Single Cell Epigenomics
scATAC sequencing

Fides Zenk



Learning Objectives of this week

Knowing different types of chromatin

How do identify/map accessible chromatin

Isolating accessible chromatin in single cells

Sequencing libraries using NGS sequencing

Visualizing chromatin accessibility in the genome browser

How to analyze and interpret single cell ATAC data - hands on tutorial will follow



One genome - many epigenomes




One genome - many epigenomes
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Packaging of Chromatin inside the Nucleus

Chromosome Territories



Packaging of Chromatin inside the Nucleus
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Packaging of Chromatin inside the Nucleus
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Packaging of Chromatin inside the Nucleus
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Epigenetic Mechanisms control Gene Activity
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Epigenetic Mechanisms control Gene Activity
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Epigenetic Mechanisms control Gene Activity

3D contact between enhancers and promoters
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Epigenetic Mechanisms control Gene Activity
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Epigenetic Mechanisms control Gene Activity




Epigenetic Mechanisms control Gene Activity

y Repressed gene
AT UQS/%;MLML&(
g 7

Epigenetics describes how chemical changes to DNA and histone
proteins can influence gene expression
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Histone modifications are differentially enriched in the genome

H3K4me1 H3K4me3 H3K27me3 H3K9me3
H3K27ac

p300

exon intron  exon

enhancer promoter gene insulator gene cluster repeats
euchromatin facultative : constitutive .
heterochromatin heterochromatin

Jenuwein & Allis Epigenetics (2009)



How can we measure and study these features?

3D chromatin organization

DNA-methylation ~



ATAC - assay for transposase-accessible chromatin

Tn5 TnS

Chromatin accessibilit

/SN

Tn5 (tagmentase) binds open chromatin and inserts sequencing adapters -



Several different enzymes cut open chromatin regions
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ATAC - assay for transposase-accessible chromatin

Article \ Published: 06 October 2013 Tns Tn5

Transposition of native chromatin for fast and )/L Chromatin accessibilit
sensitive epigenomic profiling of open chromatin,

DNA-binding proteins and nucleosome position / /(Q«
Jason D Buenrostro, Paul G Giresi, Lisa C Zaba, Howard Y Chang & & William J Greenleaf & % \ r J &

Nature Methods 10, 1213-1218 (2013) | Cite this article

249k Accesses | 144 Altmetric | Metrics




Transposition into native chromatin Generation Of ada pte r—flanked DNA fragments

Post-transposition DNA fragment

4
Tn5-inducead nick Initial extension
at72°C

Amplification and addition of
barcodes and adapter components

——

e Any active gene

Purification of final
ATAC-seq library

'\ /’

Sites of chromalin accessibility
defined by TnS insertion

mm ATAC-seq fragment Tn5 common homology region
mm 5-Unique Tn5 overhang
I5 barcode (Ad1)

w= PS5 flow cell adapter

i7-Unique Tn5 overhang
i7 barcode (Ad2)

P7 flow cell adapter



e oene (3@neration of adapter-flanked DNA fragments

|

Post-transposition DNA fragment

—_— —— Counting sequencing reads in
open chromatin and quantify

T
the signal

TnS-inducead nick Initial extension
ot72°C N\

Amplification and addition of
barcodes and adapter components

——

— | Any active gene
l Purification of final

ATAC-seq library

e
Sites of chromalin accessibility
defined by TnS insertion
mm ATAC-seq fragment s Tn5 common homology region
mm 5-Unique Tn5 overhang wm i 7-Unique TnS overhang
I5 barcode (Ad1) s |7 barcode (Ad2)

w= PS5 flow cell adapter wm P7 flow cell adapter



Single-cell ATAC Seq
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How does next generation sequencing work?

1. PREPARE GENOMIC DNA
SAMPLE

ﬁ 3
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‘ Adapters
l -

Randomly fragment genomic DNA
and ligate adapters to both ends of
the fragments.

2. ATTACH DNA TO SURFACE
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-

. DNA
X fragment
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"/ of primers

Bind single-stranded fragments
randomly to the inside surface of the
flow cell channels.

3. BRIDGE AMPLIFICATION
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Add unlabeled nucleotides and en-
zyme to initiate solid-phase bridge
amplification.

https://www.futurelearn.com/info/courses/a-practical-guide-for-sars-cov-2-whole-genome-sequencing/0/steps/338178



How does next generation sequencing work?

4. FRAGMENTS BECOME 5. DENATURE THE DOUBLE- 6. COMPLETE AMPLIFICATION
DOUBLE-STRANDED STRANDED MOLECULES
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The enzyme incorporates nucleotides Denaturation leaves single-stranded Several million dense clusters of
to b“”f’ double-stranded bridges on templates anchored to the substrate. double-stranded DNA are generat-
the solid-phase substrate. ed in each channel of the flow cell.

https://www.futurelearn.com/info/courses/a-practical-guide-for-sars-cov-2-whole-genome-sequencing/0/steps/338178



How does next generation sequencing work?

7. DETERMINE FIRST BASE

A
Y

Laser

The first sequencing cycle begins
by adding four labeled reversible
terminators, primers, and DNA
polymerase.

8. IMAGE FIRST BASE

After laser excitation, the emit-
ted fluorescence from each cluster
is captured and the first base is
identified.

9. DETERMINE SECOND BASE

The next cycle repeats the incor-
poration of four labeled reversible
terminators, primers, and DNA
polymerase.

https://www.futurelearn.com/info/courses/a-practical-guide-for-sars-cov-2-whole-genome-sequencing/0/steps/338178



How does next generation sequencing work?

10. IMAGE SECOND CHEMISTRY 11. SEQUENCING OVER MUL.- 12. ALIGN DATA
CYCLE TIPLE CHEMISTRY CYCLES
®
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After laser excitation, the image is The sequencing cycles are repeated The data are aligned and com-
captured as before, and the identity to determine the sequence of bases pared to a reference, and sequenc
of the second base is recorded. in a fragment, one base at a time. ing differences are identified.

https://www.futurelearn.com/info/courses/a-practical-guide-for-sars-cov-2-whole-genome-sequencing/0/steps/338178



Sequencing data has to be mapped against the reference genome
=PFL  Whatis a .fastq file? "

= Text file containing (short) nucleotide sequences (reads)
( )

Vincent Gardeux
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Taken care of by CellRanger



What analysis packages can you use?

nature

— TECHNICAL REPORT

™
M) Check for updates t O n
OPEN

ArchR is a scalable software package for
integrative single-cell chromatin accessibility . —
Wolf etal. GenomeBiclogy (2018) 19:15

anaIYSis hitps://do.org/10.1186/513059-017-1332-0 Genome BiOlogy

Jeffrey M. Granja©'231224 M, Ryan Corces**>¢'2, Sarah E. Pierce'’, S. Tansu Bagdatli’,
Hani Choudhry®, Howard Y. Chang ©'3°%< and William J. Greenleaf ©"3101&<

SOFTWARE Open Access

@ CrossMark

nature methods ARTICLES SCANPY: large-scale single-cell gene
expression data analysis

F. Alexander Wolf'™ @, Philipp Angerer' and Fabian J. Theis'?”

https://doi.org/10.1038/541592-021-01282-5

M) Check for updates

Single-cell chromatin state analysis with Signac

Tim Stuart©'224 Avi Srivastava'?, Shaista Madad'?, Caleb A. Lareau® and Rahul Satija®"2><



QC of ATAC data

Pre-analysis
Pre-alignment QC Alignment Post alignment processing & QC
Remove duplicated / low quality / mtDNA reads / black listed regions
Sequence quality 2 "] g‘ -
GC content Unique mapping % 75 i
Duplication Duplicated reads % 7 “ 0 , .
Length distribution > Fragment length > ¥ D rnguntiegnon P > Shift reads >
K-mer distribution E
Adapter 56 bine > 200 400 600 800 1000 g 8
Fragmenl length (bp) T Positon (op)
Fragment length distribution TSS enrichment
Core analysis Advanced analysis
Peak calling Peak differential analysis Footprinting analysis
Peak based or slide-window De novo or matif-centric
Consensus peaks Supervised or unsupervised
Peak shape information Bias correction 4
Nucleosome positioning
> Lountor shape based Y ; e A : All or nucleosomal fragments -3
No input control Peak annotation Motif enrichment analysis Low caverage beyond peaks
Paired-end or shift-extend _
Tn5 bias Enriched pathways » Motif database
Replicates Visualization Overreprasentation or motif activity
Integration with multiomics data
| I
Integration with ChiP-seq Integration with RNA-seq Regulatory network reconstruction
Integrate with TF ar QOverlap DEGs and differential peaks Nondirectional (ChIP-seq) or directional (RNA-seq)

> histone marker ChlP-seq Regression (expression ~ accessibility) —> Enhancer promoter interaction

Yan et al. (2020) Genome Biology



QC of ATAC data

Pre-analysis
Pre-alignment QC Alignment Post alignment processing & QC
Remove duplicated / low quality / mtDNA reads / black listed regions

Sequence quality 2 "] g‘ -1+

GC content Unique mapping % 75 i

Duplication Duplicated reads % 7 “ 0 , .
Length distribution > Fragment length > ¥ D rnguntiegnon P > Shift reads >

K-mer distribution E
Adapter 56 bine > 200 400 600 800 1000 g 8
Fragmenl length (bp) T Positon (op)
Fragment length distribution TSS enrichment

Yan et al. (2020) Genome Biology



QC of ATAC data

Digesting Chromatin with Tn5 results in very reqular DNA insert sizes, this can be
used as an indicator of library quality

linker -2 linker -1 regulatory region  linker +1  linker +2
DNA fragment
/ N
forward reverse
DNA cleavage read read

combinations

nhucleosome
free fragments

Nfr Type | (with a TF)
Nfr Type Il (without a TF)

1N Type | (without a TF)
1N Type Il (with a TF)

1N Type lll (only linkers)

fragments with
single nucleosome




QC of ATAC data

With paired-end sequencing data the insert sizes of an ATAC library can be checked.

Which library looks good and how can you explain the pattern?

Naked DNA Failed ATAC-seq Noisy ATAC-seq Successful ATAC-seq
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QC of ATAC data - Nucleosome signal

The nucleosome signal reflects the ratio between mononucleosomes and
nucleosome-free regions

pbmc$nucleosome_group <- ifelse(pbmc$nucleosome_signal > 4, 'NS > 4', 'NS < 4')

FragmentHistogram(object = pbmc, group.by = 'nucleosome_group')
NS <4 NS >4
20000 - 100 A
15000 4 75 -
5
2 10000 1 50 -
O

5000 1 251

- 0- Bladi, . .

0 200 400 600 800 0 200 400 600 800
Fragment length (bp)



QC of ATAC data - Fraction of Fragments in peaks (FrlP)

/~_\ How many reads fall into peaks is a good indicator of how carefully the
ibrary was prepared

| Any active gene

pct_reads_in_peaks

80 1

60 -

Signac code:
40 -

pbmcSpct reads in peaks <-

pbmc$peak region fragments /

pbmcSpassed filters * 100 -

Identity



QC of ATAC data

Pre-analysis
Pre-alignment QC Alignment Post alignment processing & QC
Remove duplicated / low quality / mtDNA reads / black listed regions

Sequence quality 2| }71 “1F

GC content Unique mapping % 75 i

Duplication Duplicated reads % 7 “ 0 , .
Length distribution =~ ™ Fragment length ¥ D rnguntiegnon P > Shiftreads =

K-mer distribution E
Adapter GC bias > 200 400 600 800 1000 g 8
Fragment length (bp) T Positon (op)
Fragment length distribution TSS enrichment

Core analysis

Peak calling

Count or shape based
Nao input control
Paired-end or shift-extend
TnS bias
Replicates

Yan et al. (2020) Genome Biology



Raw QOverlap, Variable-Width

Cell Type A ‘ ‘ ‘
Peak Calls e = -
Cell Type B ‘ ‘
Peak Calls == e —
Cell T iﬁ:fl e C flf'."_;'l" '] ”
‘|,|} N | ’ |
Peak Calls == - == ==
Y
Overlap and Merge (Non-Fixed-Width)
Y
=== == ==
— —— ——

fl—l | l—l*] ——/—
' ' '

Finalize Meréed Peak Set
Y

https://www.archrproject.com/

How to identify peaks?

There are various algorithms to call peaks.
The most commonly used in MACS2 (now 3).
Several options for broad and narrow peaks.

CellRanger from 10x Genomics uses a
proprietary peak caller.

Bedtools can merge peaks



{

Signac pertorms

T

=

step normalization procedure:

erm Frequency-Inverse

TF-IDF Normalization

For ATAC sequencing we can only obtain two fragments per
locus per cell (lower dynamic range compared to RNA exp)

Document Frequency (TF-IDF) normalization. This is a two-

Term frequency (TF) normalizes for sequencing depth by scaling peak accessibility counts within each

cell

Inverse

Document Frequency (|

DF) down-weights t

open across many cells but might not be biologica
specific peaks get more importance.

Cusanovich et al. (2015) Science

nese frequently accessible regions (i.e, peaks that are

ly informative), ensuring that rare but cell-type-



Dimensionality reduction

Perform Singular Value Decomposition (SVD) on the TD-IDF matrix, which gives Latent
Semantic Indexing (LSI) components. This is very similar to PCA (but better for sparse
data). The first singular vector often captures sequencing depth (technical variation)
rather than biological variation.

Correlation between depth and re
Assay: ATAC!| Reduction: Isi

Elbow plot (like for scRNA-seq)
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Dimensionality reduction
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Annotating scATAC-data - obtaining “gene activities”

sample MKI67 NES DCX .
Signac uses gene

. S5 4 activities to link detected
et SwA
o E R O A¥ fragments to genes.

't aggregates all
) ) 26
® KO1 « kY fragments on the gene
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OTX2 LHX9 TFAP2A This can be visualized as

% a proxy of gene
SR Sk expression.




Annotating scATAC-data - obtaining “gene activities”

MKI67 NES DCX rna MKI6Fna NESrna DCX
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Comparing chromatin accessibility and RNA expression



Data integration

No integration CSS Harmony Seurat
orig.ident orig.ident orig.ident orig.ident
‘ \
® BVO_H9 ¢ BVO_H9 ® BVO_H9 ¢ BVO_H9
® BVO_NCS8 ® BVO_NC8 ® BVO_NC8 ® BVO_NCS8
i
PDGFB CLDNS5 PDGFB CLDNS5 PDGFB CLDNS5 PDGFB CLDNS5
N =0 m 2 | g 4
Yy - % . | ¥ 4
PDGFRB COL5A1 PDGFRB COL5A1 PDGFRB COL5A1
ay 4 e oy

Similar integration tools as for RNA can be used - we have to perform the
integration on the LS| (not PCA as default for RNA)



Integration for multi-omic measurement (more than one modality per cell)

In the example RNA and ATAC have been measures together from the same cell

Seurat uses WNN (weighted nearest neighbour network) - this calculates the k-
nearest neighbour of each cell taking both modalities into account.

The weighted nearest neighbour network is used for embedding and clustering,.

Multimodal integration does not always result in better cluster discrimination.

Hao et al. 2021, Cell



Integration for multi-omic measurement (more than one modality per cell)
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In this case slight refinements of the clustering in the progenitors (NES positive)
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Cell type annotation

[
oo

Differential Expression (DE) analysis

Vincent Gardeux

= Goal: identification of genes (or transcripts, exons, ...) that are
expressed in significant different quantities in distinct groups

—e.q. drug-treated vs control, disease vs healthy, cell-types, tissues,
development stages, ...

= What method to use for doing that?
* Mostly statistical tests

= Why not simply using fold-change (FC)?
« Many FP or FN would be expected, because does not take into
consideration:

= Low expressed genes that will tend to have higher FC (vs High)
= The distribution of the data (inherent variance of gene expression)

Really similar to what we do for scRNA-seqg



QC of ATAC data

Pre-analysis
Pre-alignment QC Alignment Post alignment processing & QC
Remove duplicated / low quality / mtDNA reads / black listed regions
Sequence quality 2 "] }j‘ -
GC content Unique mapping % 75 i
Duplication Duplicated reads % j - i . -
Length distribution =~ ™ Fragmentlength = > ¥ Y gt wegn e > Shiftreads = »
K-mer distribution E
Adapter GC bias > 200 400 600 800 1000 g 8
Fragment length (bp) T Positon (op)
Fragment length distribution TSS enrichment
Core analysis Advanced analysis
Peak calling Peak differential analysis Footprinting analysis
Peak based or slide-window De novo or matif-centric
Consensus peaks Supervised or unsupervised
Peak shape information Bias correction 4
Nucleosome positioning
> Lountor shape based Y ; e A : All or nucleosomal fragments -3
No input control Peak annotation Motif enrichment analysis Low caverage beyond peaks
Paired-end or shift-extend _
Tn5 bias Enriched pathways » Motif database
Replicates Visualization Overreprasentation or motif activity
Integration with multiomics data
| |
Integration with ChiP-seq Integration with RNA-seq Regulatory network reconstruction
Integrate with TF ar QOverlap DEGs and differential peaks Nondirectional (ChIP-seq) or directional (RNA-seq)

> histone marker ChlP-seq Regression (expression ~ accessibility) —> Enhancer promoter interaction

Yan et al. (2020) Genome Biology



Normalized signal

Peaks Genes

(range 0 - 530)

KO

KOZ

What can we learn in addition from chromatin accessibility?

,7A,‘_‘

T

auab

chr1 position (bp)

We can associate regulatory
elements to expressed genes
and use this to infer requlatory
networks



We can identify transcription factor motifs that change upon perturbation

ZNF24 ZBED
2.0
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Summary and Take Home

Knowing different types of chromatin

How do identify/map accessible chromatin

Isolating accessible chromatin in single cells

Sequencing libraries using NGS sequencing

Visualizing chromatin accessibility in the genome browser

How to analyze and interpret single cell ATAC data - hands on tutorial will follow



