Single Cell Epigenomics
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Learning Objectives of this week

General strategies of single cell isolation

Getting to know technologies to study gene regulation in single cells
Possibilities to read out different layers of chromatin organisation
Reading out multiple modalities at once

Open questions in chromatin biology and how to address them
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Chromatin accessibility
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Chromatin accessibility
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Modalities to measure to characterize cell states

Protein Function/Phenotype
MRNA Function/Phenotype (indirect)
E DNA Genotype (somatic mutations, CNVs, lineage)
DNA methylation Gene regulation - e.g. Transcriptional repression
Chromatin accessibility Gene regulation - Regulatory regions, TF binding sites
Chromatin/Histone modification Gene regulation - Active/Repressed genes, enhancers, functional el.
Chromatin-Protein interactions Gene regulation - TF/ enzyme binding to DNA
DNA/chromosomal structure Gene regulation - physical contacts enhancers/genes
Other RNAs (miRNA, IncRNA...) Other RNAs (miRNA, IncRNA...)
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Chromatin accessibility
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The dream of single-cell multiomics
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Zhu Ren (2020) Nature Methods



The dream of single-cell multiomics
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scMT-seq [3]*
snmCAT-seq [4]*
SIMPLE-seq [5]

Single-cell ATAC-seq [8]*
Paired-Tag [10]*
Droplet Paired-Tag [11]
Cc

oTECH (121 Many different technologies cover chromatin

scSET-seq [13]*

SCSPRITE [14] organization and nuclear processes

RD-SPRITE [15]

E scEU-seq [16]
E scGRO-seq [17]
| NASC-seq [18]
' scSLAM-seq [19]
| VASA-seq [20]

snG4-CUT&Tag [23]

scRepli-seq [29]
scEdU-seq [32]

LCS-WGA [35]

patial-ATAC-seq [41]
patial ATAC-RNA-seq [42]*
patial CUT&Tag-RNA-seq [42]*

genome-scale Perturb-seq [49]
c

ompressed Perturb-seq [50]

................................................................................

B plate-based || droplet-based [ combinatorial indexing topic paragraph

Van den Berg, Zeller (2025) Current Opinion in Cell Biology



Basic differences between single cell technologies
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e.g. Fluidigm (usually low throughput)
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Muto, Humphreys (2022) Innovations in Nephrology



Workflow of single cell genomics experiments

Optional: Imaging of cell

Challenge:

Very low input:

2 copies of DNA

- Contamination

- Bias due to amplification

- Noise (technical & biological)

Optional: Disaggregation of complex tissue
(mostly enzymatic digestion)

4

Generation of single cell suspension
(Removing aggregates/debris by filtering)

4

Isolation of single cell
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Optional: Imaging of cell
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Computational analyses
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High-throughput
sequencing

Amplification and Enrichment of cellular material (IZ\)T\I\A) - Preparation of sequencing libraries

(multiplexing of cells)



Single-cell genome sequencing

¢
<) )



What can we learn from single-cell DNA sequencing?
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What can we learn from single-cell DNA sequencing?

o e Tracing developmental lineages
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What can we learn from single-cell DNA sequencing?
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What can we learn from single-cell DNA sequencing?
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What can we learn from single-cell DNA sequencing?

Somatic mutation in the aging human brain
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Whole genome amplification can introduce technical errors
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Methods for single-cell whole genome amplification

MALBAC - Multiple annealing & looping-based amplification
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Applications scDNA-seq: Genome analyses of single
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Applications scDNA-seq: Genome analyses of single human oocytes
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Applications scDNA-seq: Genome analyses of single human oocytes
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Applications scDNA-seq: Recombination and mutation in sperm

Genome-wide Single-Cell Analysis
of Recombination Activity and De Novo
Mutation Rates in Human Sperm
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Single-cell genotyping in IVF

A cell is plucked from a human embryo created using in vitro fertilization so that it can be screened
for genetic disorders. (This is done at the cleavage stage 6-8 cell embryo or blastocyst stage)



Enzymatic whole genome ampilification to detect CNV
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Long-read sequencing helps in genome sequencing

Long-read sequencing is Nature Method of the
year 2023

Long reads can help to quantity indels and
repetitive regions

Long reads are needed tor genome assembly

Two main methods from PacBio and Oxford
Nanopore

Logsdon et al. (2020) Nature Rev. Gen.
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Profiling the epigenome in single cells




Cytosin bases can be methylated

Dnmt1 is important for maintenance of DNA-methvlation
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In mammalian genomes CG methylation is the most common type ot DNA-methylation
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DNA methylation suppresses retroelements
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DNA methylation controls imprinting - parent of origin expresion

Typical imprinted gene cluster with constitutive genes and non-coding RNA

Paro (2021) Introduction to Epigenetics



DNA methylation controls imprinting - parent of origin expresion

Typical imprinted gene cluster with constitutive genes and non-coding RNA
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DNA methylation controls imprinting - parent of origin expresion
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Single-cell genome-wide
bisulfite sequencing for
assessing epigenetic
heterogeneity

Sébastien A Smallwaod’®, Heather | Lee!:%S,
Christof Angermueller?, Felix Krueger?,

Heba Saadeh!, Julian Peat!, Simon R Andrews®*,
Oliver Stegle?, Wolf Reik!+27 & Gavin Kelsey!>>7

We report a single-cell bisulfite sequencing (scBS-seq) method
that can be used to accurately measure DNA methylation at up
to 48.4% of CpG sites. Embryonic stem cells grown in serum or
in 2i medium displayed epigenetic heterogeneity, with ‘2i-like’
cells present in serum culture. Integration of 12 individual
mouse oocyte datasets largely recapitulated the whole DNA
methylome, which makes scBS-seq a versatile tool to explore
DNA methylation in rare cells and heterogeneous populations.

Smallwood et al., Nature Methods 2014

DNA methylation analyses in single cells

Single-cell genome-wide bisulfite sequencing for assessing epigenetic
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DNA methylation analyses in single cells

DNA methylation heterogeneity

CpG methylation percentage quantitied over 2-kb  MESCs

windows in mouse oocytes
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DNA methylation analyses in single cells - bisulfite independent approach
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Strand-specific single-cell methylomics reveals
distinct modes of DNA demethylation dynamics
during early mammalian development
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DNA methylation analyses in single cells - bisulfite independent approach
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DNA methylation analyses in single cells - bisulfite independent approach
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DNA methylation analyses in single cells

DNA methylation heterogeneity

CpG methylation percentage quantitied over 2-kb  MESCs

windows in mouse oocytes
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DNA methylation analyses in single cells

DNA methylation heterogeneity

CpG methylation percentage quantitied over 2-kb  MESCs

windows in mouse oocytes
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Profiling the epigenome in single cells
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How do chromatin remodelers act?

repositioning
ATP ADP \

Remodelers can alter the nucleosome positioning

A . .
at a givenlocus or change the histone

TF binding site

sliding

composition
ATP  ADP

unwrapping

In general opening of chromatin is mostly

nucleosome deposition

histone variants

Paro (2021) Introduction to Epigenetics
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Profiling the epigenome in single cells
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We have already looked in detail into scATAC-seq - there are a few other methods ¢

Tn5 (tagmentase) binds open chromatin and inserts sequencing adapters



Nucleosome positioning and open chromatin profiling

Transposition of native chromatin for fast and
sensitive epigenomic profiling of open chromatin,
DNA-binding proteins and nucleosome position

Jason D Buenrostro!~3, Paul G Giresi??, Lisa C Zaba®?, Howard Y Chang?? & William ] Greenleaf
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Nucleosome positioning and open chromatin profiling

A B Arabidopsis Leaf
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Corrected: Publisher Correction

LETTER

https://dol.org/10.1038/541586-018-0567-3

Principles of nucleosome organization revealed by
single-cell micrococcal nuclease sequencing

Rinbin Lail, Weiwu Gaol2, Kairong Cuil, Wanli Xie'?, Qingsong Tang!, Wenfei Jin?, Gangqging TTul, Bing Ni2 & Keji Zhaol*
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Profiling the epigenome in single cells
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Profiling the epigenome in single cells
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Histone modifications are differentially enriched in the genome

H3K4me1 H3K4me3 H3K27me3 H3K9me3
H3K27ac

p300

exon intron  exon

enhancer promoter gene insulator gene cluster repeats
euchromatin facultative : constitutive .
heterochromatin heterochromatin

Jenuwein & Allis Epigenetics (2009)



Classical analysis in bulk through ChlIP sequencmg

Requires crosslinking
Requires a lot of material

Not easily feasible in single cells
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Classical analysis in bulk through ChIP sequencing
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Problem scaling down ChIP-seq to single cells:
High-throughput single-cell ChlP-seq identifies *High backgrouna
heterogeneity of chromatin states in breast cancer *Epitope masking due to cross-linking
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Cleavage under target (CUT&X technologies)

2004: ChlC—chromatin immunocleavage
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2017: CUT & RUN -Cleavage Under Target and Release Using Nuclease
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Targeted in situ genome-wide profiling with high
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Cleavage under target (CUT&X technologies)

2019: CUT & RUN —=in sing\e cells - scCh|IC  ®Recruitment of MNase-AB conjugate to histone
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e DNA cleavage induced by Ca2+
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2023: CUT & RUN —in single cells - scChlIC
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Cellular read count

Cleavage under target (CUT&X technologies)
2019: CUT&Tag —in single cells

.

Cut&Tag for H3K4dme2 on K562 cells

ARTICLE

https://doi.org/10.1038/541467-019-09982-5

CUT&Tag for effncuent epigenomic profiling of small
samples and single cells

Halice S. Kaya-Okur 2 Steven ). Wu'?, Christine A. Codome ™™, Frica S. Pmlg,er1, Terri . Bryson?,

Jorja G. Henikoll!, Kami Anmad® ' & Steven Henikcf(!4
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Cleavage under target (CUT&X technologies)
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Integrating RNA expression and histone modifications

Multimodal integration of scRNA
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Integrating RNA expression and histone modifications

Multimodal integration of scRNA
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Building a model of gene regulation during brain development
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Packaging of Chromatin inside the Nucleus
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Studying chromatin structure using in situ HiC

In situ HIC
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Are TADs features of single cells or is it a population effect?
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