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Immune Engineering

Aug 30, 2017 e colls are saving the ves of cancer

Novartis receives first Immune Engineering patients. That may be just the start.
patients. That may be just the start.

e\/er F DA a p p FO\/a | fO r Availability: 1-2 years

Genetically engineered immune cells are saving the lives of
a CAR-T cell therapy

- he doctors looking at Layla Richards saw a little girl with
-n T leukemia bubbling in her veins. She’d had bags and bags of ‘ e
o . [ Artificial

MIT Technology Review (founded in 1899 )
https://www.technologyreview.com/lists/technologies/2016/




Engineering is the application of
scientific knowledge and
mathematical methods to
practical purposes of the design,
analysis, or operation of
structures, machines, or

systems.

o

Immunoengineering: Interfacing
Immunology(Engineering) with
Engineering(Immunology)

Immunology is a
branch of biology that
covers the study
of Immune systems in

all organisms.



What are exactly the interactions between
engineering and immunology?



Engineering disciplines have developed from
fundamental sciences

Mechanical Chemical Electrical -
Engineering Engineering Engineering

Mechanical Engineering

Tools for Analysis and | Synthesis&
measurement | simulation | manipulation

“Measure” “Model” “Make”
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Biological Engineering:
Application of a new engineering

Mechanical Chemical Electrical -
Engineering Engineering Engineering

Biological Engineering

Tools for Analysis and | Synthesis&
measurement | simulation | manipulation

“Measure” “Model” “Make”




Biological Engineering:
Application of a new engineering
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Immunoengineering:
Application of a new engineering

“Make”

Immunology

Modified from slides of Prof. Darrell Irvine (MIT)

Measuring and

> characterizing iImmune

functions

Bioengineering approaches

to model the Immune

> systems

Manipulating immune system:;
designing new immuno-
therapeutics
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What are the interactions between
engineering and immunology?

» Engineering helps us understand immunology

» Engineering allows us control immune response

Mechanical engineering
Electrical engineering
Materials Engineering
Nano-engineering
Chemical engineering
Tissue engineering

“ Immunology
Protein Engineering

Systems Biology and Engineering
Genetic Engineering

Metabolic Engineering




lmmunoengineering:
Application of a new engineering

Immunoengineerin .
Conventionsl and new
“M . | techniques to characterize
SESHiEE Immune systems

Immunology

Modified from slides of Prof. Darrell Irvine (MIT)
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Several key technologies have become
cornerstones of modern immunological
analysis

—Monoclonal antibodies

—ELISA, ELISPOT -> sensitive detection
using MADbs

—Flow cytometry: multidimensional analysis

—pMHC tetramers: directly visualize
antigen-specific T cells

—Mouse models



A first transformative tool: Hybridoma technology
— the generation of monoclonal antibodies

y | Myeloma: a
Recognition that the immune system of Mouse challenged with antigen Y
animal models could be used to generate w . cancerous
highly sensitive and specific reagents for a @plasma cell
analyzing biological systems ‘ )
- OF L
' Spleen Cells Myeloma Cells
229200029009

Fusion !

COeeEeeEee b ~

Immortal Hybﬁ}"gﬁ <\ )

g rowth Culture in HAT Medium Harvest monoclonal
Select for positive cells antibodies

Cesar Milstein and Georges Kohler at the
time of their nobel prize award in 1984




Putting monoclonal antibodies to work: Enzyme-
inked iImmunoassay (ELISA)

y =142.64x + 0.813
R?=0.998

0 0.5 1 1.5 2
Absorbance (540nm)

Epitomics.com 13



Flow cytometry
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http://olomouc.ueb.cas.cz/book/export/html/18



Flow cytometry

Sample Preparation
[ |
Cryopresene
Cells
Separation

http://www.sinobiological.com/flow-cytometry-fcm-facs-protocol.html 15



THE CLONAL IMMUNE SYSTEM

B-cells: //\_\
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http://doctor-
jones.co.uk/Immunology/Tutorial/Clonal%20Selection%20Theory%20-
%20larger%20image.jpg

T-cells:

*1012 total T cells in adult human
*25-100 million distinct clones

*Only several thousand T cells at most respond to
any individual antigen (von Andrian and Mackay
2000)

*Precursor frequency of antigen-specific cells:

CD8* T cells: estimated at 1 in 200,000 cells specific
for any given antigen (0.0005% antigen-specific
cells), but can expand up to 10,000-fold

Arstila et al. Science 286, 958 (1999)
Blattman et al. J. Exp. Med. 195, é% 7 (2002)



ldentifying antigen-specific T-cells
KD of TCR binding to pMHC:
Peptide-MHC and TCR interaction « CD8TCRs: 10 nM — 1 uM
* CD4 TCRs: 1-10 uM

Original paper:
John D. Altman; Paul A. H. Moss; Philip J. R. Goulder; Dan H. Barouch; Michael G. McHeyzer-Williams; John I. Bell; Andrew J.
McMichael; Mark M. Davis. (1996) "Phenotypic Analysis of Antigen-Specific T Lymphocytes”. Science. 274 (5284): 94-96.

.% Js{

Using multivalency to achieve
stable binding of TCRs to their
native ligands

A"s’
L PE-streptavidin .ﬂd hb"," C Limit of detection:
e. 2 ~0.1-0.2% among
i ') 5 g T cells
MHG manomer | ¢ I3 (1in 1,000)

£

MHC class | tetramer

Nature Protocols 1, 1120 - 1132 (2006) =



http://w

|dentifying antigen-specific T-cells/B-cells

HOW ELISPOT ASSAYS WORK

Capture Antibody
(e.0. anti-cytokine)
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WwW.immunospot.com/resources/protocols/ELISP

Ezyme-linked immunospot assay
(ELISPOT)

Canine IFN-y ELISpot (HRP)
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https://www.mabtech.com/knowledg
e-center/assay-principles/elispot-
assay-principle/elispot-images

Limit of detection:
~0.0025% among assayed cells
(25 in 1,000,000)
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Flow cytometry: an intrinsic limitation

Wavelength (nm)

PercP-Cy55

wavelength (m) -
® Alexa Fluor® 486; &88nm ® Alexa Fluor 532; 488nm & PE; 4880m
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® FITC; 4880m

Laser
® 4g8am

400

700
® PE Dazzle™ 594; 488nm ® PE Alexa Fluor 610; 488nm ® PECyS™, 4880m

® PE Texas Red®; 488nm

® PerCP eFluar 710; 488nm

® P

488nm
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@ PerCP (y5.5; 488nm ® PECy7; 4B8om
® PE(y55; 488nm ® PEVic®T70; 4880m

400
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® 4050m

® Krome Orange'™; 405nm
® f38am

600 700 800
:
@ Brilliant Vielet 570™; 405nm @ Brilliant Viclet 605™; 405nm @ Brilkant Viclet 650™; 405nm
® Pacific Grange™,; 405nm

® Qdot® 605, 405am

 evolve™ 605; 405nm

® Qdot 655; 405hm

® efluor 660; 405nm

® lexa Fluor 647; 638nm
® APC: 638nm

® Cy5; 6380m

https://www.sonybiotechnology.com/us/instruments/sp6800/instruments-spectral/

® Briliant Violet TTI™; 4050m
® Qdot 705, 405nm

tViolet 785™; 405nm
ot 800, 405am
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New development: Single cell Mass Cytometry

A
{ » Nebulize Single-Cell Droplets [~
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Science 06 May 2011: Vol. 332, Issue 6030, pp. 687-696

Workflow summary of mass cytometry

analysis:

* Cells are stained with epitope-specific
antibodies conjugated to transition element
isotope reporters, each with a different
mass.

* Cells are nebulized into single-cell droplets,
and an elemental mass spectrum is
acquired for each.

* The integrated elemental reporter signals
for each cell can then be analyzed by using
traditional flow cytometry methods

e as well as more advanced approaches such
as heat maps of induced phosphorylation
and tree plots.

Bendall et al. Nature Biotechnology 30, 639—64207 (2012)



This slide is not required.
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How to study the interactions between immune

cells and metal particles?

W <
/;u‘& A/R% @r‘é‘.

Gold/Atomic mass
196.96657 u

https://www.mskcc.org/blog/t-cell-science-behind-immunotherapy
Yang, Y. S, et al. (2017). Nature Communications 8: 14069.
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New development: Label-free identification
of activated T cells

0.05

N ME e cpe9t - J";*;’ .
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Carlotta Guiducci

Rollo, E., et al. (2017). "Label-free identification of activated T lymphocytes through tridimensional
microsensors on chip.” Biosensors & Bioelectronics 94: 193-199.
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New development: Real-time deformabillity

cytometry

—Based on mechanical properties of cells
— Size and deformabillity signature of different cell

populations

Streamlines »

* red dotted (platelets)

* dashed (peripheral blood mononucleated
cells, PBMC)

solid lines (granulocytes, gran)

Outlets 0.40
: “** [Whole blood =
0.30 |
Aggregate
filter
il
T ol
€ 020} .:
S .
[}
_ (]
5 38 0.10 | lPT - ...
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ﬁ 18 & K PR RN »
£ 14 g NN
'lg 1.0 L ‘,-'-;:gl, 0 i L c N A_”—') ]
o 5 10 15 20 25 0 20 40 60 80 100
Initial diameter, d (um)

i 2 24
PNAS 2012 May, 109 (20) 7630-7635: Nature Methods 12, pages199-202 (2015) Cell size (um”)



Does mechanical force play a role in immune
system? |
—And also, force exertion at the

— CTL killing 1s mediated by pore Immunological synapse
formation reagents

Membrane undulations
APC

@ Cytotoxic T cell binds © Perforin makes holes in © Infected cell
to infected cell infected cell’s membrane is destroyed
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Hivroz, C. and M. Saitakis (2016). "Biophysical Aspects of T
Lymphocyte Activation at the Immune Synapse.” Frontlers In
iImmunology 7(46).



How to characterize the mechanical force In
Immune system?
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Basu, R., et al. (2016). "Cytotoxic T Cells Use Mechanical Force Time (s)

to Potentiate Target Cell Killing.” Cell 165(1): 100-110. This slide is not required. -




How to prove the mechanical force help In
kl | | | ng? This slide is not required.
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Basu, R., et al. (2016). "Cytotoxic T Cells Use Mechanical Force to Potentiate Target Cell Killing." Cell 165(1): 100-210.



Does immune cell respond to mechanical
force? : .

i B
201 Cyclic force op--

A e S8

|=|~|||\:7_10 VASE \
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DRBCO- “*: Cell.".- {}- 0 Lifetime > 10s
afﬁl" > 10-
20 -

0 111.0 11.5

RGD

This slide is not required.

Kong, F., et al. (2013). "Cyclic mechanical reinforcement of integrin-ligand interactions.” Molecular Cell 49(6): 1060-1068.



of cells

Micro and Nano-Scale
Technologies for Cell
Mechanics
https://doi.org/10.5772/59379
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Major techniques for cancer cell mechanics study. (a) Atomic force spectroscopy; (b) magnetic twisting cytometry; (c)
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This slide is not required.

The immune system is highly complex

Silverman, E. S. (2003). Immunostimulatory DNA for Asthma: Better than Eating Dirt. American Journal of Respiratory Cell and Molecular
Biology, 28(6), 645-647. doi:10.1165/rcmb.F268

30



How do we analyze the state of this network?

Clinical Sample
(Mononuclear cells)

Flow Cytometry
* [Immunophenotype
¢ Intracellular proteins

ELISA (Bead Assays)
e Cytokines
e Antibodies

Transcript profiling
e Microarrays
e RT-qPCR

segregated nature of
assays - cannot link
result from one
measurement to another
at the single-cell level

cannot probe kinetics of
processes within a single
cell

destructive assays, limit
ability to work with small
cell samples

Is it
possible to
__do all
together?
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Microengraving: a strategy to capture
quantitative, kinetic information from live cells

Array of microwells

a)

Peripheral blood
mononuclear cells

QQ —
-

50 um
. B

PDMS

€ [~] [¥]

Deposit cells in microwells & engrave

Cells in microwells:
Label and image

(e

L

=

=

A

Chris Love, MIT

r‘rﬁ-m 11

Pril'lt #1

2%

l-‘('

Detection Ab

Detection Ab

a-hulgG/M

Print #2

Microengraving with human PBMCs for concurrent detection of antibodies and cytokines. (a) Schematic illustration of the microengraving method for detection of multiple
secreted products from human PBMCs. PBMCs, suspended in media, are deposited onto a large array (~20x50 mm2) of microwells (~0.1 nL each) molded on a
poly(dimethylsiloxane) slab, and allowed to settle from suspension in the microwells at a density of~1 cell/well. The cells adhere loosely to the bottoms of each well. Excess cells are
rinsed off the surface of the array, and the microwells are then inverted onto a glass slide coated with a specific capture reagent (e.g., anticytokine). After an incubation period (~1
h), the microwells are removed and applied to a second glass slide coated with a different capture reagent (e.g., anti-IgG and anti-IgM). The resulting microarrays are interrogated
with fluorescently labeled reagents for detection and laser-based fluorescence scanners. After printing, the cells in the wells can be stained in situ for subsequent imaging by

immunofluorescence.

http://news.mit.edu/2015/faculty-profile-

christopher-love-0617

Love, J. C,, Ronan, J. L., Grotenbreg, G. M., van der Veen, A. G., & Ploegh, H. L. Nature Biotechnology, 24(6), 703-707 (2006)

32

Bradshaw, E. M., Kent, S. C., Tripuraneni, V., Orban, T., Ploegh, H. L., Hafler, D. A, & Love, J. C. Clinical Immunology, 129(1), 10-18 (2008)



T e o KRS, engraving: a strategy to capture

quantitative, kinetic inforrpation from) ive cells

50-100 um / . ®
- | °
1

M—»
PDMS PDMS

SEL NN rm_m—

l\
50-100 um

- o
I Glass |

Microarray of secreted products

CD14 CD20 CD3

Bradshaw, E. M., Kent, S. C,, Tripuraneni, V., Orban, T., Ploegh, H. L., Hafler,  Love, J. C,, Ronan, J. L., Grotenbreg, G. M., van der Veen, A. G., & Ploegh, H. L.
D. A., & Love, J. C. Clinical Immunology, 129(1), 10-18 (2008) Nature Biotechnology, 24(6), 703-707 (2006) 33



Microengraving: a strategy to capture
quantitative, kinetic information from live cells
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Using 1ts mobile nature to genetically manipulate
the Immune system: adoptive transfer models
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Irradiate — recipient mouse
lymphodepletion?



Humanized mice
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Shultz, L. D., Brehm, M. A., Garcia-Martinez, J. V., & Greiner, D. L. (2012). Nature Reviews Immunology, 12(11), 786—798.

http://doi.org/doi:10.1038/nr13311




Immunoengineering:
Application of a new engineering

Immunoengineering
m > Engineering artificial immune

systems
“Make”

Immunology

Modified from slides of Prof. Darrell Irvine (MIT)
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Engineering artificial Immune systems
--Lymph node

.

a _amp.  Naive Ankur Singh

BAFF: a B cell activating factor - S (Georgia Tech)

C
Lymphoid
Tissue

3T3 fibroblasts

the BALB/c 3T3 fibroblasts are stably transduced with

CD40L and BAFF (hereafter we refer to this
Biomaterials 63 (2015) 24-34; transgenic cell line as 40LB), and function as a
Nature Protocols volumel2, pages168-182 (2017) substitute for TFH cells and FDCs. 2g



Modeling the iImmune system: systems biology
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Immunoengineering:
Application of a new engineering
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