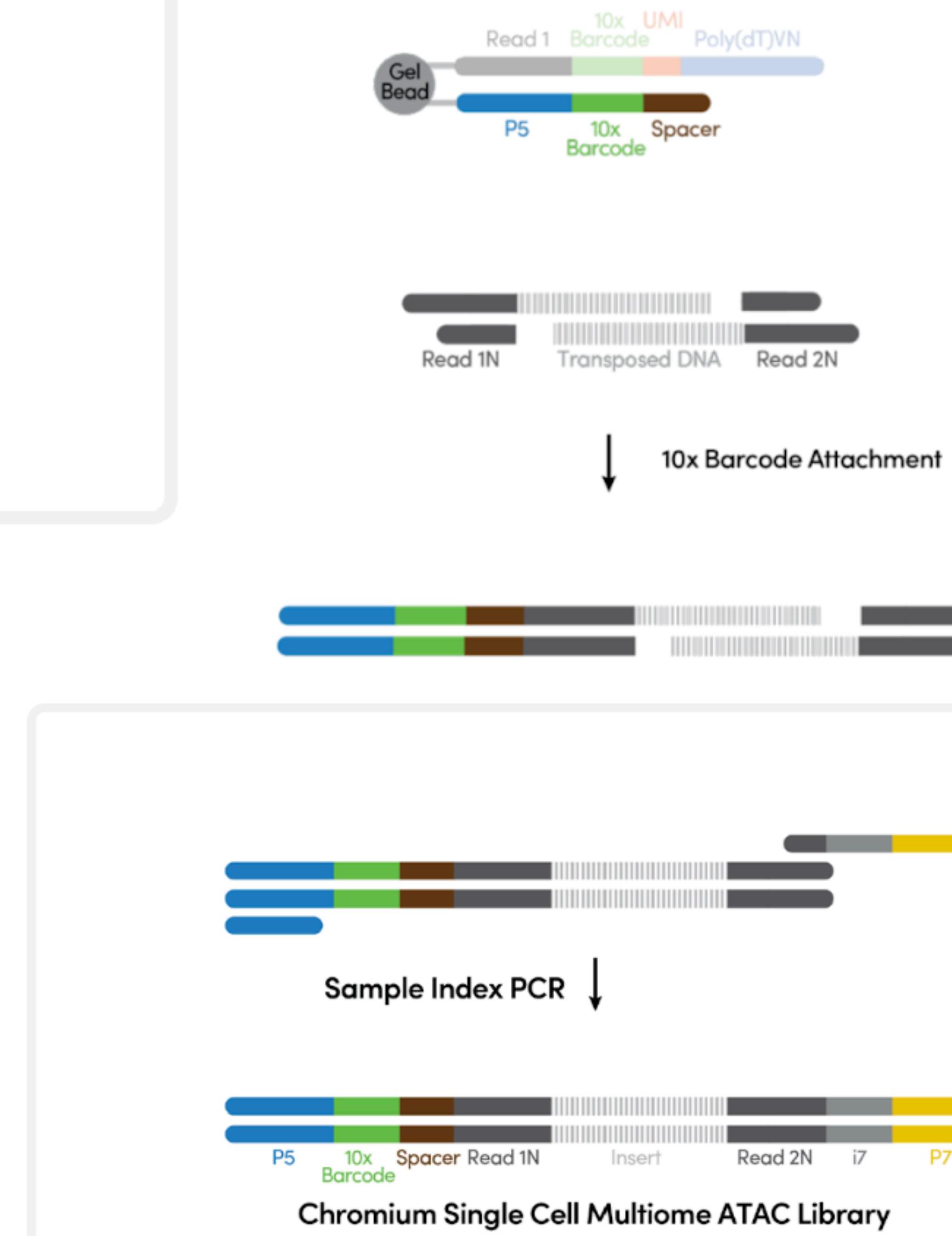


- ATAC-seq fragment
- i5-Unique Tn5 overhang
- i5 barcode (Ad1)
- P5 flow cell adapter
- Tn5 common homology region
- i7-Unique Tn5 overhang
- i7 barcode (Ad2)
- P7 flow cell adapter

Single-cell ATAC Seq

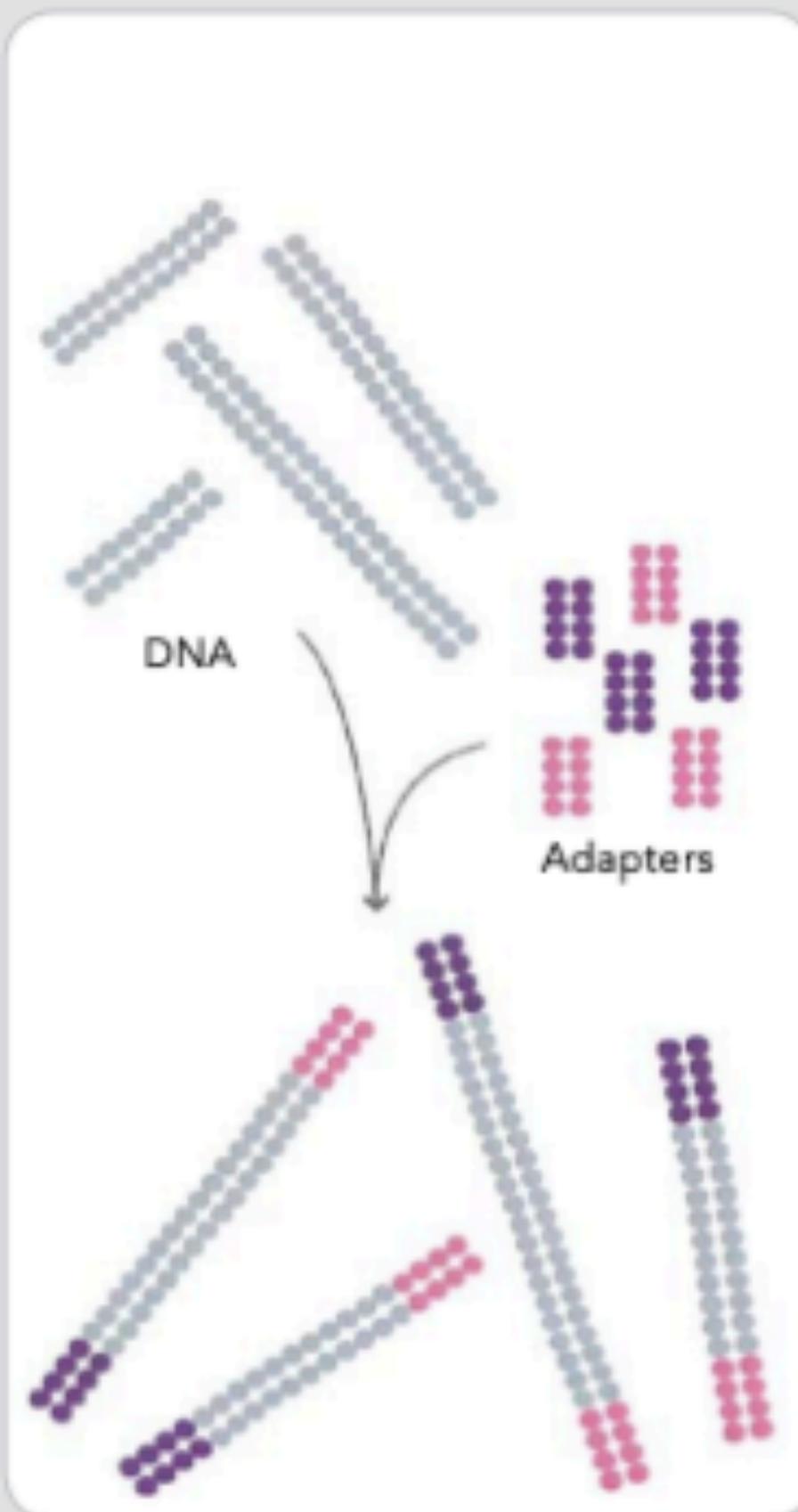


Single-cell ATAC Seq



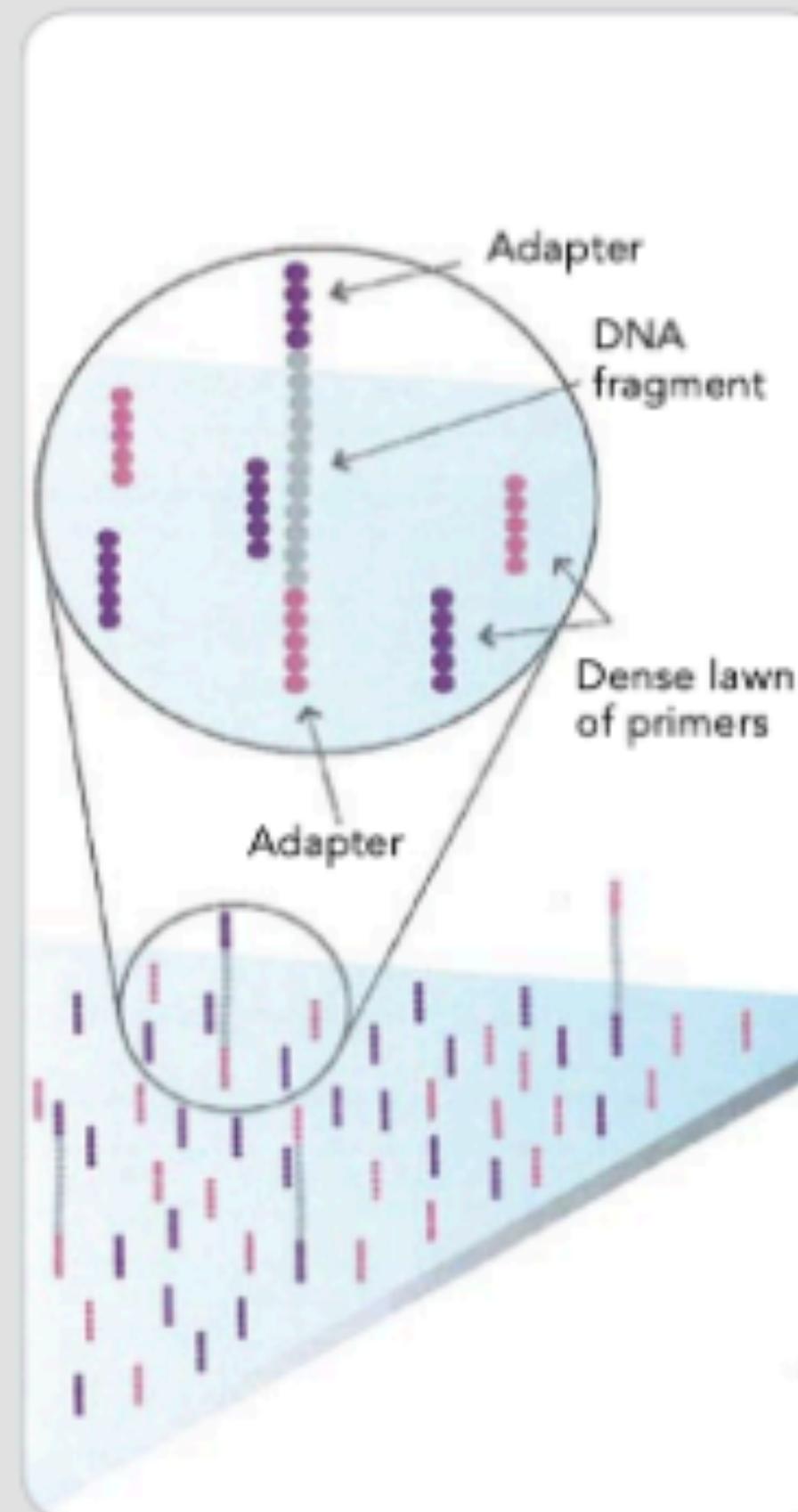
How does next generation sequencing work?

1. PREPARE GENOMIC DNA SAMPLE



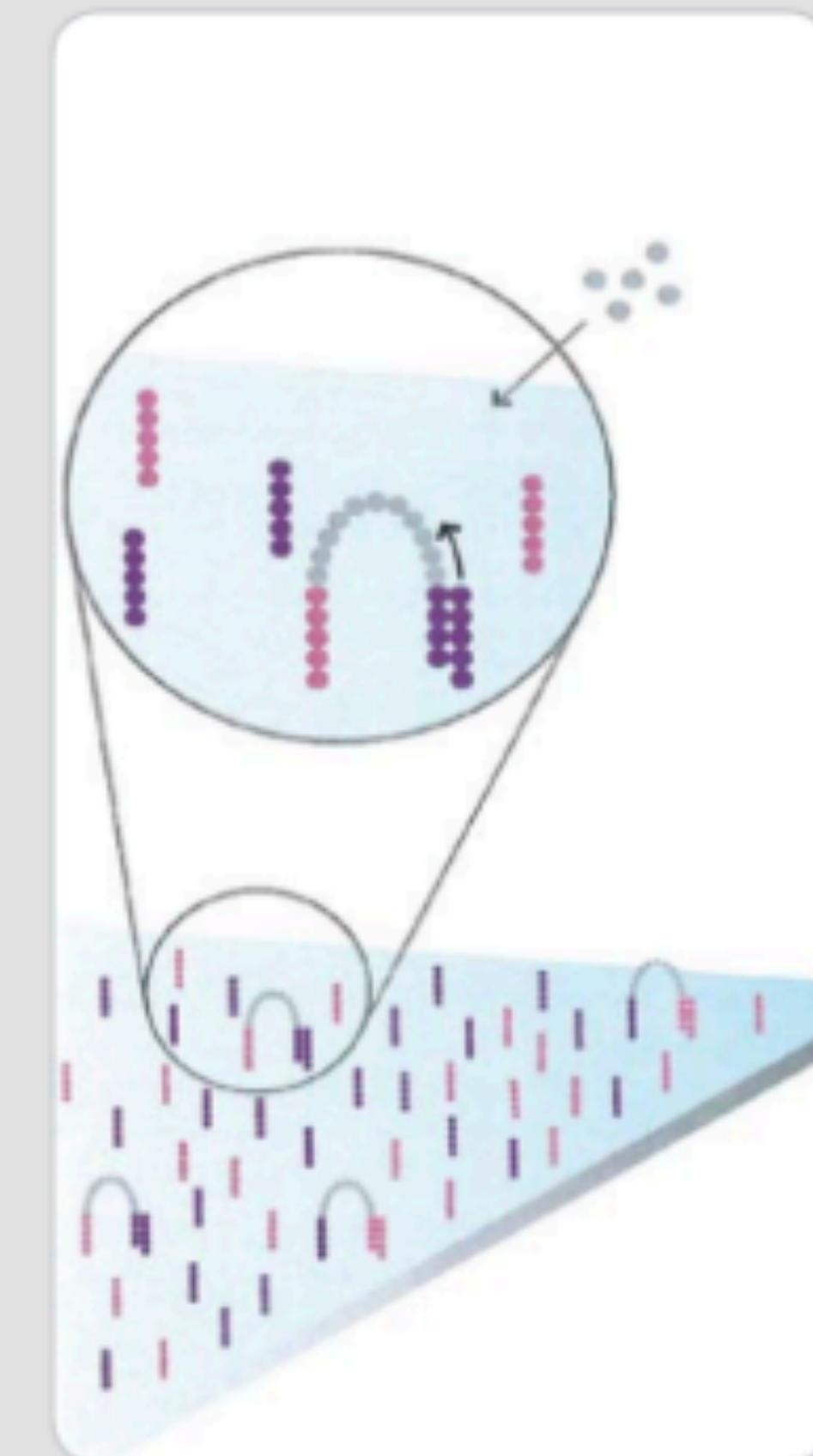
Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.

2. ATTACH DNA TO SURFACE



Bind single-stranded fragments randomly to the inside surface of the flow cell channels.

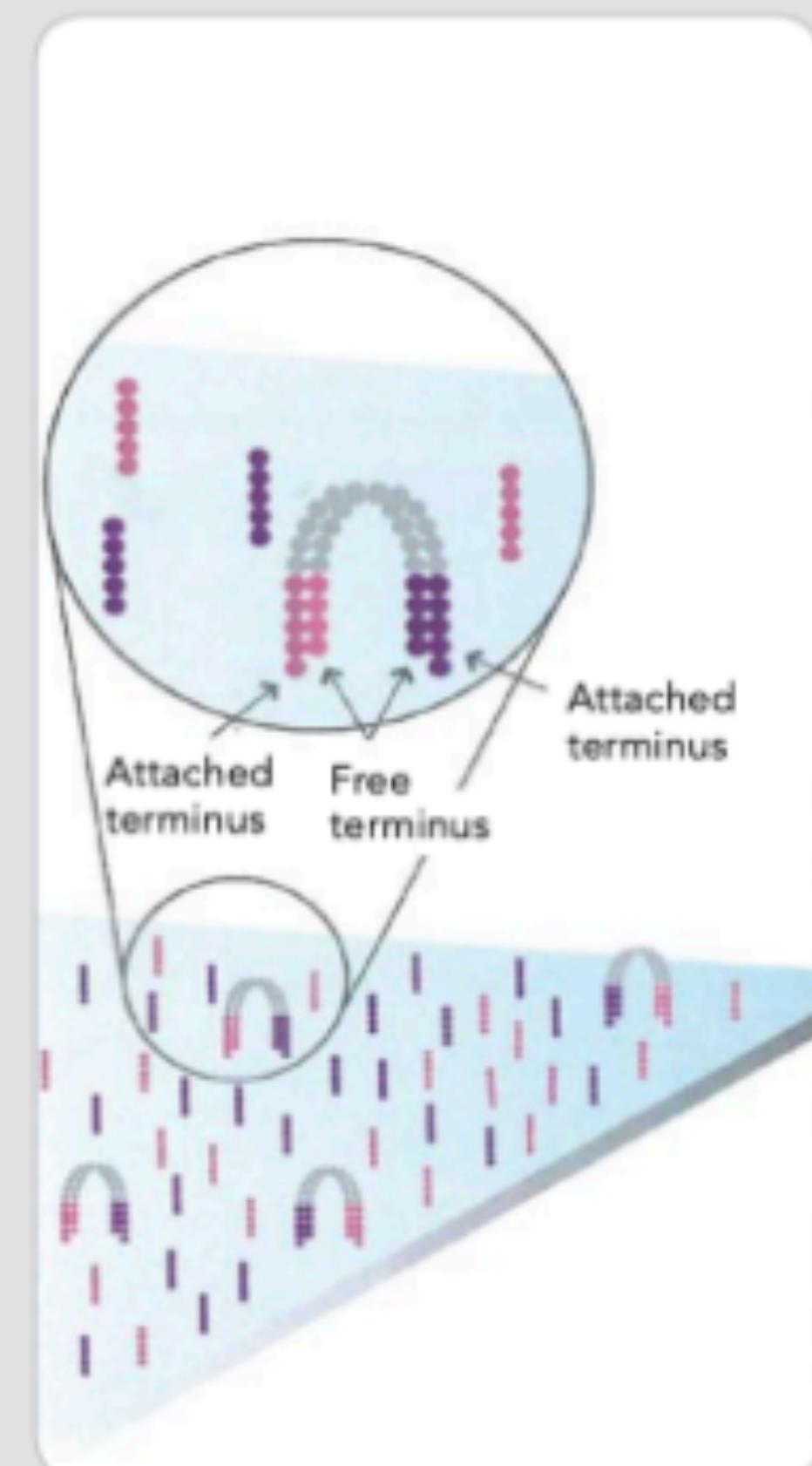
3. BRIDGE AMPLIFICATION



Add unlabeled nucleotides and enzyme to initiate solid-phase bridge amplification.

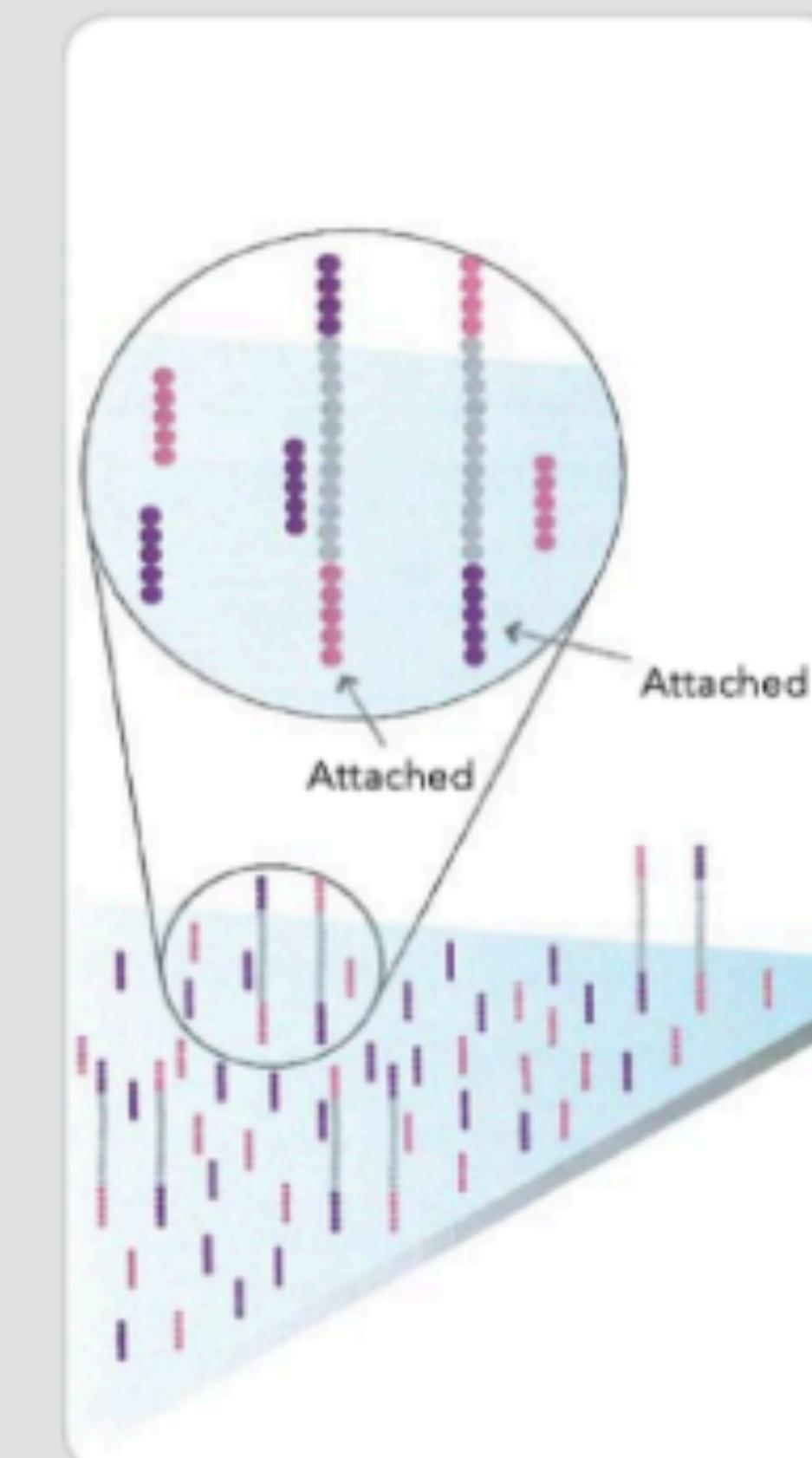
How does next generation sequencing work?

4. FRAGMENTS BECOME DOUBLE-STRANDED



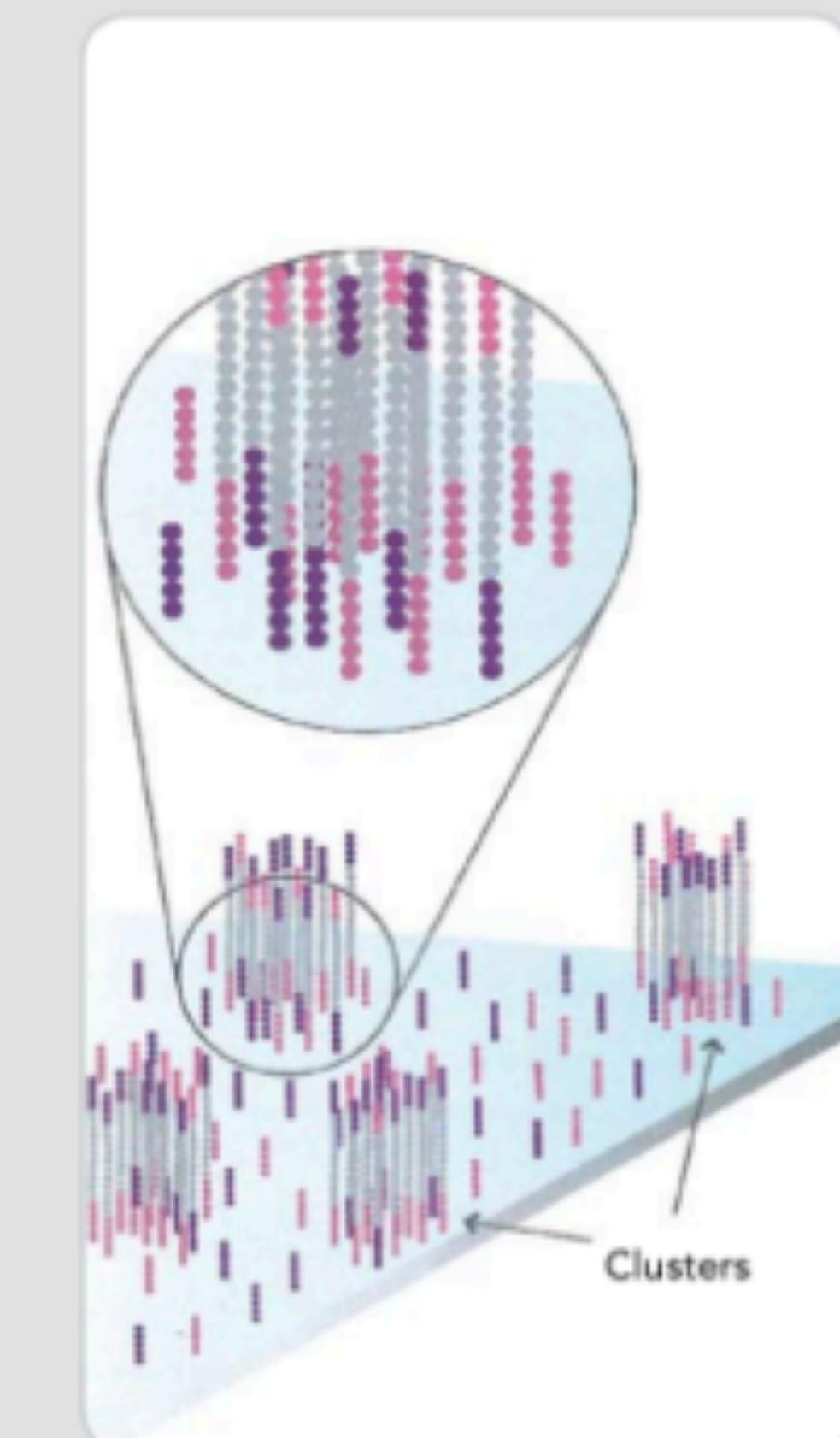
The enzyme incorporates nucleotides to build double-stranded bridges on the solid-phase substrate.

5. DENATURE THE DOUBLE-STRANDED MOLECULES



Denaturation leaves single-stranded templates anchored to the substrate.

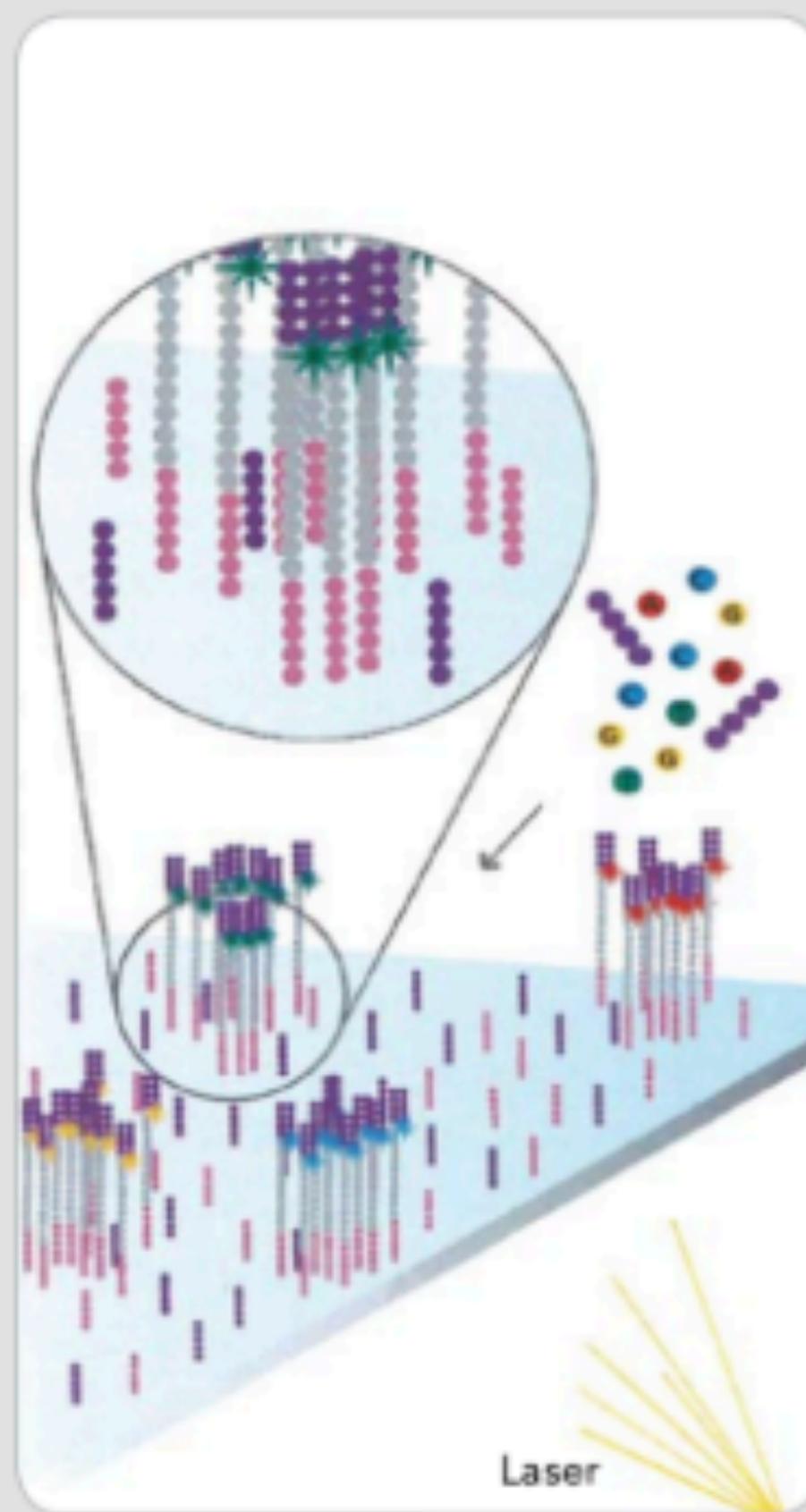
6. COMPLETE AMPLIFICATION



Several million dense clusters of double-stranded DNA are generated in each channel of the flow cell.

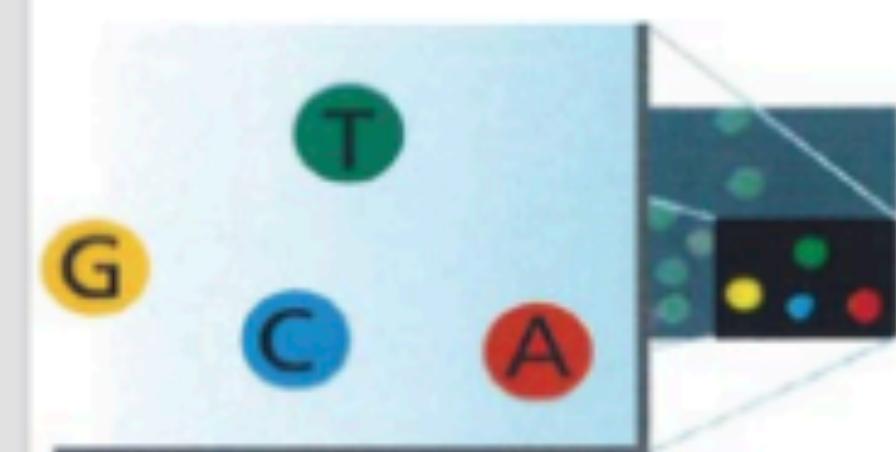
How does next generation sequencing work?

7. DETERMINE FIRST BASE



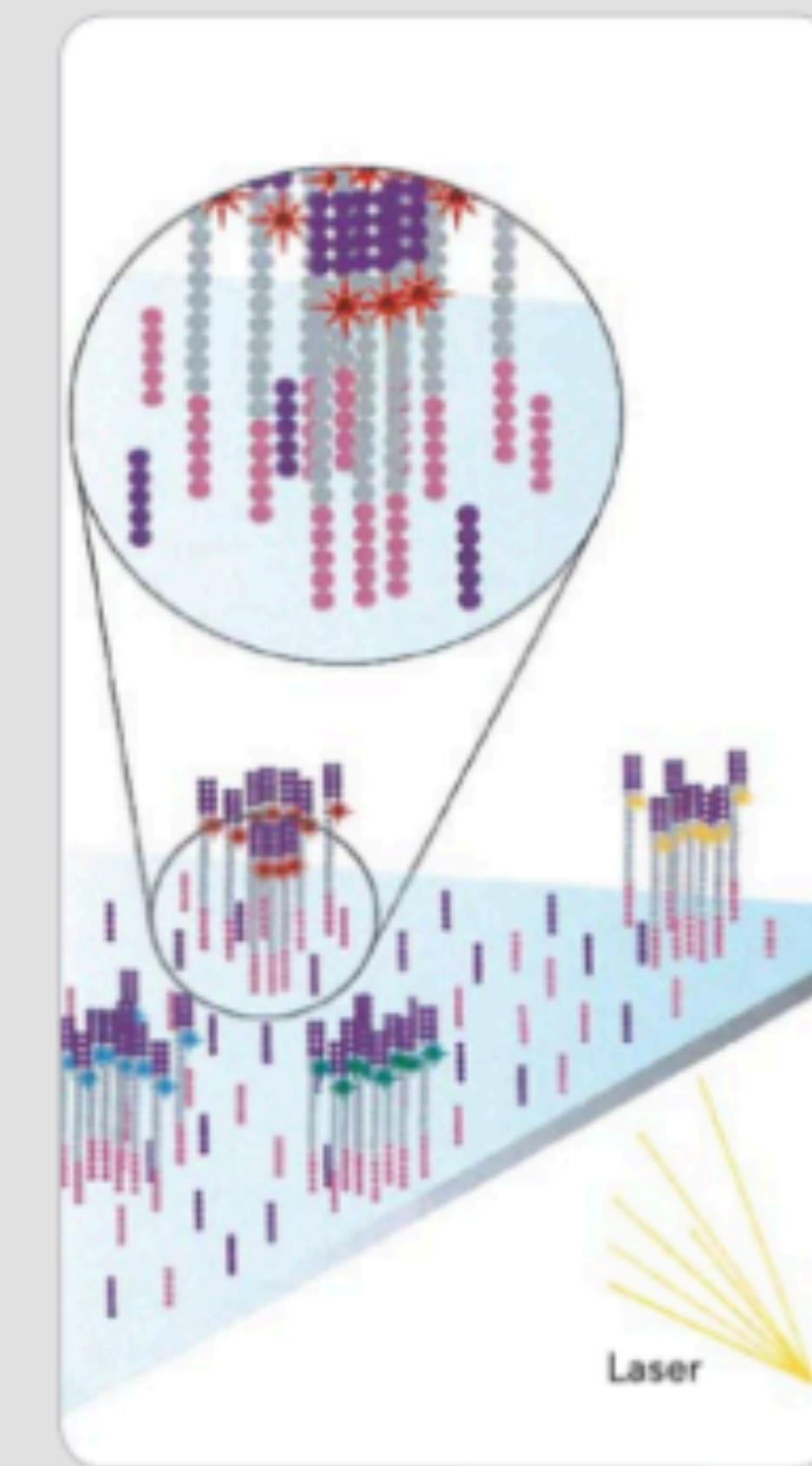
The first sequencing cycle begins by adding four labeled reversible terminators, primers, and DNA polymerase.

8. IMAGE FIRST BASE



After laser excitation, the emitted fluorescence from each cluster is captured and the first base is identified.

9. DETERMINE SECOND BASE



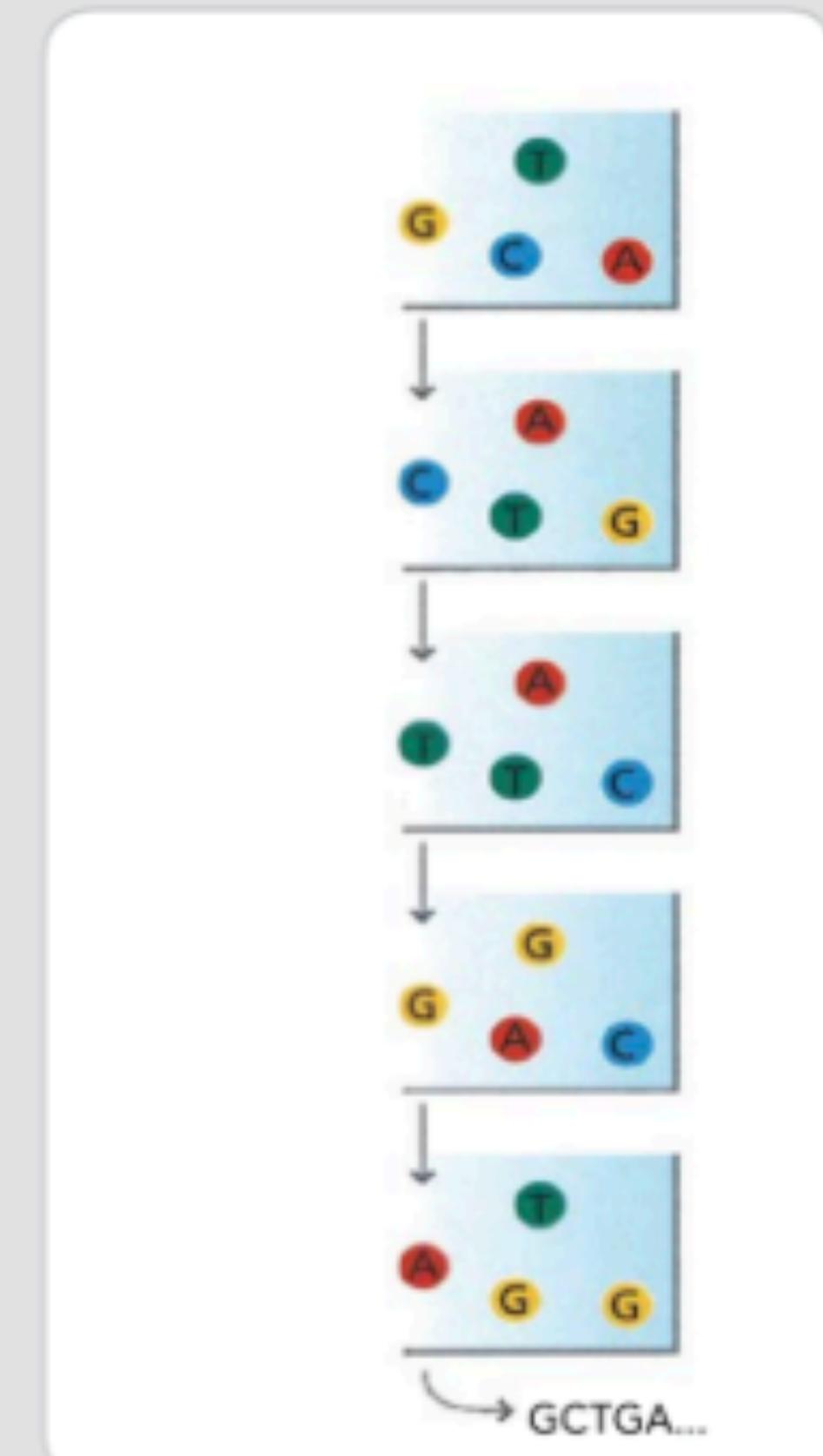
The next cycle repeats the incorporation of four labeled reversible terminators, primers, and DNA polymerase.

How does next generation sequencing work?

10. IMAGE SECOND CHEMISTRY CYCLE

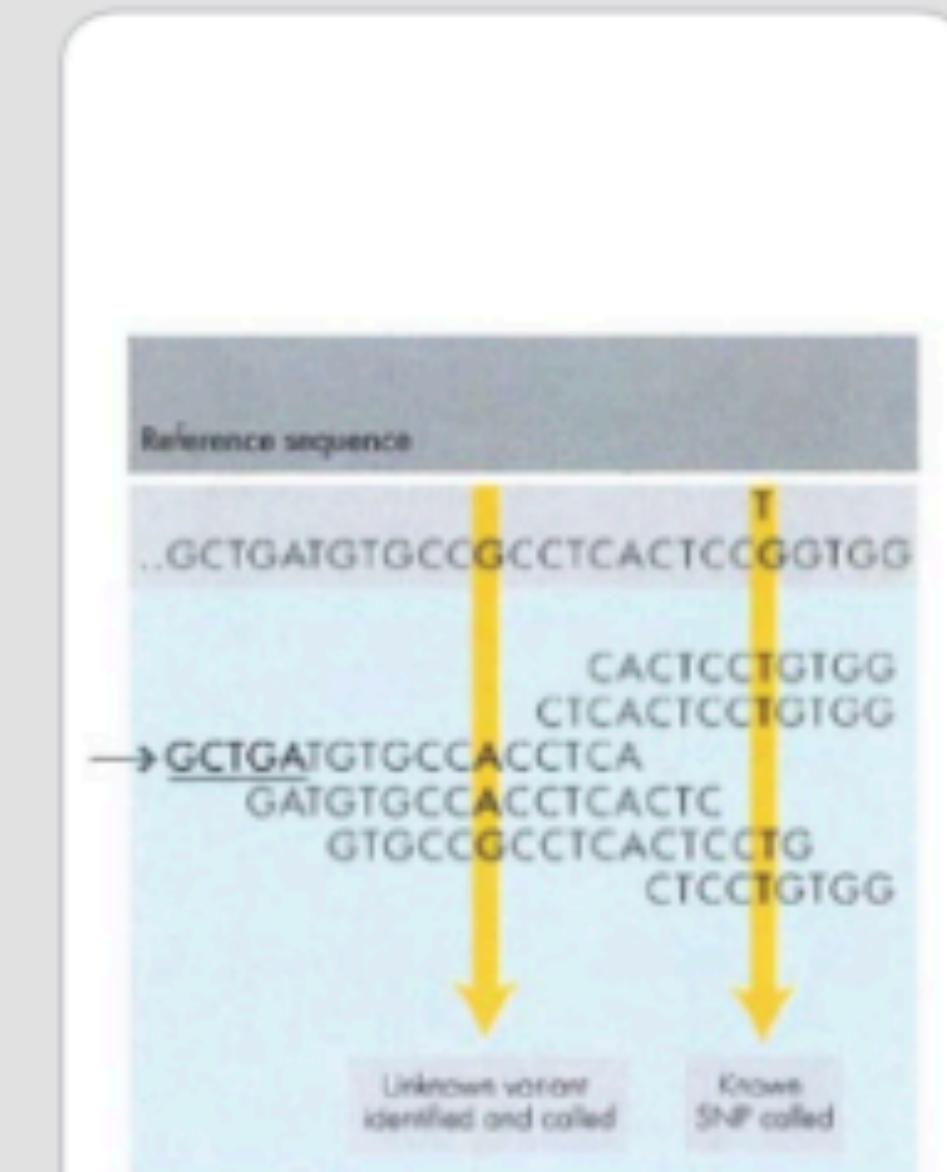
After laser excitation, the image is captured as before, and the identity of the second base is recorded.

11. SEQUENCING OVER MULTIPLE CHEMISTRY CYCLES



The sequencing cycles are repeated to determine the sequence of bases in a fragment, one base at a time.

12. ALIGN DATA



The data are aligned and compared to a reference, and sequencing differences are identified.

Sequencing data has to be mapped against the reference genome

EPFL

What is a .fastq file?

- Text file containing (short) nucleotide sequences (reads)

First 12 lines of a .fastq file

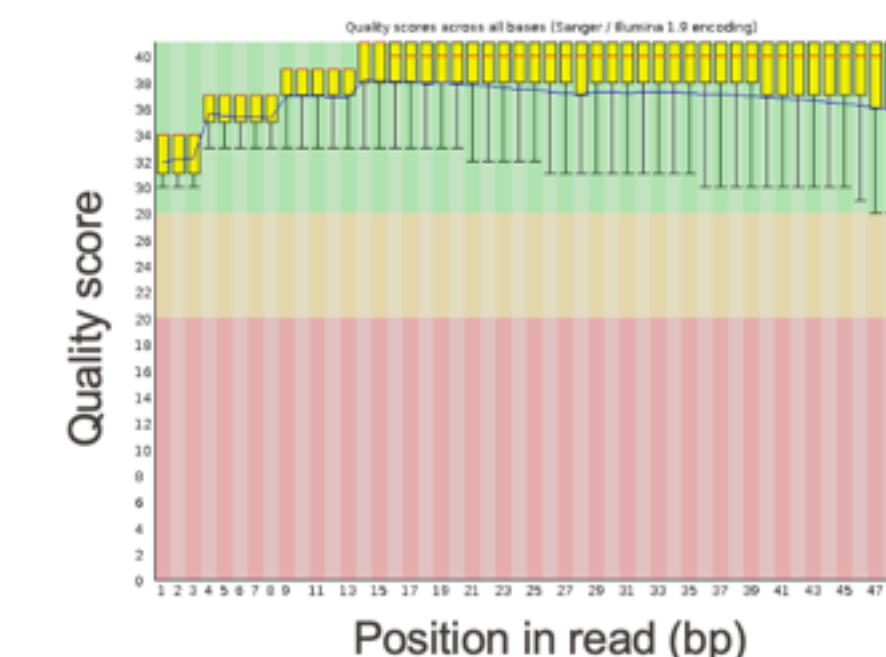
4 lines = 1 read	@SRR038845.3 HWI-EAS038:6:1:0:193
	CAACGAGTTCACACCTTGGCCGACAGGCCGGG
	+SRR038845.3 HWI-EAS038:6:1:0:193
	BA@7>B=>:>>7@>9=BAA?;>52;>:9=8
4 lines = 1 read	@SRR038845.41 HWI-EAS038:6:1:0:14
	CCAATGATTTTTCCGTGTTTCAGAATACGGT
	+SRR038845.41 HWI-EAS038:6:1:0:14
	BCCBA@BB@BBBBB@B9B@=BABA@A:@693:
4 lines = 1 read	@SRR038845.53 HWI-EAS038:6:1:1:36
	GTTCAAAAAGAACTAAATTGTGTCAATAGAAAA
	+SRR038845.53 HWI-EAS038:6:1:1:36
	BBCBBBBBB@BAB?BBBBBCBC>BBBAAB>BBB

EPFL

Preprocessing: Sequencing quality

- The raw .fastq file is checked for:

- Number of reads
- Read length
- Base quality & distribution
- Duplication level
- Overrepresented sequences
- GC content
- etc.



- Quality typically decreases towards the end of the read.
- Remove or trim reads with low quality scores before mapping.

BIOENG-420 SINGLE-CELL BIOLOGY

ASCII_BASE=33 Illumina, Ion Torrent, PacBio and Sanger											
Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII	Q	P_error	ASCII
0	1.00000	33 !	11	0.07943	44 ,	22	0.00631	55 7			
1	0.79433	34 "	12	0.06310	45 -	23	0.00501	56 8			
2	0.63096	35 #	13	0.05012	46 .	24	0.00398	57 9			
3	0.50119	36 \$	14	0.03981	47 /	25	0.00316	58 :			
4	0.39811	37 %	15	0.03162	48 0	26	0.00251	59 ;			
5	0.31623	38 &	16	0.02512	49 1	27	0.00200	60 <			
6	0.25119	39 '	17	0.01995	50 2	28	0.00158	61 =			
7	0.19953	40 (18	0.01585	51 3	29	0.00126	62 >			
8	0.15849	41)	19	0.01259	52 4	30	0.00100	63 ?			
9	0.12589	42 *	20	0.01000	53 5	31	0.00079	64 @			
10	0.10000	43 +	21	0.00794	54 6	32	0.00063	65 A			

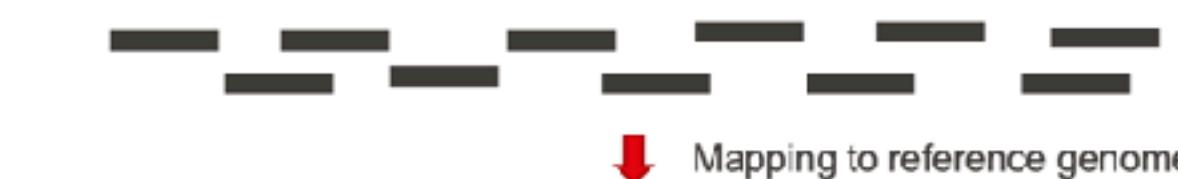
BIOENG-420 SINGLE-CELL BIOLOGY

13
Vincent Gardeux

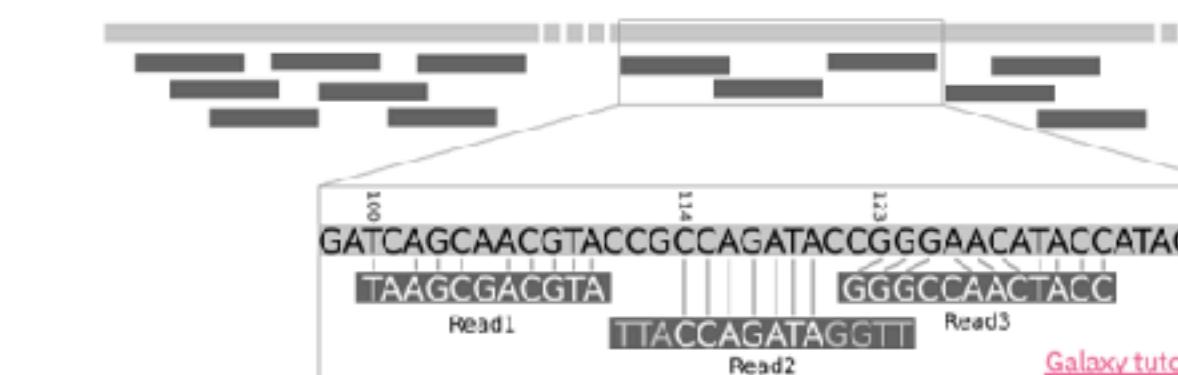
14
Vincent Gardeux

Preprocessing: Mapping to genome/transcriptome

- Short reads are efficiently mapped to the genome or transcriptome using short read aligners and known genomic annotations (e.g. [Ensembl](#) or [UCSC](#))



RNA-seq raw reads



Mapped reads

- Efficient alignment with specialized tools
 - Large number of aligners available (>70 on [Wikipedia](#) 20.02.2022)
 - Considerations: accuracy, gap-aware, speed, memory, ...

Tools:

- [BWA](#)
- [Kallisto](#)
- [STAR](#)
- Now [STARsolo](#) is specifically designed for single-cell and multiplexed exp.

Mapping ATAC Data:

BWA

BOWTIE2

Taken care of by CellRanger

What analysis packages can you use?

OPEN
ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis

Jeffrey M. Granja 1,2,3,12, M. Ryan Corces 3,4,5,6,12, Sarah E. Pierce 1,7, S. Tansu Bagdatli 1, Hani Choudhry 8, Howard Y. Chang 1,3,9 and William J. Greenleaf 1,3,10,11

Single-cell chromatin state analysis with Signac

Tim Stuart 1,2, Avi Srivastava 1,2, Shaista Madad 1,2, Caleb A. Lareau 3 and Rahul Satija 1,2

Wolf *et al. Genome Biology* (2018) 19:15
<https://doi.org/10.1186/s13059-017-1382-0>

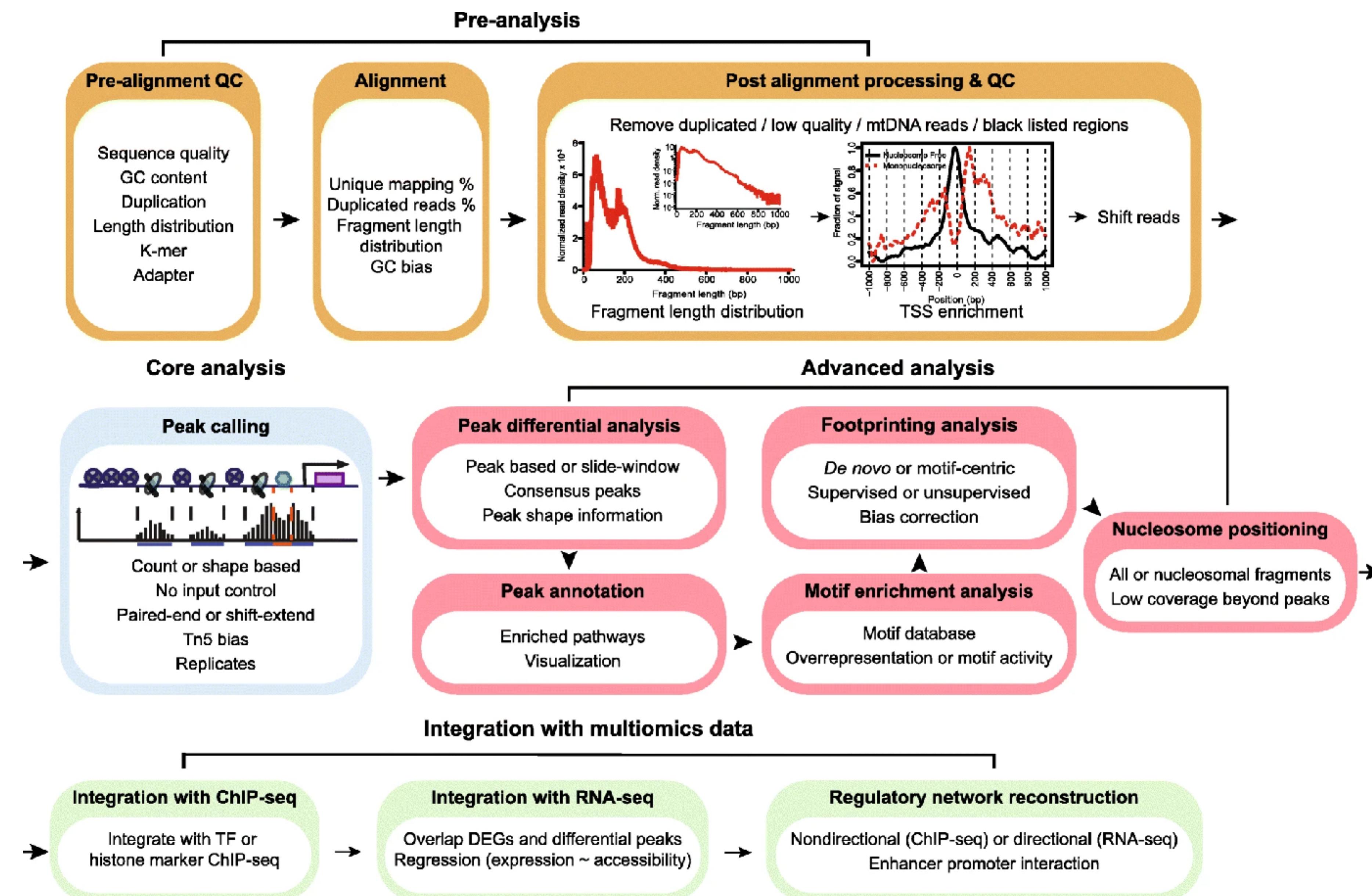
SOFTWARE

Open Access

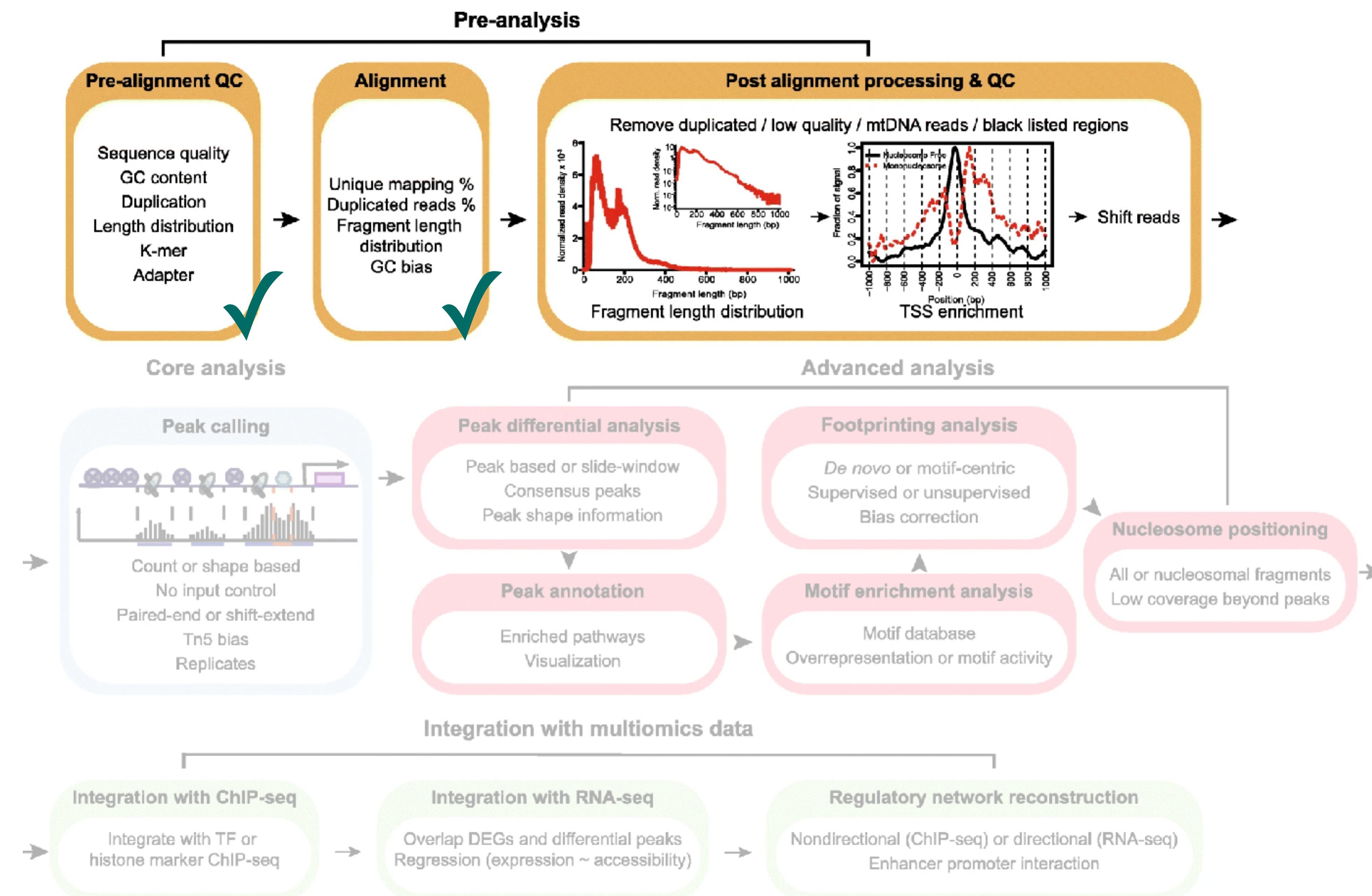
SCANPY: large-scale single-cell gene expression data analysis

F. Alexander Wolf 1*, Philipp Angerer 1 and Fabian J. Theis 1,2*

QC of ATAC data

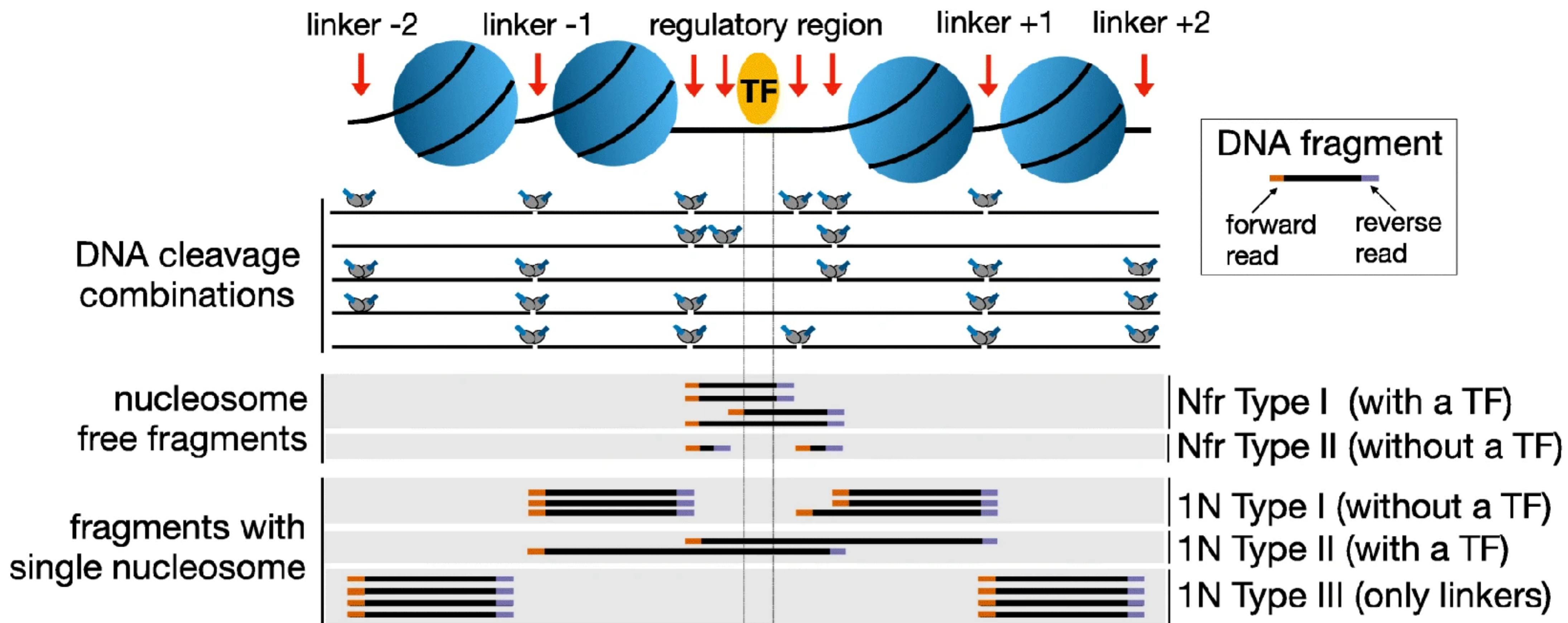


QC of ATAC data



QC of ATAC data

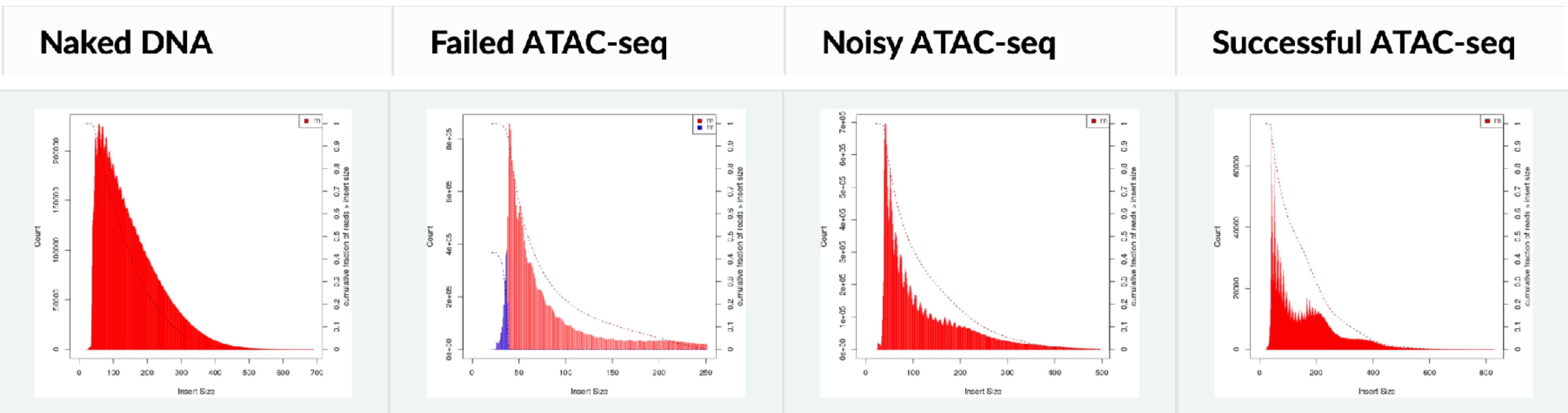
Digesting Chromatin with Tn5 results in very regular DNA insert sizes, this can be used as an indicator of library quality



QC of ATAC data

With paired-end sequencing data the insert sizes of an ATAC library can be checked.

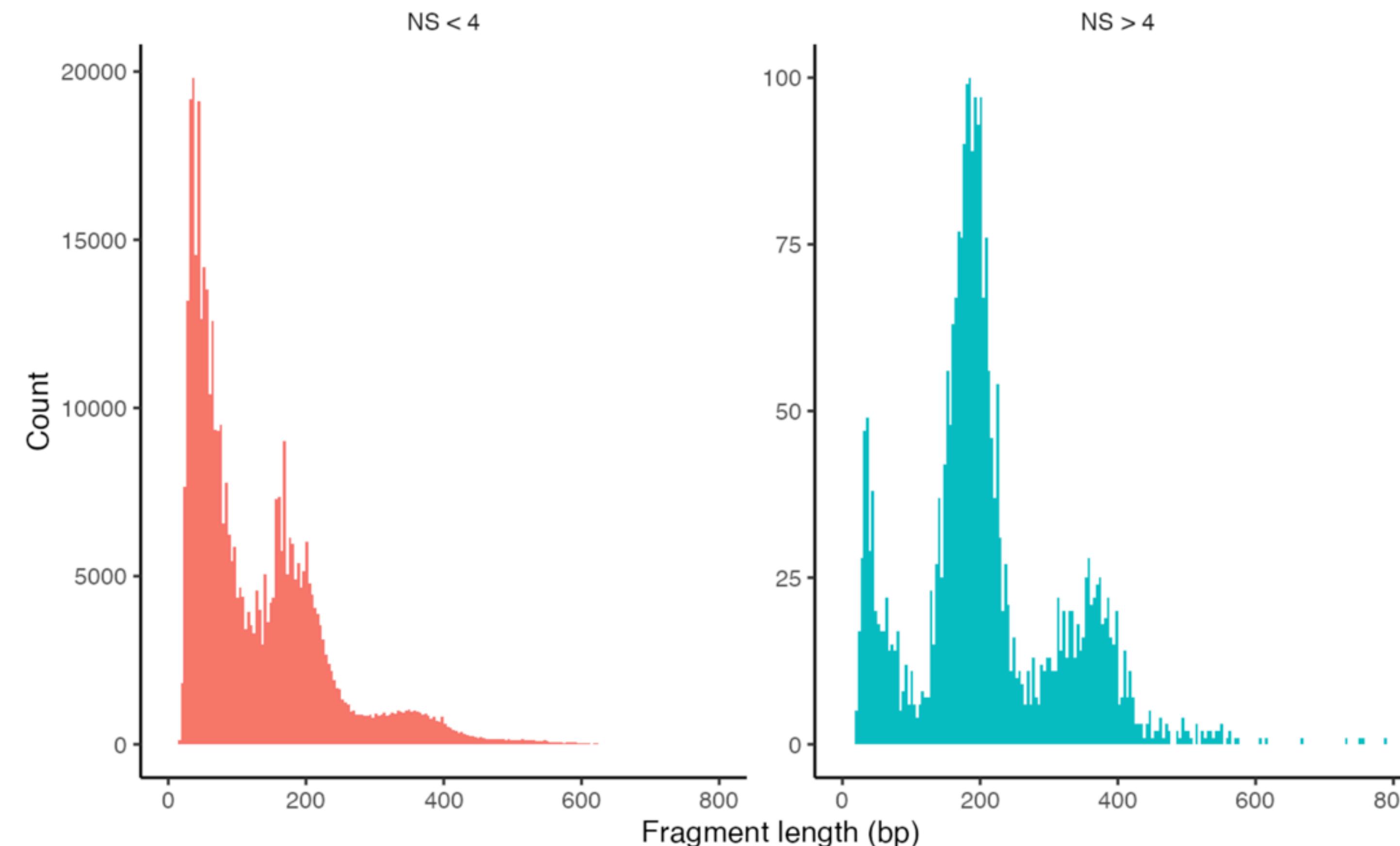
Which library looks good and how can you explain the pattern?



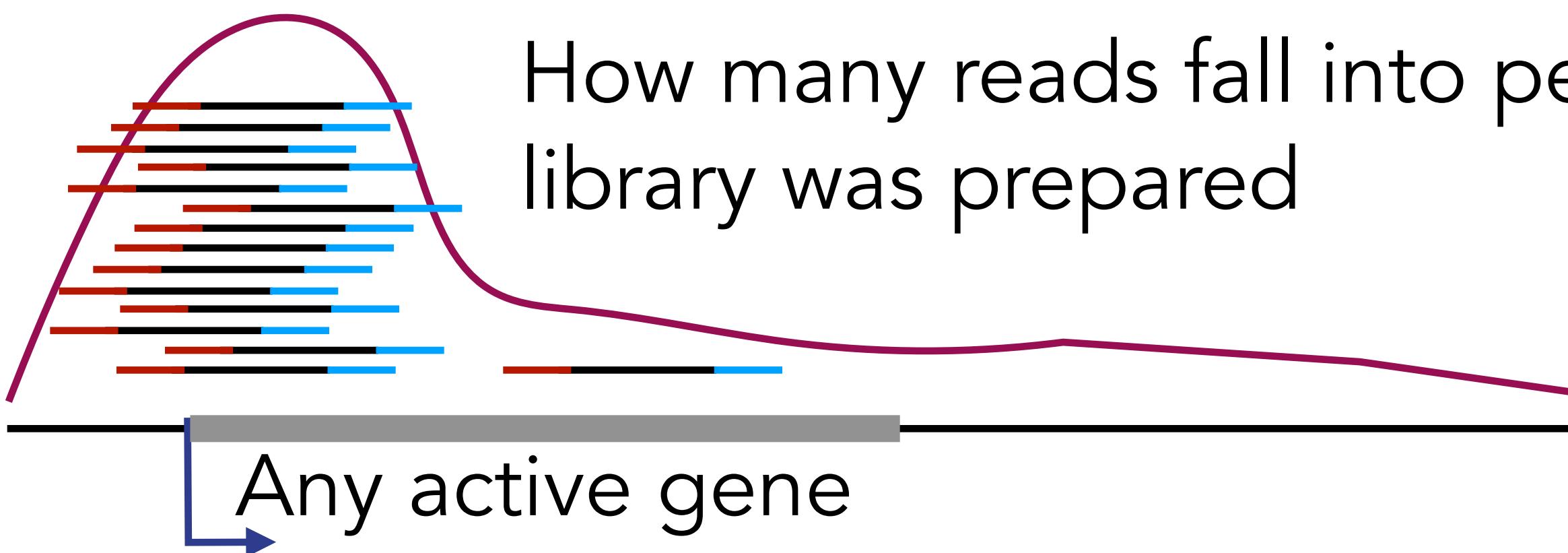
QC of ATAC data - Nucleosome signal

The nucleosome signal reflects the ratio between mononucleosomes and nucleosome-free regions

```
pbmc$nucleosome_group <- ifelse(pbmc$nucleosome_signal > 4, 'NS > 4', 'NS < 4')  
FragmentHistogram(object = pbmc, group.by = 'nucleosome_group')
```

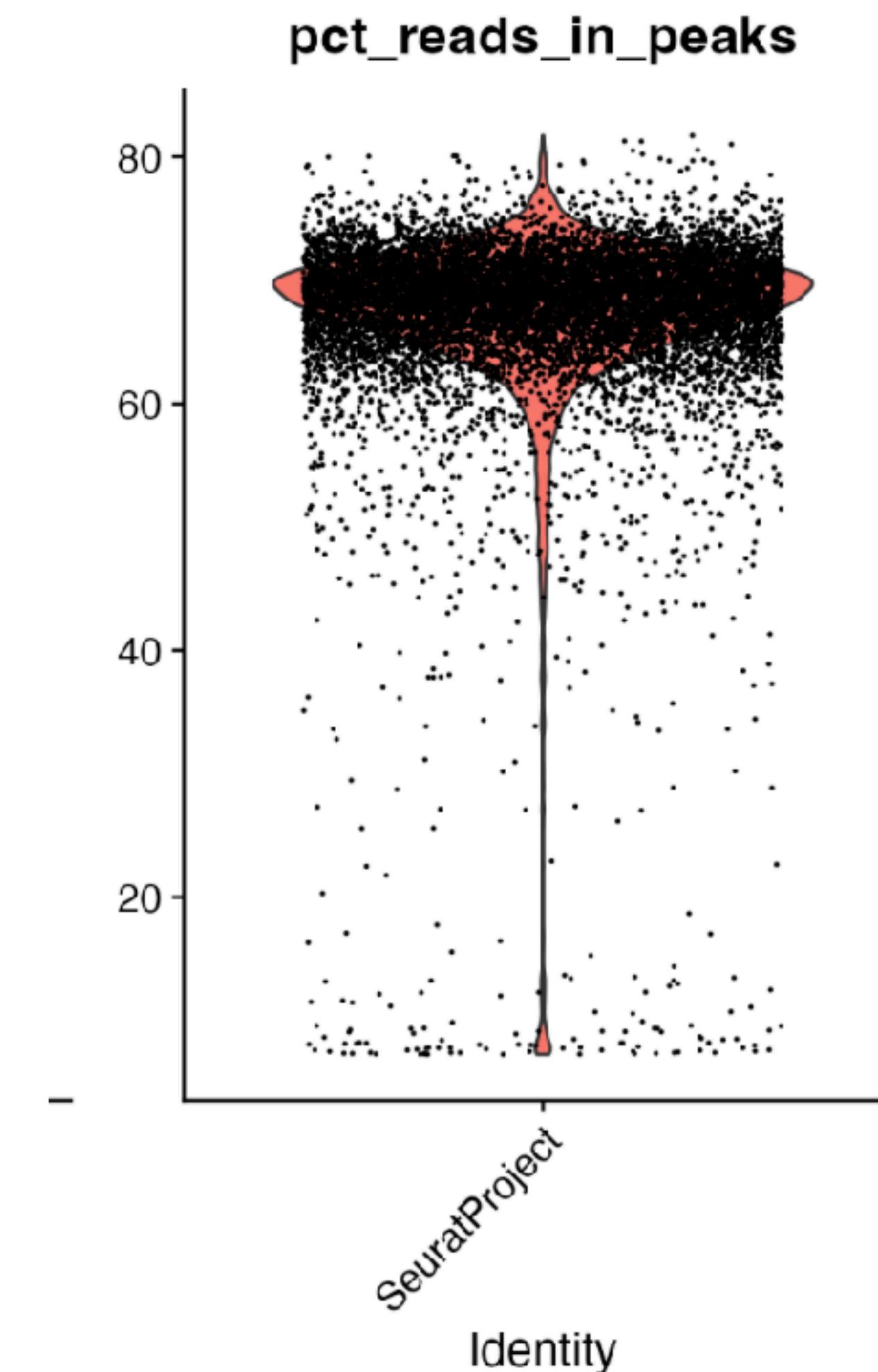


QC of ATAC data - Fraction of Fragments in peaks (FrIP)

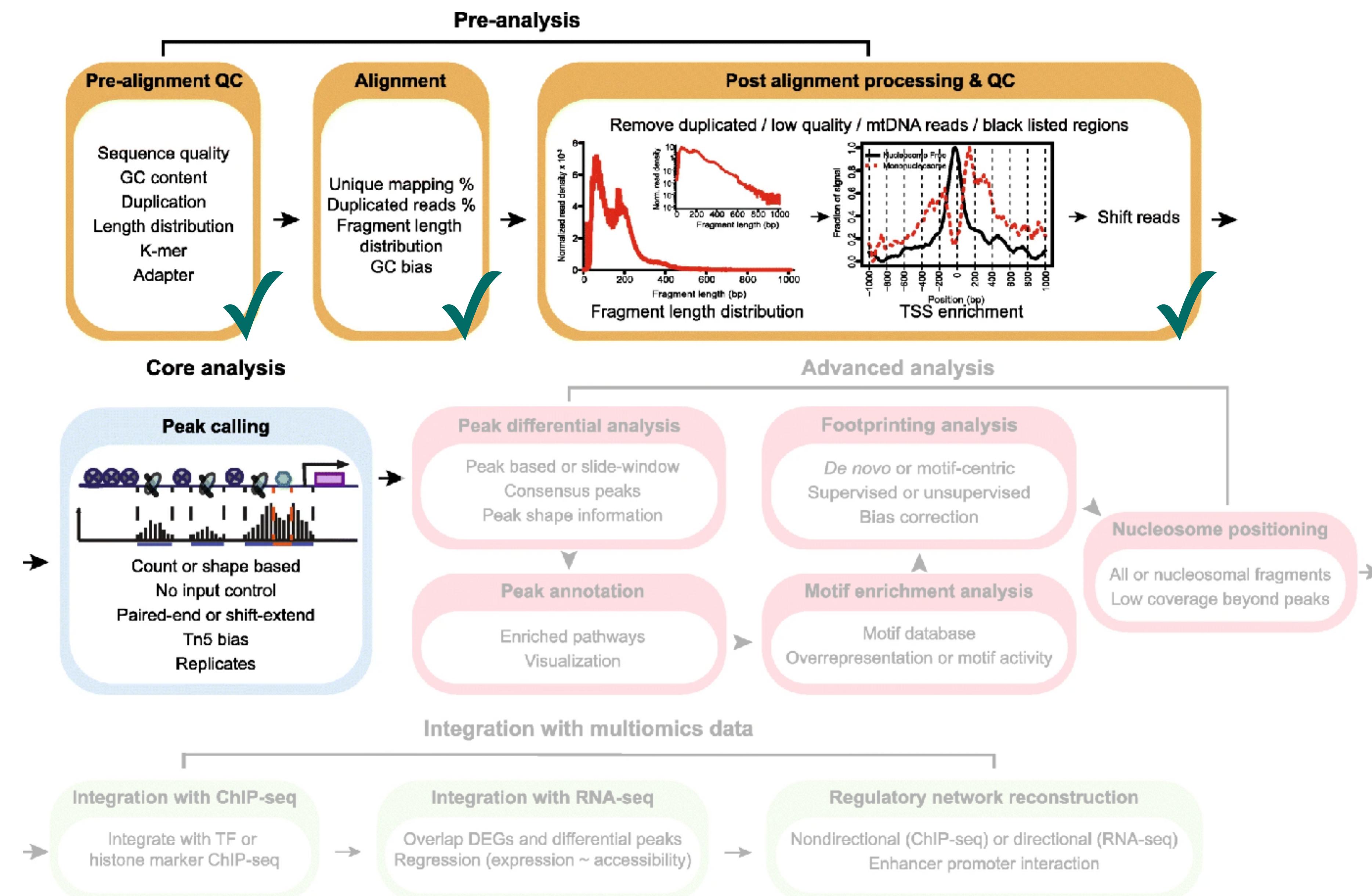


Signac code:

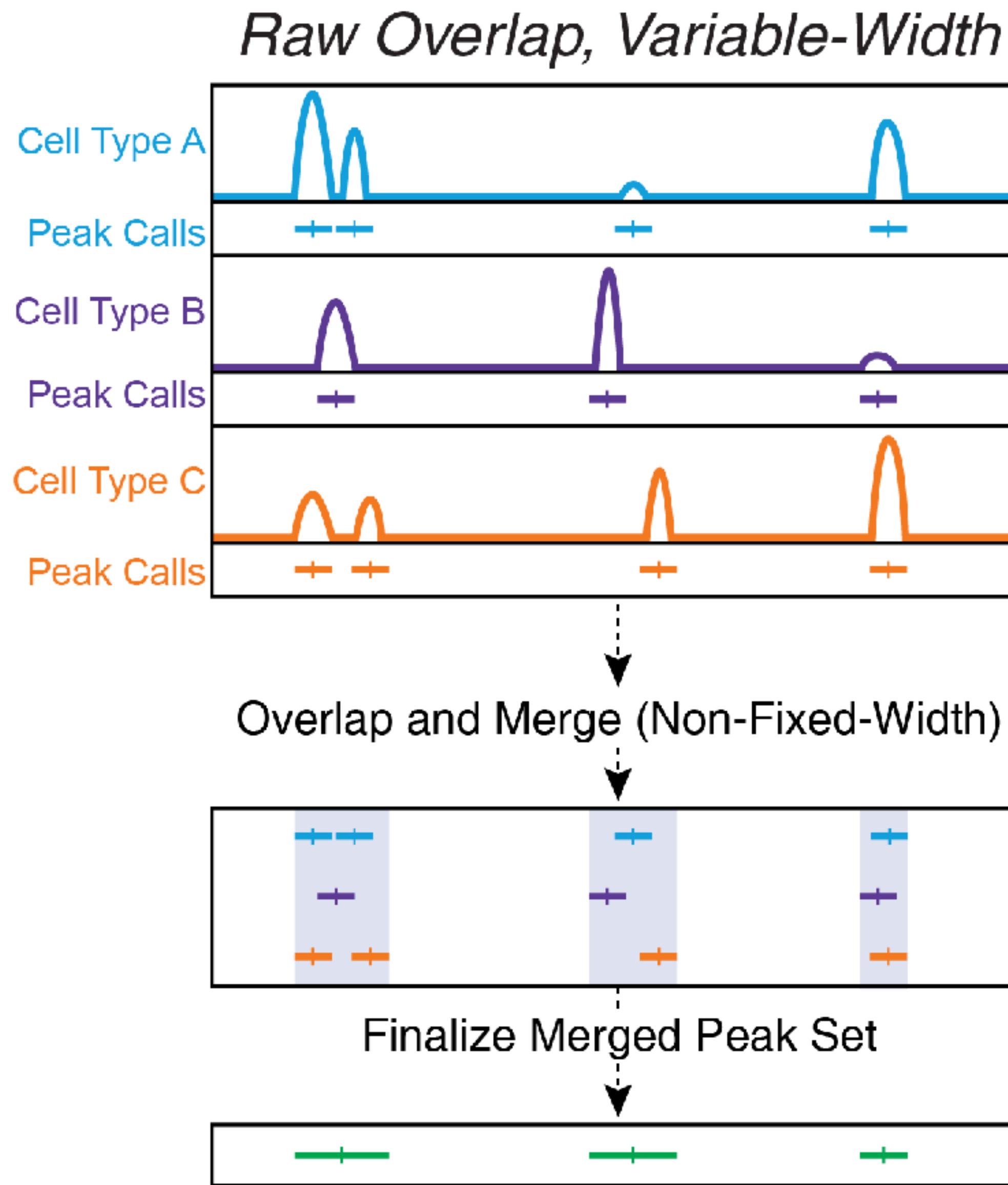
```
pbmc$pct_reads_in_peaks <-  
pbmc$peak_region_fragments /  
pbmc$passed_filters * 100
```



QC of ATAC data



How to identify peaks?

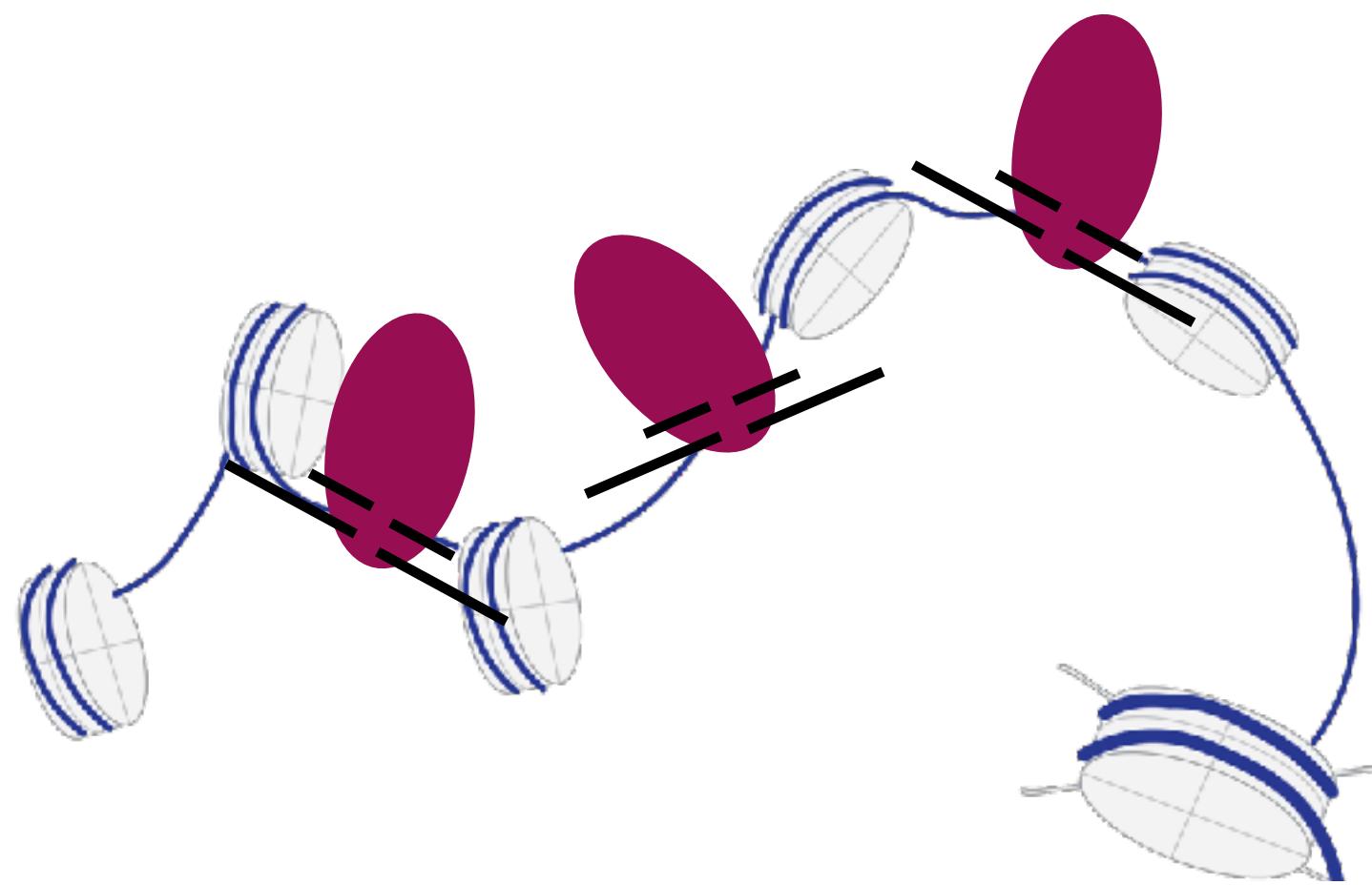


There are various algorithms to call peaks.
The most commonly used in MACS2 (now 3).
Several options for broad and narrow peaks.

CellRanger from 10x Genomics uses a
proprietary peak caller.

Bedtools can merge peaks

TF-IDF Normalization



For ATAC sequencing we can only obtain two fragments per locus per cell (lower dynamic range compared to RNA exp)

Signac performs Term Frequency-Inverse Document Frequency (TF-IDF) normalization. This is a two-step normalization procedure:

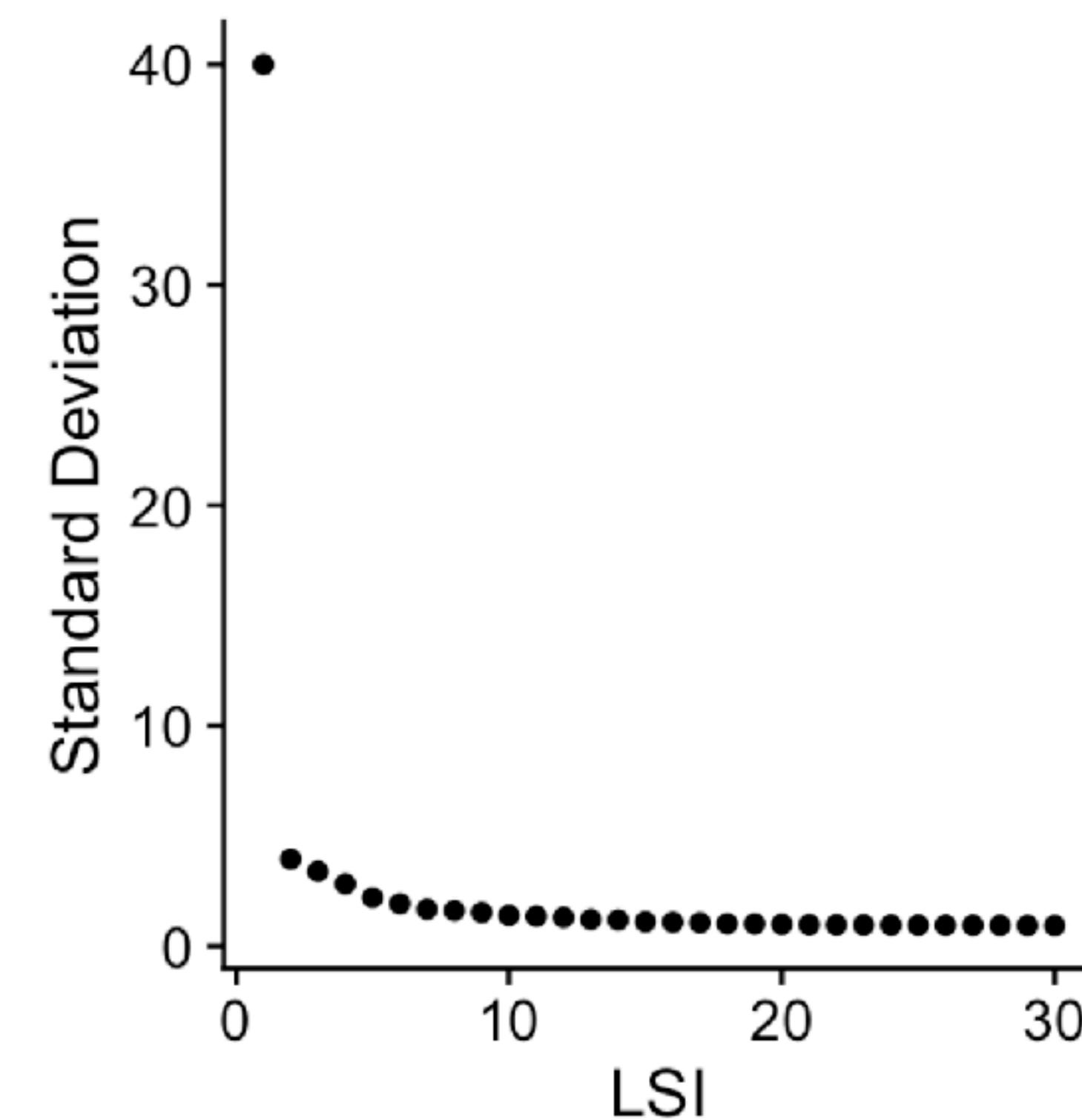
Term frequency (TF) normalizes for sequencing depth by scaling peak accessibility counts within each cell

Inverse Document Frequency (IDF) down-weights these frequently accessible regions (i.e, peaks that are open across many cells but might not be biologically informative), ensuring that rare but cell-type-specific peaks get more importance.

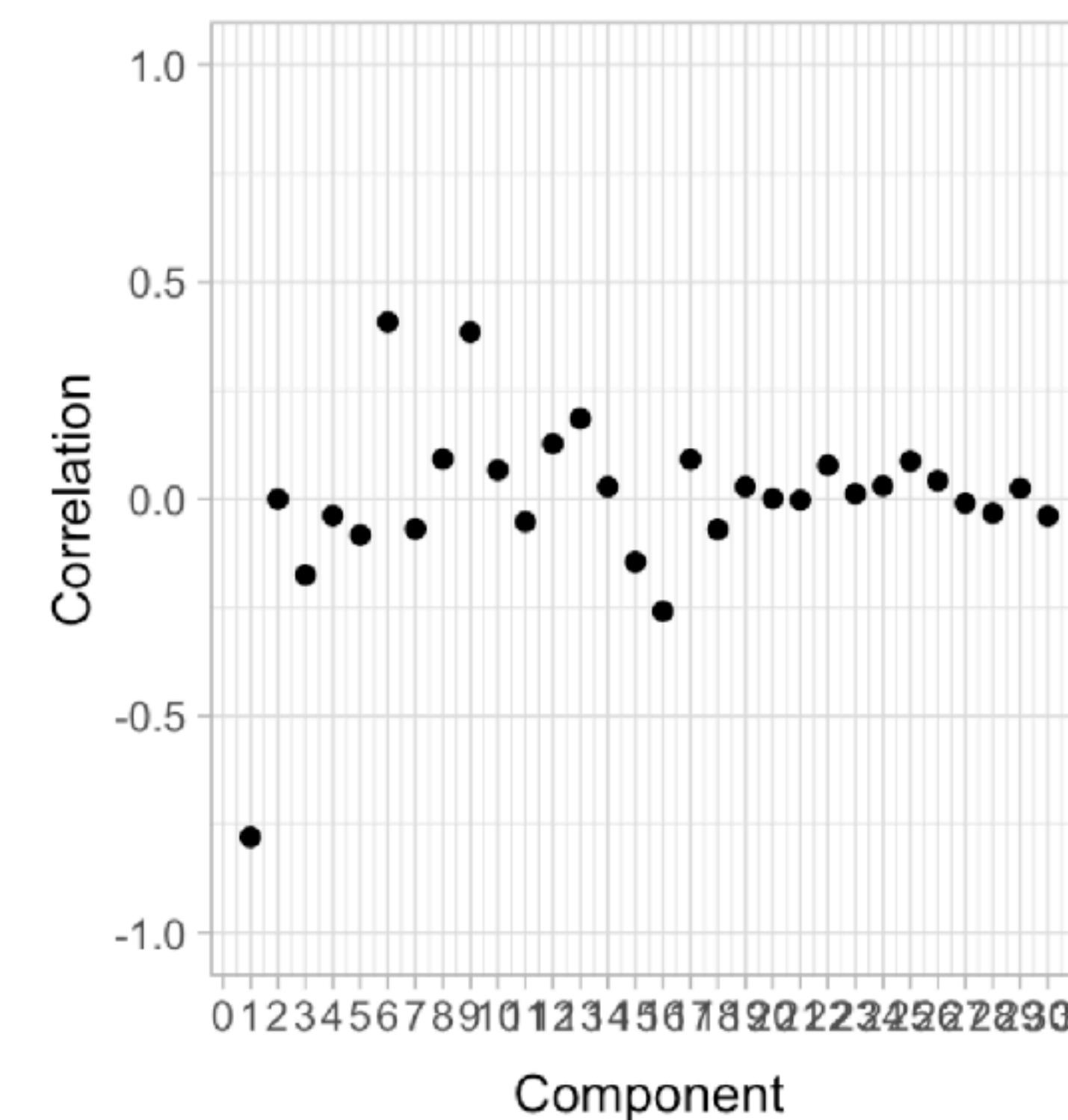
Dimensionality reduction

Perform Singular Value Decomposition (SVD) on the TD-IDF matrix, which gives Latent Semantic Indexing (LSI) components. This is very similar to PCA (but better for sparse data). The first singular vector often captures sequencing depth (technical variation) rather than biological variation.

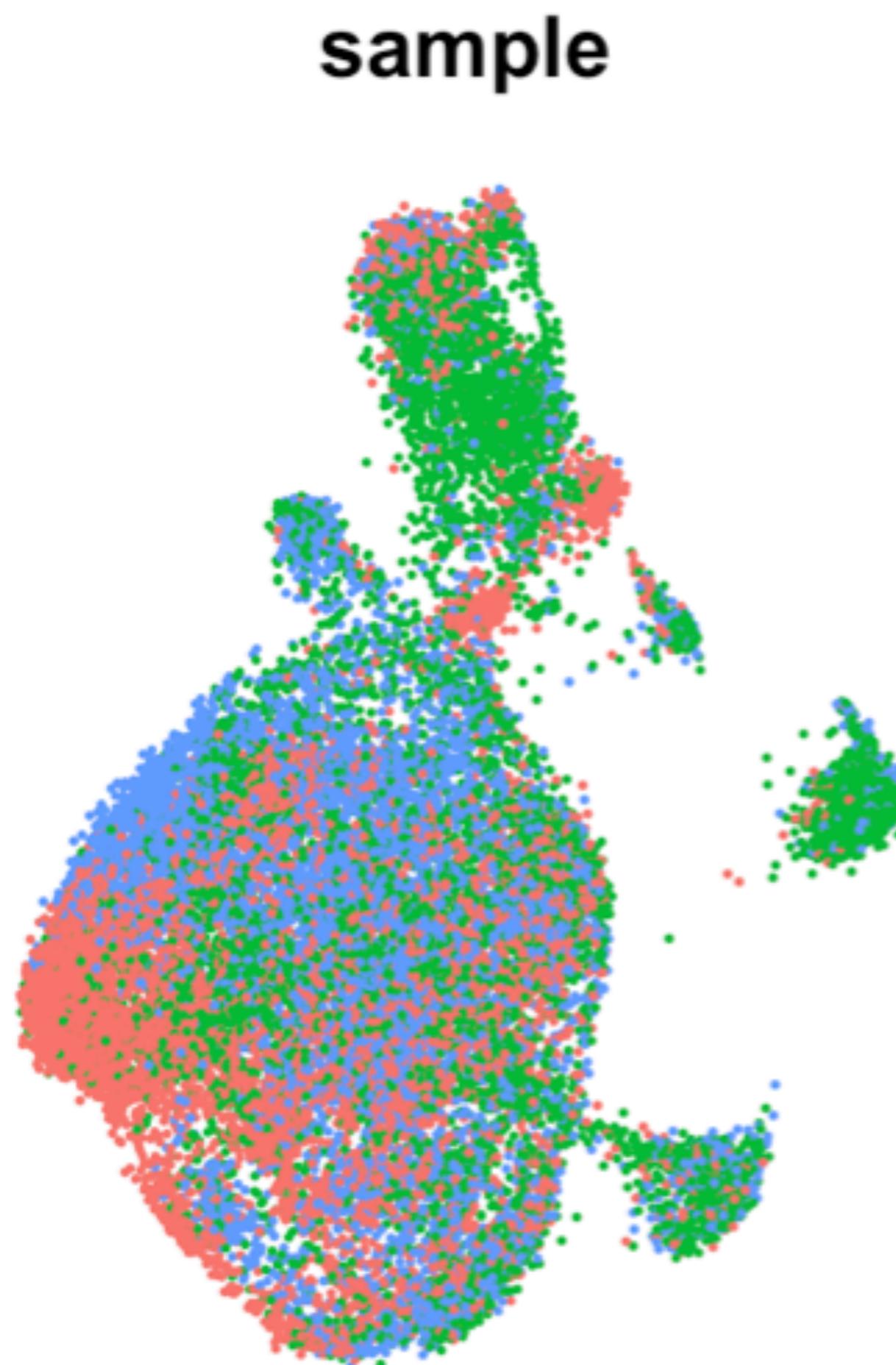
Elbow plot (like for scRNA-seq)



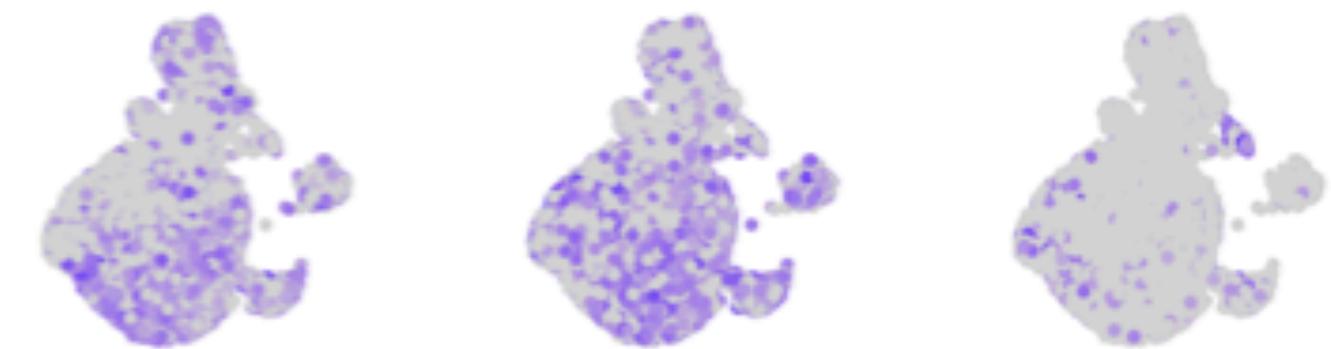
Correlation between depth and re
Assay: ATAC □ Reduction: Isi



Dimensionality reduction



rna_MKI67na_NES



rna_FOXG1na_DLX2na_EMX1

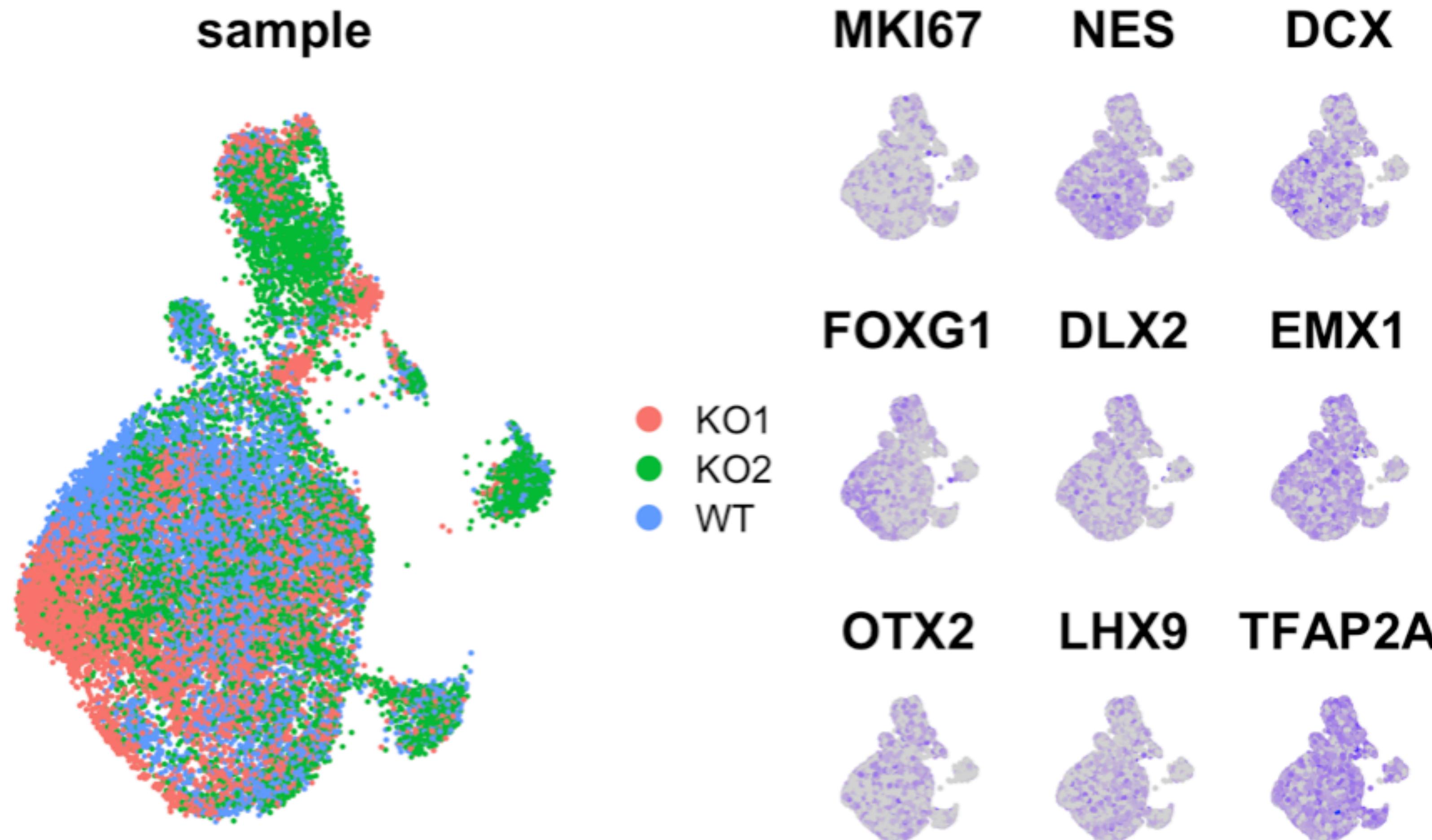
● KO1
● KO2
● WT

rna_OTX2na_LHX3na_TFAP2

Run UMAP on the LSI to obtain the embedding

In this special case we have linked RNA-seq data for each cell and we can use it to check the embedding

Annotating scATAC-data - obtaining “gene activities”

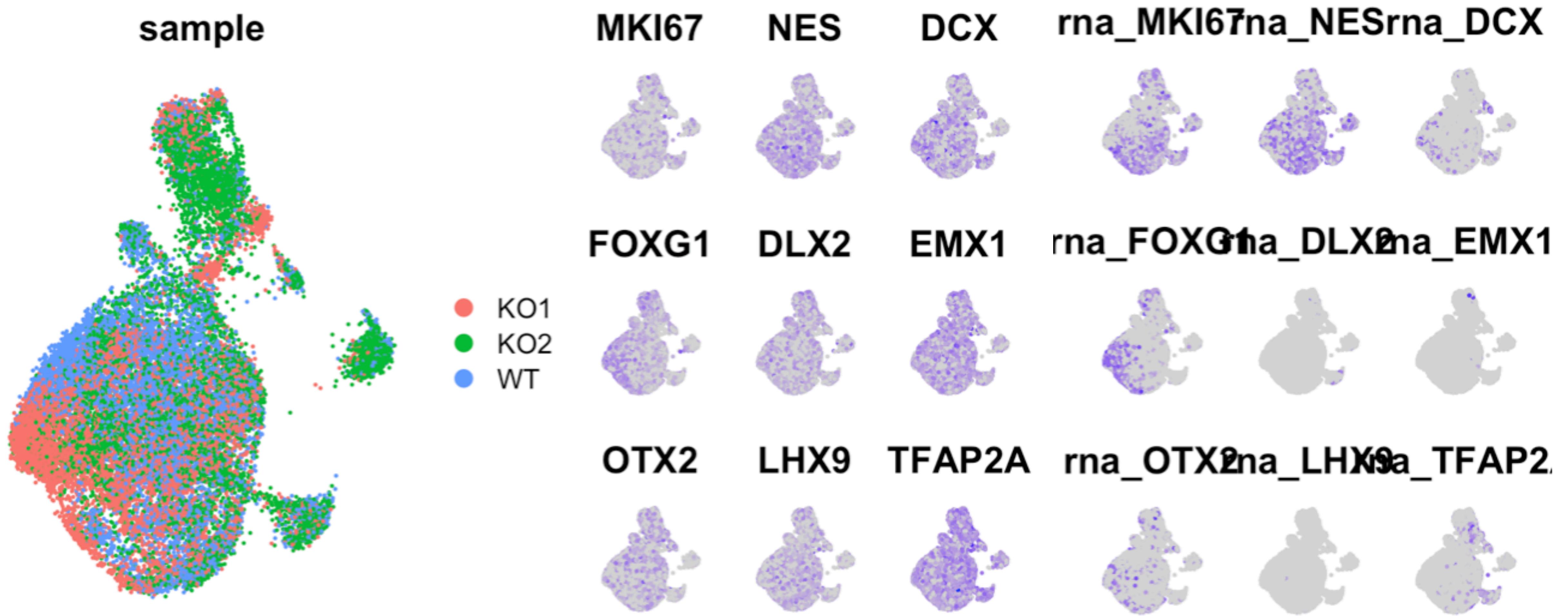


Signac uses gene activities to link detected fragments to genes.

It aggregates all fragments on the gene body.

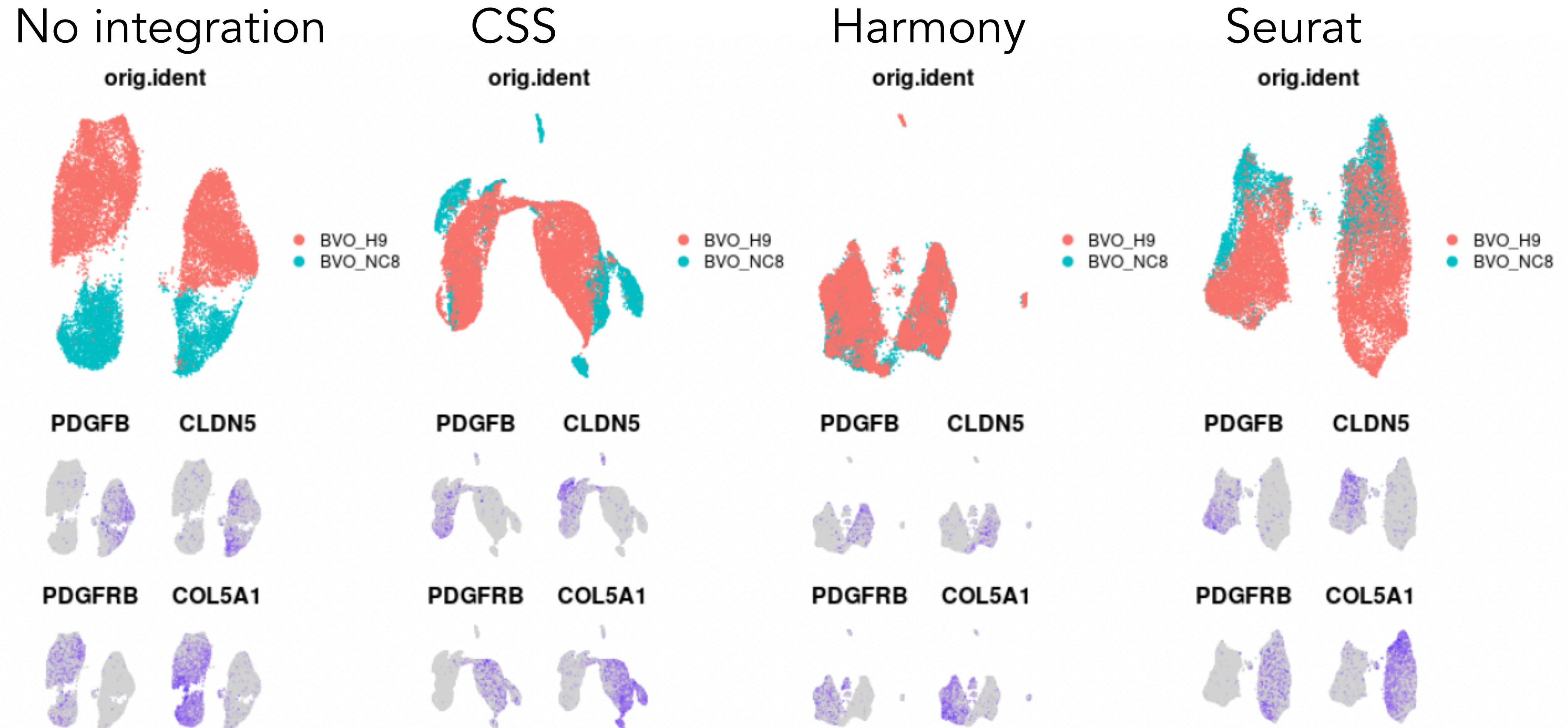
This can be visualized as a proxy of gene expression.

Annotating scATAC-data - obtaining "gene activities"



Comparing chromatin accessibility and RNA expression

Data integration



Similar integration tools as for RNA can be used - we have to perform the integration on the LSI (not PCA as default for RNA)

Integration for multi-omic measurement (more than one modality per cell)

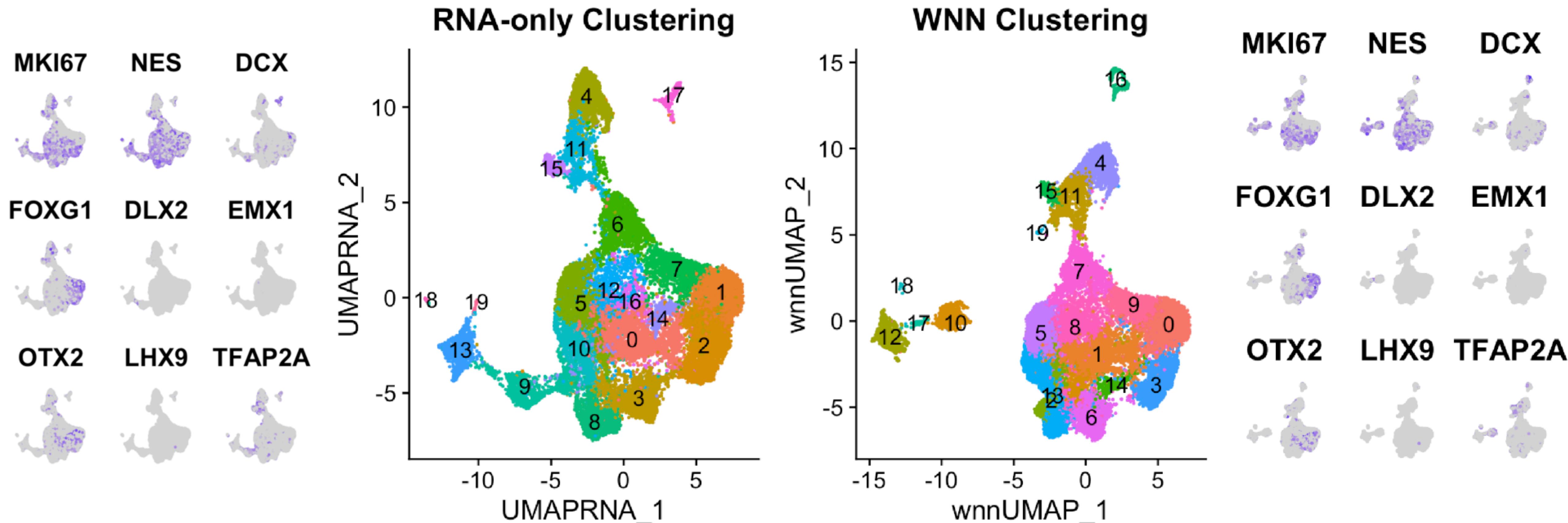
In the example RNA and ATAC have been measures together from the same cell

Seurat uses WNN (weighted nearest neighbour network) - this calculates the k-nearest neighbour of each cell taking both modalities into account.

The weighted nearest neighbour network is used for embedding and clustering.

Multimodal integration does not always result in better cluster discrimination.

Integration for multi-omic measurement (more than one modality per cell)

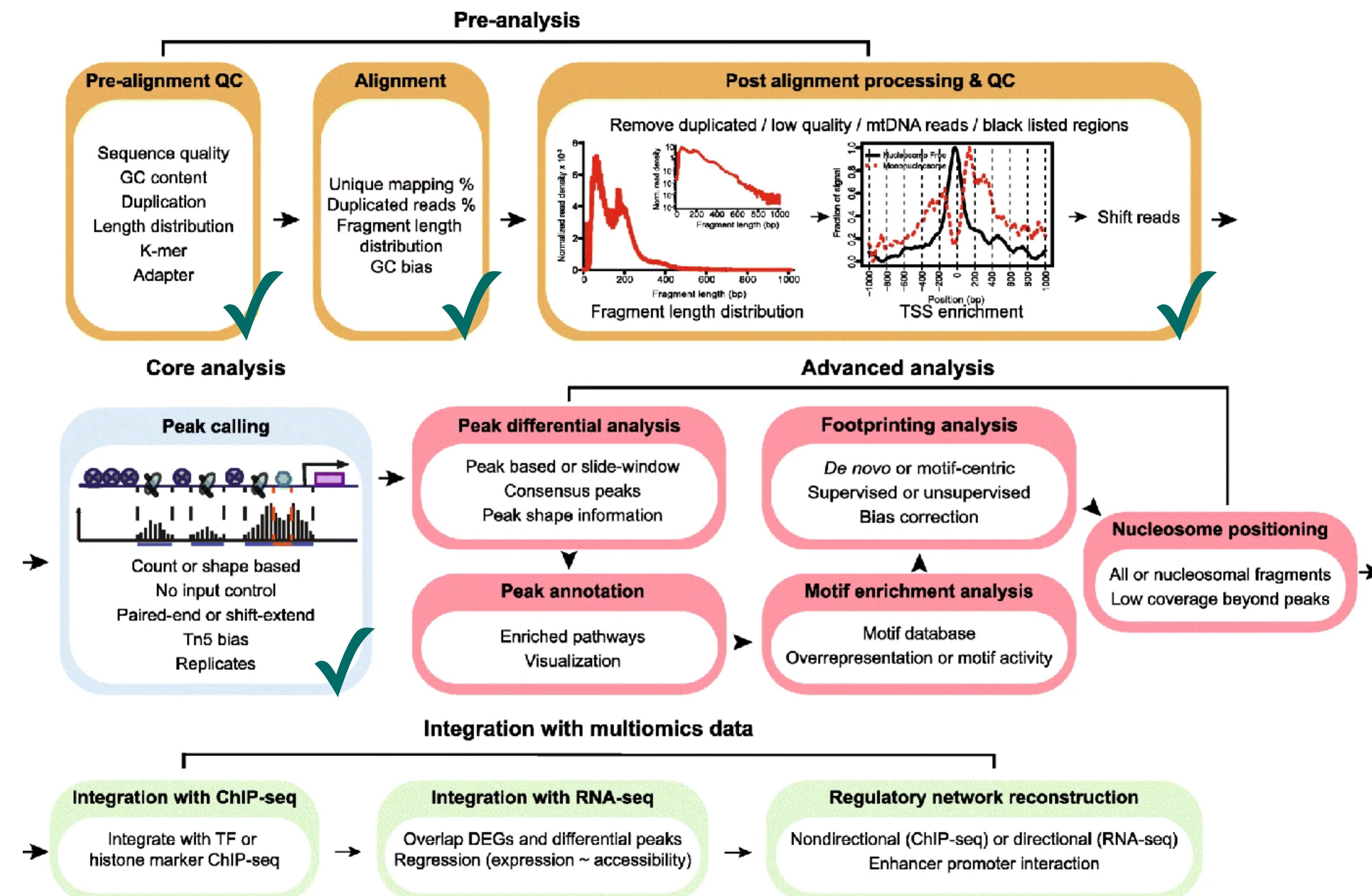


In this case slight refinements of the clustering in the progenitors (NES positive)

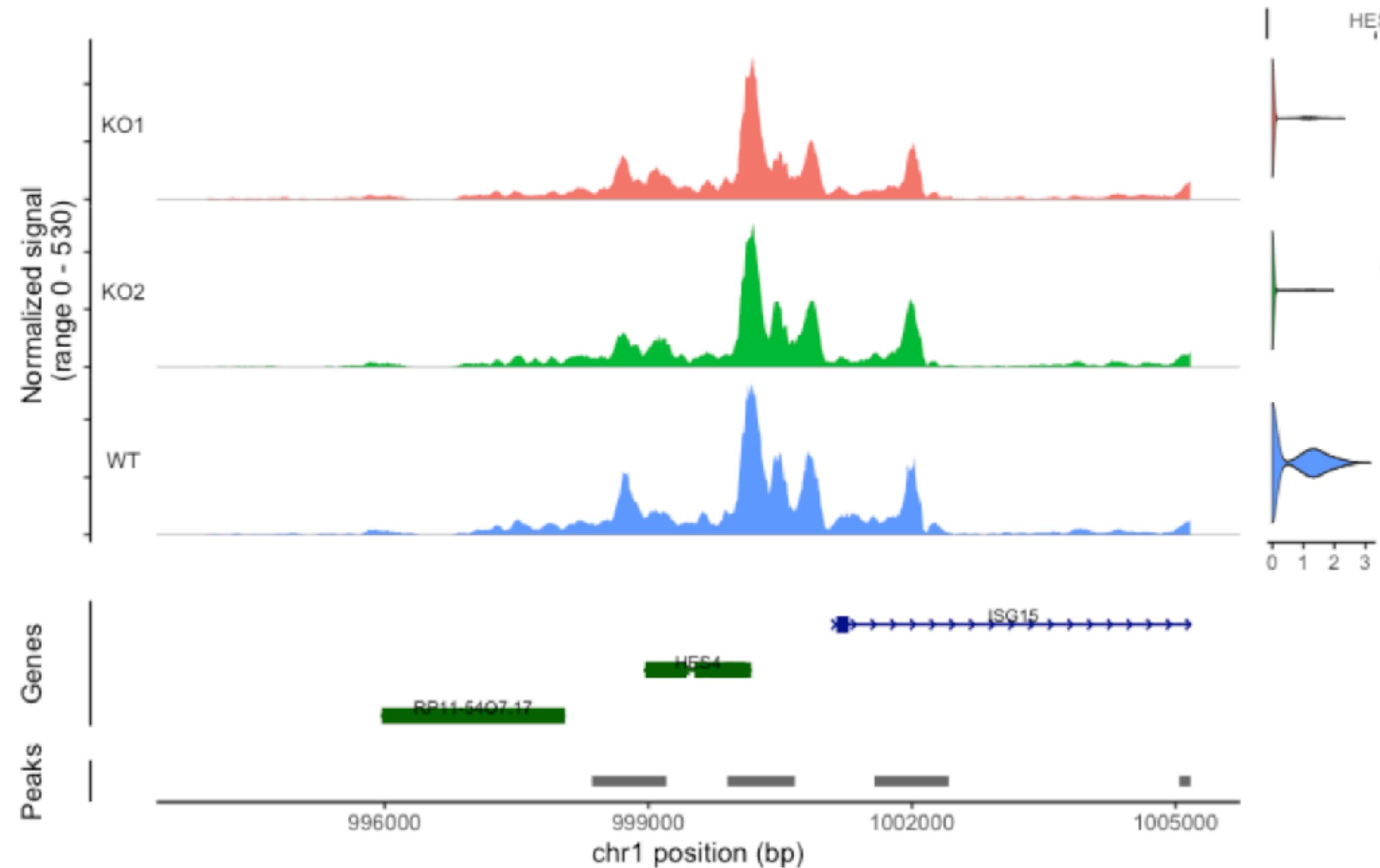
Differential Expression (DE) analysis

- **Goal:** identification of genes (or transcripts, exons, ...) that are expressed in significant different quantities in distinct groups
→ e.g. drug-treated vs control, disease vs healthy, **cell-types**, tissues, development stages, ...
- What method to use for doing that?
 - Mostly statistical tests
- Why not simply using fold-change (FC)?
 - Many FP or FN would be expected, because does not take into consideration:
 - Low expressed genes that will tend to have higher FC (vs High)
 - The distribution of the data (inherent variance of gene expression)
- Really similar to what we do for scRNA-seq

QC of ATAC data

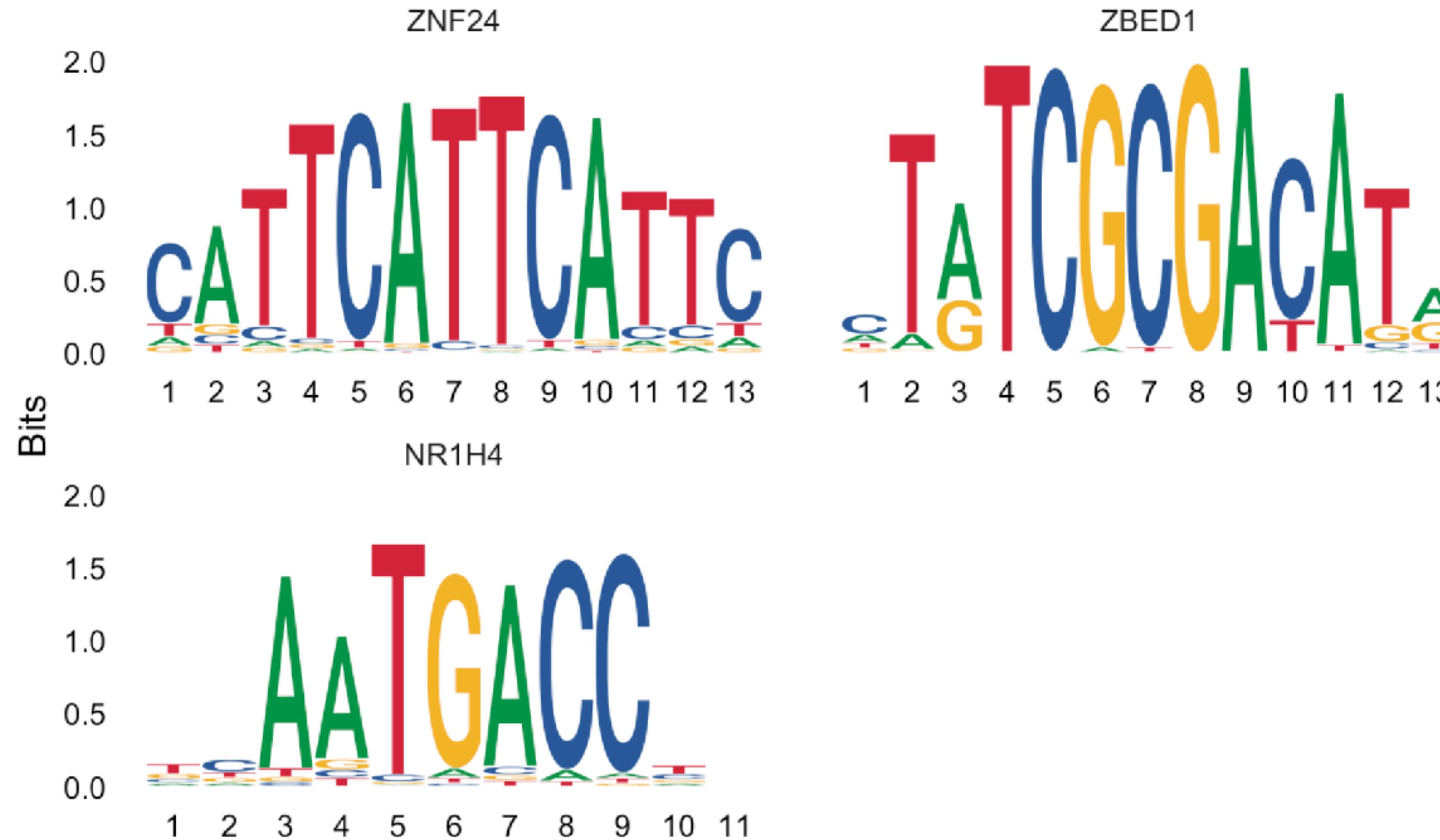


What can we learn in addition from chromatin accessibility?



We can associate regulatory elements to expressed genes and use this to infer regulatory networks

We can identify transcription factor motifs that change upon perturbation



Motifs that are enriched in differentially accessible peaks.

Tools:
JASPAR
TFBSTools

Summary and Take Home

Knowing different types of chromatin

How do identify/map accessible chromatin

Isolating accessible chromatin in single cells

Sequencing libraries using NGS sequencing

Visualizing chromatin accessibility in the genome browser

How to analyze and interpret single cell ATAC data - hands on tutorial will follow